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REVIEW

Bringing KASH under the SUN: the many faces of
nucleo-cytoskeletal connections

David Razafsky and Didier Hodzic

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110

The nucleus is the most prominent cellular organelle, and
its sharp boundaries suggest the compartmentalization of
the nucleoplasm from the cytoplasm. However, the recent
identification of evolutionarily conserved linkers of the
nucleoskeleton to the cytoskeleton (LINC) complexes, a
family of macromolecular assemblies that span the dou-
ble membrane of the nuclear envelope, reveals tight
physical connections between the two compartments.
Here, we review the structure and evolutionary conserva-
tion of SUN and KASH domain—containing proteins,
whose interaction within the perinuclear space forms the
“nuts and bolts” of LINC complexes. Moreover, we dis-
cuss the function of these complexes in nuclear, centro-
somal, and chromosome dynamics, and their connection
to human disease.

Nucleus and chromosome movement are essential macroscopic
manifestations of complex molecular events involving anchors,
motors, and the cytoskeleton. In this review, we will describe
how Sad1/UNC-84 (SUN) and Klarsicht/ ANC-1/Syne-1 homol-
ogy (KASH) domain—containing protein families confer a range
of previously unsuspected functional versatilities to the nuclear
envelope (NE) in order to display such prowess. We will also
discuss the current evidence for the involvement of these pro-
teins in human pathologies.

Setting the stage: the NE

The NE is composed of two lipid bilayers, the inner and the
outer nuclear membrane (INM and ONM, respectively), which
are connected at nuclear pores, thus delineating the perinuclear
space (Fig. 1). The ONM is an extension of the rough ER,
and the INM adheres to the nuclear lamina, a meshwork of
type-V intermediate filaments composed of A- and B-type lamins
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(Stuurman et al., 1998; Hutchison, 2002). In contrast to other
intermediate filaments, all lamins harbor a nuclear localization
signal, and B-type lamins retain a farnesyl group through which
they associate with the INM. Although A-type lamins are devel-
opmentally regulated, B-type lamins are essential for cell via-
bility (Lenz-Bohme et al., 1997; Sullivan et al., 1999; Liu et al.,
2000; Vergnes et al., 2004). Although the higher order of lamin
assembly has not been established in mammalian cells, the supra-
molecular organization of the 10-nm B-type lamin filament has
been determined in Caenorhabditis elegans (Ben-Harush et al.,
2009). Overall, the nuclear lamina appears to form a compressed
network that functions as a “molecular shock absorber” (Dahl
et al., 2004; Panorchan et al., 2004).

The nuclear lamina fulfills many diverse regulatory func-
tions (Gruenbaum et al., 2000). Accordingly, A-type lamins bind
to a myriad of architectural, chromatin, gene-regulatory, and sig-
naling proteins (Moir and Spann, 2001; Zastrow et al., 2004).
The nuclear lamina interacts directly with the nucleoplasmic do-
mains of single and multitransmembrane INM proteins (Burke
and Stewart, 2002) such as the lamin B receptor (Worman et al.,
1988), lamin-associated peptides 1 and 2 (Foisner and Gerace,
1993), emerin (Bione et al., 1994), and Man1 (Lin et al., 2000).
Hence, these proteins display decreased lateral diffusion across
the INM and a characteristic nuclear rim-like pattern in immuno-
fluorescence microscopy (Soullam and Worman, 1995; Ellenberg
and Lippincott-Schwartz, 1999; Holmer and Worman, 2001;
Lusk et al., 2007).

Proteomic analyses of the NE (Schirmer et al., 2003)
suggest the existence of no less than 60 novel putative INM
proteins, which indicates that our picture of the NE is still in-
complete. The up-regulation of some of these proteins during
cellular differentiation (Chen et al., 2006) stresses the need to
fully characterize their structure and function to obtain a more
integrated view of the NE.

The rise of the SUN domain: identification
and evolutionary conservation

Studies of mutant C. elegans embryos with defects in nuclear
migration and anchorage led to the identification of UNC-84,
a transmembrane protein of the NE (Fig. 2 A; Malone et al., 1999).
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Figure 1. Topology and functions of LINC
complexes. In the perinuclear space, the evolu-
tionarily conserved inferaction between SUN
(orange oval) and KASH (green) domain-
containing proteins physically connects the
nuclear lamina to essential cytoskeletal elements
such as the actin and microtubule networks.
These connections enable nuclear migration
or anchorage at specific locations within cells
and syncytia. SUN-KASH inferactions also play
essential roles in chromosome dynamics and
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UNC-84 harbors the so-called SUN domain that consists of
a stretch of ~150 C-terminal amino acids. The SUN domain
was also detected in the Schizosaccharomyces pombe Sadl
protein that was originally identified as a spindle pole body
(SPB) component (Hagan and Yanagida, 1995) as well as in
two predicted mammalian transmembrane proteins called
Sunl and Sun2. Sunl and Sun2 were further characterized as
ubiquitously expressed integral type II transmembrane proteins
of the NE with a nucleoplasmic N-terminal region and a
C-terminal region protruding into the perinuclear space (Hodzic
et al., 2004; Crisp et al., 2006; Haque et al., 2006; Wang et al.,
2006). This topology therefore positioned the SUN domain
within the perinuclear space (Fig. 1). The SUN domain is also
found in three other transmembrane mammalian proteins: Sun3,
SPAG4, and SPAGAL (Fig. 2 B). However, their expression
pattern is more restricted than Sunl and Sun2. Sun3 is predom-
inantly detected in testes and mostly localizes in the ER (Crisp
et al., 2006). SPAG4 is expressed in spermatids, where it local-
izes to the manchette and axoneme (Shao et al., 1999), in pan-
creas and in testes. Its expression is also switched on and
up-regulated in neoplastic tissues (Kennedy et al., 2004).
SPAG4L mRNA (also called TSARG4) has been reported in a
wide range of adult mouse tissues (Xing et al., 2003), but its
localization remains unknown.

SUN domains display remarkable evolutionary conserva-
tion. They are found in D. melanogaster Klaroid and Giacomo
(Kracklauer et al., 2007), in Saccharomyces cerevisiae Mps3
(Jaspersen et al., 2006), and in plants (Fig. 2 B and Table I) such
as in the rice protein OzSADI1 (Moriguchi et al., 2005). The
broad evolutionary conservation of SUN domains suggests that
they participate in essential biological functions.
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The C-terminal SUN domain of both Sunl and Sun2 protrude
into the perinuclear space, whereas their N-terminal region is
nucleoplasmic and interacts directly with A- and B-type lamins
(Fig. 1; Hodzic et al., 2004; Crisp et al., 2006; Haque et al., 2006;
Wang et al., 2006). The NE retention of Sunl does not require
A- or B-type lamins, whereas a significant proportion of Sun2
mislocalizes from the NE to the ER in fibroblasts lacking A-type
lamins (Crisp et al., 2006; Haque et al., 2006; Hasan et al., 2006).
The existence of differential retention mechanisms in mamma-
lian cells is further supported by the colocalization of Sunl, but
not of Sun2, with nuclear pore components (Liu et al., 2007).
In C. elegans embryos lacking Ce-lamin, UNC-84 completely
“drifts” from the NE to the ER (Lee et al., 2002), whereas
SUN-1/MTF-1, the other C. elegans Sun protein (Fig. 2 B), remains
at the NE (Fridkin et al., 2004), which further supports differen-
tial NE retention mechanisms of SUN domain—containing proteins.
Little is known about the regulation of the interaction between
Sun proteins and the nuclear lamina. Interestingly, Sun2 is heav-
ily phosphorylated on three serine residues (Ser-12, Ser-54, and
Ser 116) upon treatment of HeLa cells with phosphatase inhibi-
tors (Grgnborg et al., 2002). Analysis of the regulation of phos-
phorylation and O-glycosylation of Sun proteins may provide
key information regarding their nucleoplasmic interaction net-
works and localization mechanisms at the NE.

Bringing some KASH under the SUN:
assembly of LINC complexes

Several ONM proteins that interact with SUN domains were
identified in multiple organisms (Fig. 3 A and Table I). These
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Figure 2. Identification of Sun proteins. (A) SUN and KASH proteins are required for nuclear dynamics in hypodermal syncytium of C. elegans embryos.
In wild-type animals, syncytium formation is preceded by the contralateral migration of Hyp7 nuclei (arrows) across embryos dorsal median (DM). Nuclei
are then anchored in the newly formed syncytium. Unc-84 mutants fail in both nuclear migration and anchorage, whereas unc-83 and anc-1 mutants dis-
play nuclear migration and nuclear anchorage defects, respectively. Dorsal cord location of failing migratory nuclei is caused by passive displacement by
wall muscles squeezing the hypodermis. (right) Localization of EGFP::UNC-84 to the NE in C. elegans embryos. The image is reproduced with permission
from Development (Malone et al., 1999). Bar, 10 pm. (B) Alignment of evolutionary-conserved SUN domains. Dark gray— and light gray-shaded residues
correspond to the conservation of identical or similar residues, respectively. Asterisks indicate strictly conserved amino acids.

are D. melanogaster Klarsicht and Msp-300 (Fischer-Vize and
Mosley, 1994; Rosenberg-Hasson et al., 1996; Welte et al.,
1998); C. elegans ZYG-12 (Malone et al., 2003), UNC-83 (Starr
et al., 2001), and ANC-1 (Starr and Han, 2002); and mamma-
lian Syne-1 and -2, also called Nesprin-1 and -2 (both terms will
be used in this review; Apel et al., 2000). These are all integral
type II transmembrane proteins that localize at the ONM and
share an evolutionarily conserved C-terminal region: the KASH
domain (Starr and Han, 2002). This domain consists of a trans-
membrane region followed by an evolutionary-conserved stretch
of ~35 amino acids protruding into the perinuclear space

(Fig. 3, A and B). KASH domains have been identified in many
organisms, from yeasts to mammals (Table I).

Linkers of the nucleoskeleton to the cytoskeleton (LINC)
complexes designate the macromolecular assemblies that form
through SUN-KASH interactions (Crisp etal.,2006) and span both
the INM and ONM, thereby establishing physical connections be-
tween the nucleoplasm and the cytoplasm (Figs. 1 and 3 A). SUN
domain—containing proteins are essential to recruit KASH domain
proteins at the ONM. Indeed, ANC-1 and UNC-83 fail to localize
at the ONM in UNC-84 mutants (Starr et al., 2001; Starr and Han,
2002; McGee et al., 2006), and ZYG-12 requires SUN-1/MTF-1

LINC COMPLEXES AND NUCLEAR DYNAMICS * Razafsky and Hodzic
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Table I Functional diversity of SUN and KASH domain proteins

Localization/interaction

Perinuclear space Cytoplasm
Organism Nucleoplasm SUN KASH Motor Cytoskeleton Function References
C. elegans Celamin UNC-84 UNC-83  Kinesinl MT Nuclear migration Starr et al., 2001; Meyerzon
et al., 2009
C. elegans Ce-lamin UNC-84  ANC-1 NA Actin Nuclear anchorage ~ Malone et al., 1999; Starr and
Han, 2002
C. elegans Ce-lamin SUN-1/MTF-1 ZYG-12 Dynein Centrosome Centrosome tethering Malone et al., 2003
at NE
C. elegans Ce-lamin SUN-1/MTF-1 ZYG-12 Unknown Unknown Meiotic chromosome Penkner et al., 2007
dynamics
D. melanogaster LamDmO Klaroid  Klarsicht Dynein MT Nuclear migration Mosley-Bishop et al., 1999;
Kracklaver et al., 2007
H. sapiens Lamin A/C-B1 Sun1/2  Syne1/2 NA Actin Nuclear anchorage  Grady et al., 2005; Zhang et al.,
2007b; Méjat et al., 2009; Lei
et al., 2009
H. sapiens Lamin A/C-B1 Sun1/2  Nesprin-3 NA Plectin Nuclear coupling to IF Wilhelmsen et al., 2005
H. sapiens Lamin A/C-B1 Sun1/2  Nesprin-4  Kinesinl MT Nuclear migration Roux et al., 2009
S. pombe Bqt1/2 Sadl Kms1/2 Dynein MT Meiotic chromosome ~ Chikashige et al., 2006; Miki
dynamics et al., 2004
S. pombe ImaT, Ndc80 Sad1 Kms2 Unknown MT Centromere-SPB coupling King et al., 2008
S. cerevisiae Ndij1 Mps3  Unknown  Unknown Unknown Meiotic chromosome Conrad et al., 2008
dynamics
S. cerevisiae Sird Mps3  Unknown  Unknown Unknown Mitotic telomere tether- Bupp et al., 2007
ing at NE
S. cerevisiae Unknown Mps3 (Mps2) Unknown SPB SPB tethering at NE Jaspersen et al., 2006

The various physiological functions of protein networks based on SUN/KASH interactions across the NE are listed horizontally. The localization (nucleoplasm,
perinuclear space, or cytoplasm) of each network components as well as the nomenclature of SUN and KASH proteins among different species are indicated.
Mps2 is in parentheses because it does not contain any detectable KASH domain even though it is involved with Mps3 in SPB tethering at the NE in S. cerevisiae.

MT, microtubule; NA, not applicable.

for its NE localization (Malone et al., 2003). In D. melanogaster,
Klaroid is strictly required for the ONM localization of Klarsicht
and Msp-300 (Kracklauer et al., 2007; Technau and Roth, 2008).
Similarly, the simultaneous siRNA-mediated down-regulation
of both mammalian Sunl and Sun2 prevents the localization
of Nesprin-2—giant at the NE (Padmakumar et al., 2005; Crisp
et al., 2006). The expression of either the recombinant SUN
domain of Sunl and Sun2 within the ER lumen or the KASH
domain of Nesprin-1, -2, and -3 invariably results in the displace-
ment of all endogenous NE spectrins (Nesprins) from the NE to
the ER (Padmakumar et al., 2005; Crisp et al., 2006; Stewart-
Hutchinson et al., 2008). Coupled with the observation that the
KASH domain of Nesprin-1, -2, and -3 is equally able to interact
with both Sunl and Sun2, SUN-KASH interactions seem pro-
miscuous (Stewart-Hutchinson et al., 2008). In mammalian cells,
SUN-KASH interactions strictly require the C-terminal poly-
proline motif of KASH domains (Fig. 3 B; Padmakumar et al.,
2005; Ketema et al., 2007) as well as the last 20 C-terminal amino
acids of the SUN domain, which contains three strictly conserved
amino acid residues (Fig. 2 B; Stewart-Hutchinson et al., 2008).
Consistent with the proposed interaction between Sun proteins
and Nesprins across the NE, disruption of LINC complexes pro-
vokes a significant enlargement of the perinuclear space between
the ONM and the INM (Crisp et al., 2006). As we will see, in
addition to widening the landscape of known NE proteins, the
discovery of LINC complexes has radically redefined our view of
NE function (Stewart et al., 2007).

JCB « VOLUME 186 « NUMBER 4 « 2009

Providing functional diversity to the NE:
the many faces of KASH proteins

In the following paragraphs, we describe the functional aspects
of various KASH domain-containing proteins in different or-
ganisms. KASH domains provide a generic NE tethering device
for functionally distinct proteins whose cytoplasmic domains
mediate nuclear positioning, maintain physical connections with
other cellular organelles, and even influence chromosome dy-
namics (Fig. 1 and Table I).

Nuclear anchorage to the cytoskeleton. The di-
rect “harpooning” of the cytoskeleton with a micropipette tip
results in a direct and immediate force transfer to the nucleus,
whose NE locally extends and moves in the direction of the pull
(Fig. 4 A). This effect is microtubule independent and suggests
that the nucleus is “hard-wired” to the cytoskeleton (Maniotis
etal., 1997; Wang et al., 2009). As shown in Fig. 4 B, C. elegans
ANC-1, D. melanogaster Msp-300, and the giant isoforms of
mammalian Nesprin-1 (also called Syne-1 [Apel et al., 2000],
Mynel [Mislow et al., 2002], and Enaptin [Padmakumar et al.,
2004]) and Nesprin-2 (also called Syne-2 [Apel et al., 2000]
and NUANCE [Zhen et al., 2002]) are gigantic proteins localiz-
ing to the ONM, and they are predicted to extend as a rod-like
structure of up to 300-400 nm into the cytoplasm (Zhang et al.,
2002). They all share a common architecture: an N-terminal
actin-binding domain and interspersed spectrin repeats. The latter
are triple-helical coiled-coil domains with elastic properties that
might be important in terms of deformability (Lenne et al., 2000).
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H.Sapiens SunT, Sun2 ‘ 20 Nesprins/Syne
C.elegans UNC-84, SUN-1/MTF-1

D.Melanogaster Klaroid, Giacomo Klarsicht, MSP-300

Lamins
INM  ONM

KASH domain

ZYG-12, ANC-1, UNC-83

Figure 3. Identification of KASH proteins. (A) Topological
depiction of INM SUN and ONM KASH proteins in various
organisms. Alternative names of a unique protfein are sepa-
rated by slashes. (B) Alignment of evolutionarily conserved
KASH domains that consist of a transmembrane domain and
an ~30-amino acid luminal domain. Dark gray- and light
gray-shaded residues correspond fo the conservation of iden-
tical or similar residues, respectively.
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The actin-binding domain of Nesprin-2 is essential for the NE
morphology of primary dermal fibroblasts and keratinocytes
(Liike et al., 2008). In Cos7 cells, depolymerization of the actin
network rapidly induces an irregular nuclear shape and partial
colocalization of Nesprin-2 with disassembled actin-rich foci
(Zhen et al., 2002).

In C. elegans, mutation of ANC-1 or the overexpression
of its actin-binding domain specifically affect nuclear anchor-
age within hypodermal syncytia (Fig. 2 A; Starr and Han, 2002).
A missense mutation of the giant D. melanogaster Msp-300
protein was initially found to prevent the anchorage of nurse
cell nuclei during cytoplasm dumping in Drosophila oocytes
(Yu et al., 2006), but recent studies have questioned the involve-
ment of Msp-300 in that phenotype (Technau and Roth, 2008;
Xie and Fischer, 2008). Nevertheless, different mouse models
now clearly support the role of Nesprins in anchorage of mam-
malian nuclei in vivo. Skeletal muscle provides an ideal readout
for nuclear anchorage; an average of four so-called synaptic
nuclei are tightly anchored beneath arrays of acetylcholine re-
ceptors (AchRs) at the postsynaptic apparatus (Fig. 4 C, top).
Extrasynaptic nuclei, however, are interspersed along the
muscle fiber (Fig. 4 D, top; Bruusgaard et al., 2003). Transgenic
dominant-negative synaptic NE (Syne) mice, which express a
Syne-1 KASH domain under the control a muscle-specific pro-
moter, display a loss of synaptic nuclear anchorage beneath the
AchR array and partial mislocalization of endogenous Syne-1
from the NE (Grady et al., 2005). The homozygous deletion of
the KASH domain of Syne-1 led to a more severe synaptic nu-
clei displacement in addition to the aggregation of extrasynaptic
nuclei (Fig. 4, C and D, bottom). An accompanying phenotype
consists of the extensive branching of phrenic nerves, which
indicates that synaptic nuclear anchorage may be essential to
maintenance of innervation sites. The homozygous deletion of
the KASH domain of Syne-2, however, does not affect nuclear
anchorage, which indicates that Syne-1 specifically undertakes
that function. Mice carrying homozygous deletions of both
Syne-1 and Syne-2 die at birth due to respiratory failure (Zhang
et al., 2007b).

The effect of homozygous deletions of Sun proteins on
nuclear anchorage was also examined. In Sun/ ~/~ mice, there is

a modest but significant decrease of synaptic nuclei anchorage,
whereas the homozygous deletion of the SUN domain of Sun2
has no effect. Sunl; Sun2 double knockout mice die soon after
birth, but this perinatal lethality phenotype can be rescued by
the neuron-specific expression of Sunl in these mice. In the lat-
ter mouse model, adult mice display a drastic loss of synaptic
nuclei anchorage. This effect is also observed in embryonic day
18.5 Sunl; Sun2 double knockout embryos. These results indi-
cate a partially redundant role for Sunl and Sun2 in synaptic
nuclear anchorage (Lei et al., 2009). In agreement with this
idea, Syne-1 localization at the NE of myonuclei was com-
pletely lost only in mice lacking both Sunl and Sun2 (Lei et al.,
2009). Together, these results indicate that, in vivo, SUN-KASH
interactions are essential to connect the nuclear lamina to the
perinuclear cytoskeleton and play an essential role in nuclear
anchorage of mammalian synaptic and extrasynaptic nuclei. It
is noteworthy that even though synaptic nuclei are transcription-
ally specialized for postsynaptic components, the localization
and organization of pre- and postsynaptic components appears
normal in both Syne-1; Syne-2 (Zhang et al., 2007b) and Sunl;
Sun2 double knockout mice (Lei et al., 2009).

Because spectrin repeats provide interacting interfaces
with the cytoskeletal network (Djinovic-Carugo et al., 2002),
other KASH domain—containing proteins that do not contain any
actin-binding domains could still be significantly involved in
nuclear positioning. This is illustrated by mammalian Nesprin-3.
The Nesprin-3 gene encodes two isoforms of a smaller ~100-kD
protein: Nesprin-3a and 3. The N-terminal spectrin repeat of
Nesprin-3a interacts with the actin-binding domain of plectin
(Wilhelmsen et al., 2005; Ketema et al., 2007), a cytoskeletal
adaptor protein belonging to the plakin family (Fig. 4 B; Jefferson
et al., 2004). Because of the alternative splicing of the inter-
acting spectrin repeat, Nesprin-3[3 does not interact with plectin.
The discovery of Nesprin-3 and the plectin binding specificity
of the a isoform indicate that: (1) smaller Nesprins can “team
up” with large cytoskeletal adaptors to connect the NE to the
cytoskeleton and (2) the alternative splicing of a single spectrin
repeat motif can drastically affect the biochemical properties of
Nesprins. Hence, N-terminally truncated o, 3, and vy isoforms of
Nesprin-1 and -2 (for review see Warren et al., 2005), which
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Figure 4. KASH domain—containing proteins anchor the nucleus to the cytoskeleton. (A) “Harpooning” of the cytoplasm induces indentations of the nucleus
(arrow) in the direction of the pull, illustrating the wiring of the nucleus to the cytoskeleton. Image reproduced from Maniotis et al. (1997), copyright (1997)
the National Academy of Sciences, USA. (B) Schematic depiction of KASH domain—containing proteins involved in nuclear anchorage to the cytoskeleton.
Actin-binding domains (red ovals) of giant KASH proteins interact with the actin network. Blue ovals, spectrin repeats that potentially bind and organize
the cytoskeleton. (C) Syne-1 mediates the anchorage of synaptic nuclei in mouse skeletal muscle. Synaptic nuclei (stained with Sun2, green) are anchored
just beneath the AchR array (stained with bungarotoxin, red) in Syne-17/* skeletal muscle (top). In Syne-17/~ skeletal muscle (bottom), anchorage of these
nuclei under AchR arrays is lost. The image is reproduced with permission from Development (Zhang et al., 2007b). Bar, 25 pm. (D) Rendering of nuclear
positioning defects observed in Syne-17/~ mouse skeletal muscle. (D, top) synaptic (s) nuclei, intimately associated with AchR arrays (red), abundantly
express Syne-1 (green). Extrasynaptic (e) nuclei are regularly interspersed along the muscle fiber and express Syne-1 to a lower extent. (D, bottom) In the
absence of Syne-1 expression, synaptic nuclei are no longer associated with the AchR array while extrasynaptic nuclei coalesce.

are generated through the combination of alternative splicing
and/or promoter usage, lack an actin-binding domain but might
still provide significant nuclear anchoring functionalities to the
cytoskeleton (Fig. 4 B). Together, these observations indicate
that LINC complexes are essential NE scaffolding, whose
“inner core,” the SUN-KASH interaction, “zips” the nuclear
lamina to the perinuclear cytoskeleton (Starr and Fischer, 2005;
Tzur et al., 2006b; Wilhelmsen et al., 2006).

Nuclear migration. Mutation of the KASH protein
UNC-83 specifically prevents the migration step of hyp7 nuclei
during the formation of the hypodermal syncytium (Fig. 2 A;
Starr et al., 2001). Similarly, mutation of Klarsicht prevents
nuclear apical migration of photoreceptor precursors in the de-
veloping eye disc of D. melanogaster (Fig. 5 A). This pheno-
type results from the uncoupling between the centrosome and
the NE (Fischer-Vize and Mosley, 1994; Mosley-Bishop et al.,
1999; Fischer et al., 2004). Remarkably, and in agreement with
the requirement of Klaroid for the NE recruitment of Klarsicht,
Klaroid mutants (koi) display a similar phenotype (Kracklauer
et al., 2007). By the same token, nonsense or frameshift muta-
tions of D. melanogaster B-type lamin encoded by LamDm,
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also display nuclear migration defects (Patterson et al., 2004).
These results clearly indicate the requirement of the SUN-
KASH interaction in nuclear migration. Klar also encodes a
KASH-less spliced variant termed Klarsicht-LD. This protein
associates with and mediates the microtubule-dependent bidi-
rectional movement of lipid droplets in early embryos (Guo et al.,
2005), illustrating the remarkable NE specification provided
by KASH domains.

Nuclear migration defects were first identified in filamen-
tous fungi nearly 35 yr ago (Morris, 2000). The Nud (nuclear
distribution genes in Aspergillus nidulans) and Ro (ropy in
Neurospora crassa) gene families were first identified based on
mutations leading to nuclear distribution defects and identified
as components of the microtubule minus end—directed motor
complex dynein as well as its accessory factor dynactin. Prime
evidence for the direct connection of KASH proteins to molecu-
lar motors has just emerged. In C. elegans, UNC-83 interacts
directly with the kinesinl1 light chain KL.C-2 (Fig. 5 B). Accord-
ingly, KLC-2 as well as UNC-116 (encoding the kinesin 1 heavy
chain) mutants both induce nuclear migration defects similar to
UNC-83 mutants (Meyerzon et al., 2009). ZYG-12 also directly
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interacts with the dynein light intermediate chain DLI-1, and,
surprisingly, this interaction is essential for nuclear anchoring in
the germline (Zhou et al., 2009). Nesprin-4, a newly described
mammalian KASH protein, directly interacts with the light chain
of kinesin 1 (Fig. 5 B). Nesprin-4 expression is restricted to secre-
tory epithelia where microtubules are organized in lateral bundles
with plus ends pointing basally. Nesprin-4 ectopic expression
recruits kinesin-1 at the NE and leads to a dramatic increase in
NE—centrosome distance. The Nesprin-4—kinesin-1 interaction is
therefore likely to be involved in the microtubule-dependent
maintenance of a basal nuclear location within secretory epithe-
lia (Roux et al., 2009). The Kif3B subunit of kinesin II was also
reported to bind directly to a fragment of Nesprin-1 containing
two spectrin repeats, but the physiological relevance of that
interaction still remains to be established (Fan and Beck, 2004).
In the developing Drosophila eye, nuclear migration defects
similar to Klarsicht mutants are also observed in glued mutants
encoding dynactin (Fan and Ready, 1997; Whited et al., 2004),
which suggests the involvement of dynein in the apical migration
of R cell nuclei (Fig. 4, A and B). The binding of dynein and/or
dynactin to mammalian Nesprins remains to be investigated.
Nucleus-centrosome coupling. From the zygote
stage to the early steps of C. elegans embryogenesis, ZYG-12 me-
diates the essential attachment between the nucleus and the centro-
some (Malone et al.,2003). ZYG-12 is a KASH domain—containing
protein (Fig. 3, A and B) whose cytoplasmic region bears resem-
blance to mammalian Hook proteins (Walenta et al., 2001).

SUN protein
INM ONM

S.pombe Sad1 ::@:é
»
, ]
Chromatin |Se,
L
C.elegans SUN-1/MTF-1 <L>

lamins

Figure 5. KASH domain-containing proteins
mediate nuclear migration. (A, top) Cross sec-
tion of wild-type D. melanogaster eye discs
showing the apical location of photorecep-
tor nuclei (blue) underneath the MTOC (red).
(A, bottom) Cross section of klar mutant eye
discs showing the failure of most nuclei to mi-
grate apically. The image is reproduced with per-
mission from Patterson etal. (2004). Bar, ~10 pm.
(B) Schematic depiction of the involvement of
KASH proteins from different species in nuclear
migration through their connection to the micro-
tubule network via molecular motors.

Kinesinl

Specific ZYG-12 isoforms are recruited at the NE by SUN-1/
MTE-1, and mutations of either one disrupts the coupling of the
centrosome with the nucleus (Malone et al., 2003; Tzur et al., 2006a;
Penkner et al., 2007). The exact nature of ZYG-12 interaction with
the centrosome remains unknown (Fig. 6). Curiously, identical
mutations of ZYG-12 do not alter the coupling of the centrosome
to the NE in the germline (Zhou et al., 2009), which suggests
the existence of alternative centrosome-tethering mechanisms.
Tethering the microtubule-organizing center (MTOC) to the
yeast nucleus also involves LINC complexes. In S. pombe, the
interaction between Sadl and KASH proteins Kmsl and 2
(Fig. 3 B) provides a physical connection between the SPB and
centromeric chromatin. The coupling of Sad1 to centromeric chro-
matin requires the INM protein Imal and the centromeric Ndc80
complex (Fig. 6; King et al., 2008). In S. cerevisiae, the SPB is
embedded in the NE and in close contact with a membrane sub-
structure called the half bridge (Jaspersen et al., 2006). Mps3,
which localizes to the half bridge, is a SUN protein (Fig. 2 B) that
interacts with Mps2 within the periplasmic space (Muifioz-
Centeno et al., 1999). That interaction tethers the SPB to the half-
bridge and is essential for the formation of an intact SPB (Jaspersen
et al., 2006). Mps2, however, does not contain any recognizable
KASH domain. Interestingly, mouse embryonic fibroblasts lacking
A-type lamins or expressing disease-causing mutations thereof
display migration defects, an increased distance between nucleus
and centrosome, and a failure of the centrosome to polarize (Lee
et al., 2007; Hale et al., 2008). Increased nucleus—centrosome

KASH protein Figure 6. SUN and KASH proteins involved

in nucleus-MTOC coupling. In S. pombe, the
MTOC is physically coupled to centromeres
(blue). That physical coupling is provided by
the interaction between Sadl and Kms2,
whereas the association of Sad1 with centro-
meres is promoted by the centromeric Ndc80
complex and Ima1, a multispan transmembrane
protein of the INM. Similarly, during C. elegans
embryogenesis, Zyg-12 and SUN-1/MTF-1
act in concert to maintain the centrosome in
close proximity to the NE. Genetic ablation
of either protein severely disrupts that attach-
ment. In both cases, the nature of the interac-
tion between the KASH domain protein and
the MTOC is not known.

Kms2

Zyg12
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distance was also observed upon LINC complex disruption in
mammalian cells (our unpublished data). Collectively, these
results suggest an evolutionarily conserved role for LINC com-
plexes to position the MTOC in close proximity to the NE.

Chromosome dynamics. The “chromosomal bouquet”
(Scherthan, 2001) refers to the “floral” arrangement of chromo-
somes during prophase I after the convergence of telomeres to a re-
stricted area of the NE facing the centrosome (Fig. 1). SUN and
KASH proteins play a central role in that dynamic event (Table I).
In S. pombe, Sad1 colocalizes with the telomeric bouquet and inter-
acts with meiotic-specific Bouquet (Bqt) 1 and 2 proteins to pro-
vide a physical connection between the nucleoplasmic region of
Sad1 and telomeres (Chikashige et al., 2006). Because Kms| inter-
acts with both Sadl and dynein (Miki et al., 2004), a model there-
fore emerges where telomere dynamics during bouquet formation
are mediated through the Bqt2-Bqt1-Sad1-Kms1—dynein connec-
tion across the meiotic NE (Chikashige et al., 2006).

In S. cerevisiae, the truncation of the N-terminal region of
either Mps3 or Ndjl reduces telomere mobility of pachytene
chromosomes. Ndjl interacts with the cytoplasmic domain of
Mps3 and mediates telomere attachment to the NE (Conrad
et al., 2008). In conjunction with Sir4 (silent information regu-
lator protein 4), Mps3 is also required for telomere anchoring at
the NE during mitosis (Bupp et al., 2007). It is important to note
that telomere dynamics are essentially mediated by actin in
S. cerevisiae, whereas microtubules are used in mammals, plants,
and fission yeast (Koszul et al., 2008).

Mammalian Sunl clearly colocalizes with telomeres be-
tween leptotene and diplotene stages (Ding et al., 2007). Although
a similar localization was reported for Sun2 in mouse and rat sper-
matocytes (Schmitt et al., 2007), another group was unable to de-
tect any Sun2 immunoreactivity at meiotic telomeres (Ding et al.,
2007; Lei et al., 2009). In Sunl /" mice, telomere association with
the NE as well as homologue pairing and synapsis are prevented
(Ding et al., 2007). Accordingly, Sunl ~/~ mice are sterile, whereas
Sun2™"~ mice do not display any fertility issues (Lei et al., 2009).
In C. elegans, a single point mutation within the SUN domain of
SUN-1/MTF-1 (G311V) is also associated with defective homolo-
gous pairing (Penkner et al., 2007; Fridkin et al., 2009). These
results indicate that Sun proteins are “hijacked” by accessory
meiosis-specific proteins required for chromosome dynamics.
A KASH protein that acts in concert with Sunl in mammalian
meiosis still awaits characterization.

LINC complexes and human diseases

Muscle pathologies. Over 200 missense mutations scat-
tered along LMNA (the gene that encodes the A-type lamins: lamin
A and lamin C) are associated with a variety of human diseases
called laminopathies. Laminopathies involve either specific or
combined pathologies of neurons, muscle, and bone tissues (Ben
Yaou et al., 2005; Jacob and Garg, 2006; Worman et al., 2009).
A main question in the field is how mutations of a protein expressed
in most differentiated cells can lead to tissue-specific diseases
(Mounkes et al., 2003; Worman and Courvalin, 2004). How-
ever, even though LMNA mutations are associated with >10 dis-
tinct human pathologies, the vast majority are associated with
skeletal and/or cardiac muscle pathologies such as Emery-Dreifuss
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muscular dystrophy and dilated cardiomyopathy. Two hypotheses,
which are probably not mutually exclusive, view LMNA mutations
as triggers of either gene expression deregulation or structural cel-
lular disorganization. We will focus on the second hypothesis and
emphasize the evidence for an involvement of the disruption
of LINC complexes in myolaminopathies.

LMNA™"" mice display normal embryonic development;
however, at 3 wk after birth, a decline in growth is accompa-
nied by cardiac and skeletal myopathies reminiscent of human
Emery-Dreifuss muscular dystrophy and dilated cardiomyopa-
thy (Sullivan et al., 1999). A reduction of axon density and the
presence of nonmyelinated axons resembling human peripheral
axonopathies are also significant (De Sandre-Giovannoli et al.,
2002). These mice die at ~6 wk. At the cellular level, embry-
onic fibroblasts from LMNA ™'~ mice (MEF"" /") display an
irregular nuclear shape and a loss of peripheral chromatin.

In MEF"™~"~ cells, Sun2, Nesprin-1, and Nesprin-2 all mis-
localize from the NE to the ER, whereas Sunl seems unaffected
(Libotte et al., 2005; Crisp et al., 2006; Haque et al., 2006). In vivo,
Sun2 and Nesprin-1 also mislocalize from synaptic nuclei of
LMNA™" and LMNA"?22P#222F knock-in mice (Méjat et al., 2009);
the latter model presents muscle and cardiac phenotypes similar to
Emery-Dreifuss muscular dystrophy but with a later disease onset
than LMNA ™" mice (Arimura et al., 2005). In both models, anchor-
age of synaptic nuclei under the array of AchR is lost, phrenic nerves
are highly ramified, and the innervation area is enlarged. These
phenotypes are remarkably similar to Syne-1~"~ mice (see Nuclear
anchorage section). This indicates that (1) A-type lamins are essen-
tial for the integrity of LINC complexes in mammalian tissues and
(2) A-type lamin alterations phenocopy the disruption of LINC
complexes in terms of nuclear positioning and innervation pattern.
However, synaptic nuclear mispositioning might not be involved
in muscle pathology per se. First, dominant-negative Syne mice,
Syne-1~"" mice, and Sunl; Sun2 double knockout mice express-
ing Sunl in the nervous system do not display any muscle pathol-
ogy despite extensive synaptic nuclei mispositioning (Grady
et al., 2005; Zhang et al., 2007b; Lei et al., 2009). Second, patients
affected by autosomal recessive cerebellar ataxia associated with
mutations of Nesprin-1 do not display any muscle pathology de-
spite a severe mispositioning of synaptic nuclei in skeletal muscle
(Gros-Louis et al., 2007). A major phenotypic difference, however,
is that Syne-1~"" mice, Sunl; Sun2 double knockout mice express-
ing Sunl in the nervous system, and autosomal recessive cerebellar
ataxia patients do not show any detectable organization defect of
AchR, whereas LMNA™~ and LMNA™???PH222P myscle fibers dis-
play poorly structured and discontinuous arrays of AchR (M¢jat
et al., 2009). It therefore seems that laminopathic muscle pheno-
types are correlated to disorganized AchR arrays, but the question
still remains as to how LMNA mutations alter the organization of
these arrays. It is tempting to hypothesize that disruption of LINC
complexes through the lack or mutation of A-type lamins alters the
structural organization of the cytoskeleton. To that regard, a com-
plete disorganization of the desmin network has been reported in
LMNA™"~ cardiomyocytes, and the cytoskeleton of MEF"~/~
displays a drastic loss of mechanical stiffness (Broers et al., 2004;
Lammerding et al., 2004; Lee et al., 2007; Hale et al., 2008). In cul-
tured fibroblasts, disruption of LINC complexes induces a similar
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loss of cytoskeletal mechanical stiffness (Stewart-Hutchinson
et al., 2008). In the syncytial C. elegans gonad, a mutation of
ZY G-12 (Q44P, zyg-12(ct350)) that results in the failure to recruit
dynein to the NE has far-reaching deleterious effects on micro-
tubule organization, membrane architecture, and nuclear position-
ing throughout the whole gonad (Zhou et al., 2009). In agreement
with the concept of mechanotransduction at a distance (Wang
et al., 2009), these observations support the finding that alteration
of either the nuclear lamina or LINC complexes drastically affects
cellular biomechanical properties of the cytoskeleton. HL-60—
derived granulocytes may provide a physiological adaptation of
that phenomenon. The cytoskeletal malleability and extensive nu-
clear lobulation that allow these cells to cross the vasculature has
been correlated to the expression of a paucity of LINC complex
components, whereas the stiffer macrophage-derived cells express
most of the LINC complex components (Olins et al., 2009).

A-type lamin mutations affecting the structural integrity of
LINC complexes may therefore compromise the organization and
mechanical integrity of the myoskeleton. Because AChR arrays
are primarily supported by a submembranous organization of actin
and desmin filaments (Mitsui et al., 2000), a major cytoskeletal
disruption caused by a mutation of the nuclear lamina could there-
fore drastically impact the organization of these receptors. Finally,
Nesprins and dystrophins are giant spectrin-repeat proteins with
actin-binding domains that mechanically connect to protein-
aceous meshworks—nuclear lamina or extracellular matrix—
through KASH domains or via the sarcoglycan—dystroglycan
complex, respectively. Accordingly, cultured myotubes from
dystrophin-deficient Mdx mice are mechanically compromised
(Pasternak et al., 1995). Collectively, these observations suggest
that laminopathic mutations affecting the organization of LINC
complexes may induce significant mechanical deficiency and
ensuing structural disorganization of the muscle fiber.

Several indications also support the direct involvement of
mutations of LINC complex components in muscle pathologies.
First, D. melanogaster Msp-300 was initially shown to be required
for embryonic muscle morphogenesis (Rosenberg-Hasson et al.,
1996), and Nesprin immunoreactivity was also detected in sar-
comeres and Z lines, which supports additional structural roles
for Nesprins (Zhang et al., 2005). Second, another mouse model
with the homozygous deletion of the KASH domain of Syne-1
(A/A KASH model) displays ~50% perinatal lethality, and sur-
vivors exhibit Emery-Dreifuss muscular dystrophy phenotypes
(Puckelwartz et al., 2009). This striking difference with the
Syne-1~"~ model may stem from either a dominant-negative effect
of truncated Syne-1 proteins detected in A/A KASH mice or from
different genetic backgrounds. Third, Nesprin missense mutations
have recently been identified in Emery-Dreifuss muscular dys-
trophy patients (Zhang et al., 2007a) and in autosomal recessive
arthrogryposis multiplex congenita of myogenic origin (Attali
et al., 2009). These observations, in addition to the lack of molecu-
lar diagnoses in >50% of Emery-Dreifuss muscular dystrophy
phenotypes, stress the need to screen patients with idiopathic mus-
cular dystrophies for mutations of Nesprin and Sun genes.

Neuronal diseases. Because SUN and KASH domain—
containing proteins are involved in nuclear migration, they may
be required in essential developmental processes relying on

nucleokinesis, i.e., the translocation of the nucleus within a cell,
and may underlie other categories of human diseases. In filamen-
tous fungi, NudF and ro-15 are essential for nuclear positioning
and encode proteins with 40% identity to human LIS1 (Morris
et al., 1998). Deletion or mutations of LIS1 are associated with
lissencephalies, pathologies of the developing brain that are as-
sociated with a failure of the nucleokinetic step during neuronal
migration in the cortex (Solecki et al., 2004; Vallee and Tsali,
2006). In cerebellar granule neurons, nucleokinesis requires
intact microtubules that literally wrap the nucleus (Rivas and
Hatten, 1995; Solecki et al., 2004) and a functional dynein—
dynactin complex as well as Lis1 (Tanaka et al., 2004) and Ndell,
one of its binding partners (Shu et al., 2004). Current models
suggest that dynein, anchored at the NE, pulls the nucleus toward
the minus end of microtubules (Samuels and Tsai, 2004; Tsai
and Gleeson, 2005). How the microtubule network is physically
connected to the neuronal NE remains a central question (Tsai
and Gleeson, 2005). However, as we have seen, LINC complexes
are involved in nuclear migration, and the recent demonstration
that UNC-83 and Nesprin-4 both interact with molecular motors
strongly predicts a central involvement of LINC complexes in
neuronal migration. In that regard, either the mutation of mikre
oko (mok), which encodes a subunit of the dynactin complex, or
interference with the function of dynamitin, LIS1, or LINC com-
plexes results in the mislocalization of zebrafish photoreceptor
nuclei (Tsujikawa et al., 2007). The discovery of Syne-1 muta-
tions in patients with autosomal recessive cerebellar ataxia
(Gros-Louis et al., 2007) could be the first description of the
involvement of Nesprins in neurological diseases.

Finally, interkinetic nuclear migration designates the cou-
pling of nuclear migration with the cell cycle of neuroepithelial
cells. This phenomenon is essential for regulation of cell cycle exit
and neurogenesis (Baye and Link, 2008). The down-regulation of
Syne-2 or the expression of its KASH domain alters interkinetic
nuclear migration (Del Bene et al., 2008). Together, these results
predict exciting times ahead for LINC complexes in nuclear migra-
tion and neurogenesis not only during development but also in the
adult brain, where focal neurogenesis and nuclear migration are
still significant (Ming and Song, 2005; Ayala et al., 2007).

Conclusion

The past decade has seen remarkable progress in our understand-
ing of the functional contribution of NE proteins to essential
biological processes. Such progress largely benefited from multi-
disciplinary approaches in different organisms. The accumulated
data clearly established that SUN proteins act as NE “receptors”
of KASH domain-containing proteins. The variety of cytoplas-
mic “flavors” of KASH proteins, in turn, provides specific func-
tions related to nuclear and chromosome dynamics. However,
many questions still remain. For example, how the SUN-KASH
interaction is regulated is only beginning to emerge, with early
indications pointing to TorsinA, an AAA+ATPase (Nery et al.,
2008; Vander Heyden et al., 2009). The interaction network of
the nucleoplasmic region of Sun proteins also needs more inves-
tigation in interphase cells. We have seen that gigantic macro-
molecular complexes form both within the nucleoplasm and the
cytoplasm around LINC complexes, but how cell signaling affects
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these assemblies is still poorly characterized. Hypotheses on
how these molecular assemblies might affect mechanochemical
conversion in the nucleus and alter gene activities have recently
begun to emerge (Wang et al., 2009). Molecular tools are now
available to ask essential questions about the physiological signifi-
cance of nuclear positioning in other tissues. From a disease stand-
point, examining the role of SUN-KASH interactions in neuronal
migration will also be essential for establishing whether these inter-
actions participate in the etiology of lissencephaly-like phenotypes.
Finally, accumulated evidence calls for mutation screenings of Sun
proteins and Nesprins in patients affected by idiopathic muscular
dystrophies. Such findings could provide new therapeutic insights
into these devastating human pathologies.
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