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uring phagocytosis, the phosphoinositide content of

the activated membrane decreases sharply, as does

the associated surface charge, which attracts poly-
cationic proteins. The cytosolic leaflet of the plasma mem-
brane is enriched in phosphatidylserine (PS); however, a
lack of suitable probes has precluded investigation of the
fate of this phospholipid during phagocytosis. We used a
recently developed fluorescent biosensor fo monitor the dis-
tribution and dynamics of PS during phagosome formation
and maturation. Unlike the polyphosphoinositides, PS

Introduction

Macrophages and neutrophils eliminate apoptotic cells, foreign
particles, and infectious organisms by phagocytosis (Niedergang
and Chavrier, 2004; Swanson and Hoppe, 2004; Yeung et al.,
2006a). The engulfment process is initiated by clustering of recep-
tors on the surface of the phagocytic cell, which triggers a signaling
cascade leading ultimately to the rearrangement of the actin cyto-
skeleton. Phosphoinositide metabolism is a key early event in phago-
cytosis; phosphatidylinositol (PI)-4,5-bisphosphate (PI[4,5]P,),
which is constitutively present in the membrane of unstimulated
cells, accumulates transiently at the leading edge of pseudopods
and subsequently disappears abruptly from the nascent phago-
some. PI-3,4,5-trisphosphate (PI[3,4,5]P;) is generated upon re-
ceptor engagement and vanishes shortly after phagosome closure
(Botelho et al., 2000; Vieira et al., 2001). Because phosphoino-
sitides are polyanionic, these biochemical changes are associated
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Abbreviations used in this paper: FRET, fluorescence resonance energy transfer;
LUV, large unilamellar vesicle; mRFP, monomeric RFP; PA, phosphatidic acid;
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tol; PI[3]P, PI 3-phosphate; PI[3,4,5]P;, PI-3,4,5-risphosphate; PI[4,5]P,, Pl-4,5-
bisphosphate; PS, phosphatidylserine; sRBC, sheep RBC.
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persists on phagosomes after sealing even when other
plasmalemmal components have been depleted. High PS
levels are maintained through fusion with endosomes and
lysosomes and suffice to attract cationic proteins like c-Src
to maturing phagosomes. Phagocytic vacuoles containing
the pathogens Legionella pneumophila and Chlamydia tra-
chomatis, which divert maturation away from the endolyso-
somal pathway, are devoid of PS, have little surface charge,
and fail to recruit c-Src. These findings highlight a function
for PS in phagosome maturation and microbial killing.

with a net reduction in the negative charge of the cytosolic
surface of forming phagosomes (Yeung et al., 2006b). The surface
charge in turn dictates the membrane association of proteins
with polycationic clusters or polybasic domains (McLaughlin
and Murray, 2005; Heo et al., 2006; Yeung et al., 2006b). As a
result, the loss of surface negativity is thought to influence pro-
tein localization during phagocytosis (Yeung et al., 2006b).
After sealing, phagosomes undergo rapid and extensive
remodeling of their membrane and contents. This process, called
maturation, converts phagosomes into effective microbicidal
and degradative organelles. Maturation entails further changes in
the lipid composition of the phagosomal membrane, raising the
possibility of additional fluctuations in surface charge and, con-
sequently, in protein targeting. However, the major polyphos-
phoinositides are unlikely to contribute significantly to the charge
of maturing phagosomes. PI[4,5]P, is undetectable when phago-
somes seal and has not been reported to reappear during maturation,

© 2009 Yeung et al. This article is distributed under the terms of an Attribution—
Noncommercial-Share Alike-No Mirror Sites license for the first six months after the publica-
tion date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a
Creative Commons License (Attribution-Noncommercial-Share Alike 3.0 Unported license,
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Figure 1. Assessment of the surface charge of maturing phagosomes. (A-C) RAW macrophages were cotransfected with mRFP-Palm, a farnesylated

and dually palmitoylated construct modeled after the tail of H-Ras and fused to mRFP and either GFP-8+ (A), GFP-5+ (B), or GFP-2+ (C). The cells were
exposed to IgG-opsonized sRBCs. Confocal images were acquired 1 min, 5 min, or 1 h after initiation of phagocytosis. GFP fluorescence of the surface
charge probes is shown in the main panels, whereas mRFP-Palm is shown in the insets. The asterisks denote the position of the sRBCs. Images in A-C
are representative of at least 30 cells from two similar experiments. (D and E) Quantification of the fluorescence intensity of GFP-8+ and GFP-5+ (green
bars in D and E, respectively) and mRFP-Palm (red bars) at the specified stage of maturation. Results are presented as the ratio of fluorescence intensity at
the phagosome to that in the bulk, unengaged plasma membrane (PM). Data in D and E are means + SD calculated from 10 cells from a representative

experiment. Bars, 2 pm.

and PI[3,4,5]P; disappears from nascent phagosomes within 1 min
of sealing (Marshall et al., 2001). In contrast, little is known about
phosphatidylserine (PS), the most abundant anionic phospholipid
(Vance and Steenbergen, 2005). Because it is asymmetrically
distributed, PS is thought to be a major contributor to the surface
charge of the inner aspect of the plasmalemma (Leventis and
Silvius, 1998). Nevertheless, the fate of this lipid during phago-
some formation and maturation has not been studied in any detail
due in all likelihood to the lack of suitable means of detection.

We recently designed a genetically encoded biosensor for
PS that can be used to monitor the distribution and dynamics of
the phospholipid in intact, live cells (Yeung et al., 2008). The
probe consists of a discoidin-type C2 domain, which binds se-
lectively to PS, attached to a green or red fluorescent protein.
In this study, we used such chimeras to examine the fate of PS
during the formation and maturation of phagosomes. In addition,
we monitored the surface charge of maturing phagosomes and
compared the properties of vacuoles containing inert particles
with those containing pathogens that survive intracellularly by
eluding the microbicidal machinery of phagocytes.

The surface charge of biological membranes can be monitored
in situ using genetically encoded fluorescent probes (Yeung
et al., 2006b). These consist of two targeting determinants: a
hydrophobic moiety that guides the probe to membranes and a
polycationic motif that dictates preferential distribution to the
most negatively charged surfaces. By linking these determi-
nants to fluorescent proteins, the charge of membranes can be
monitored in live cells by confocal microscopy. As we reported
earlier (Yeung et al., 2006b), a highly cationic probe (contain-
ing eight positive charges and a farnesyl anchor, termed here-
after 8+) distributes almost exclusively to the inner aspect of the
plasma membrane of resting macrophages, accumulates briefly
at sites of particle engagement, and dissociates precipitously
from phagosomes as they seal (Fig. 1 A). Similar results were
obtained using IgG-opsonized red cells (Fig. 1, A and D) or latex
beads (Fig. S1, A and D) as phagocytic targets. The 8+ probe
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did not reassociate with the phagosomes as they matured; com-
pared with the plasma membrane, only a small fraction of the
probe was detectable on phagosomes after 1 h of their forma-
tion (Fig. 1, A and D; and Fig. S1, A and D). Although matur-
ing phagosomes undergo both fusion with other organelles and
concomitant fission, the rapid detachment of the probe cannot
be attributed to generalized exchange of lipids between the phago-
some and other intracellular compartments. This was concluded
by comparison with two other probes that are associated with the
plasma membrane. As shown in Fig. 1 and in Fig. S1, a dually
acylated and farnesylated probe tagged with monomeric RFP
(mRFP; mRFP-Palm) is partially lost from the phagosomes as
they begin to mature, but the rate and extent of loss were con-
siderably lower than that of the 8+ probe and likely insufficient
to account for the nearly complete loss of the 8+ probe (Fig. 1 A,
middle). Similar results were obtained using a different probe,
GT46, which unlike mRFP-Palm, is thought to be excluded
from rafts (Pralle et al., 2000). GT46 is a transmembrane chimeric
protein consisting of the signal sequence from rabbit lactase
fused to the transmembrane domain of the human low density
lipoprotein receptor and containing the intracellular domain of
CD46. As shown in Fig. S2 A and Video 1, GT46 prominently
labeled the forming phagosome and was retained for >6 min after
the phagosome had sealed. Like the 8+ probe, which is lysine
rich, another prenylated 8+ probe containing eight tandem
arginines (R-pre) was largely depleted from the formed phago-
some after 3—5 min (Fig. S2, B and C; and Video 1). Jointly,
these observations indicate that the loss of the 8+ probes can-
not solely be attributed to extensive remodeling of the phago-
somal membrane through fusion/fission with other organelles.

To test whether the charge of the 8+ probe dictates its
response during phagocytosis, we followed the distribution of a
probe with its net positive charge reduced to 2+ by mutagenesis.
The distribution of the probe (2+) in resting cells was grossly
altered with extensive labeling of endomembranes in addition
to the plasmalemma (Fig. 1 C). More importantly, during matu-
ration, the phagosomes lost only a small fraction of the label.
Because both the 8+ and 2+ are farnesylated, these observations
indicate that the pronounced loss of the 8+ probe from phago-
somes was not a result of altered hydrophobic interactions and
is instead attributable to a drop in the surface charge.

The extent to which the phagosomal surface potential was
reduced was assessed in more detail using a probe with a net
charge of 5+. This probe was shown earlier to associate with
the plasma membrane but also with a subpopulation of endo-
membranes that have an intermediary degree of negative surface
charge (Fig. 1 B and Fig. S1 B; Yeung et al., 2008). Interest-
ingly, both the nascent and mature phagosome were labeled by
this probe (Fig. 1, B and E), suggesting that the phagosomal
membrane was not totally devoid of charge. Of note, the loss of
the acylated (Palm) membrane marker was greater than that of
the 5+ probe after 1 h (Fig. 1 E), suggesting that the surface
charge is conferred by constituents acquired during matura-
tion and not solely by those retained from the original surface
membrane. Indeed, the transmembrane protein GT46 that de-
marcated the forming and early phagosome (Fig. S2 D) was virtu-
ally absent from phagosomes that underwent maturation for 1 h

(Fig. S2 E), implying that extensive remodeling of the phago-
somal membrane had occurred by this time. This observation
suggests that the charge associated with the phagosome after
1 his dictated primarily by components acquired in the course
of maturation.

Pl 3-phosphate (PIL31P) is not required for
charge maintenance on the phagosome

We next examined the mechanisms contributing to the charge of
the maturing phagosome. Because phosphoinositides were found
to be important for the plasmalemmal targeting of proteins with
polybasic domains (Heo et al., 2006), we tested whether they
contribute also to charge maintenance during phagosome matu-
ration. Although neither PI[4,5]P, nor PI[3,4,5]P; have been de-
tected in maturing phagosomes, PI[3]P is evident during the first
10-15 min of the maturation process, disappearing thereafter
(Fig. 2, A [middle] and D; Vieira et al., 2001). To assess whether
PI[3]P is necessary for the maintenance of charge on maturing
phagosomes, macrophages were treated with the PI 3-kinase
inhibitor wortmannin after multiple particles had been ingested.
As expected, the inhibitor rapidly terminated the synthesis of
PI[3]P, as judged by the dissociation of the 2FY VE (Fab1/YOTB/
Vacl/EEAL) construct that binds specifically to this inositide
(Fig. 2, B [middle] and D; Gillooly et al., 2001). However, the
association of the 5+ probe persisted (Fig. 2, B and C), implying
that PI[3]P is not the major determinant of the negative surface
charge of maturing phagosomes.

The anionic lipid PS is present in the
phagosomal membrane

Because phosphoinositides failed to explain the association of the
polycationic probe with phagosomes, we turned our attention to
PS, the most abundant anionic phospholipid. We had earlier
attempted to detect PS in phagosomes using annexin-V and an
anti-PS antibody but obtained negative results (Yeung et al., 2006b).
However, these results must be interpreted with great caution for
multiple reasons. First, neither annexin-V nor anti-PS antibodies
can be used in live cells, and fixation followed by permeabiliza-
tion is required. In addition, annexin binding to PS requires eleva-
tion of calcium to concentrations three to four orders of magnitude
greater than the physiological cytosolic level. These procedures
are themselves liable to alter the lipid distribution. Furthermore,
despite being used extensively to label PS, neither annexin-V nor
anti-PS antibodies are specific for this lipid. This is illustrated in
Fig. S3, where the binding of these reagents to various lipids was
tested in vitro. Although the anti-PS antibody bound negligibly to
phosphatidylcholine (PC), phosphatidylethanolamine (PE), and
PI[4,5]P,, it did recognize phosphatidic acid (PA) and PI in addi-
tion to PS (Fig. S3 A). Annexin-V was even less specific, binding
PA and phosphatidylglycerol to a similar extent as PS and PI[4,5]P,
to a lower degree (Fig. S3 B). These findings are consistent with
the previous study of Raynal and Pollard (1994).

We therefore reanalyzed the distribution of PS during
maturation using as a probe the C2 domain of lactadherin, which
was shown earlier to be highly specific (Andersen et al., 2000;
Yeung et al., 2008). Indeed, discoidin family C2 domains are
stereospecific, capable of differentiating between the L- and

PHOSPHATIDYLSERINE IN PHAGOSOME MATURATION ¢ Yeung et al.
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Figure 2. Depletion of PI[3]P fails to alter the phagosomal surface charge. (A and B) RAW macrophages were cotransfected with a construct consisting
of two tandem PI[3]P-binding FYVE domains of EEAT fused to mRFP (2FYVE-mRFP; red) and the GFP-5+ probe (green). (A) The cells were exposed to opso-
nized sRBCs, and confocal images were acquired after 15-20 min. (B) The cells were treated with wortmannin for an additional 15 min, and additional
images were acquired. (C and D) Quantification of the ratio of fluorescence intensity of GFP-5+ on the phagosome versus the bulk plasma membrane
(C) and the percentage of 2FYVE-mRFP-positive phagosomes (D) before and after wortmannin treatment. PM, plasma membrane. Images are representa-
tive of 20 fields from two similar independent experiments; quantification was performed on those same images. Data are means + SEM quantified from

at least 15 phagosomes from two experiments. Bars, 2 pm.

D-stereoisomers of phosphoserine (Gilbert and Drinkwater, 1993;
Shi et al., 2004). A GFP-tagged form of the C2 domain of lacta-
dherin (GFP-Lact-C2) was expressed in macrophages, and its
distribution was analyzed during the course of phagosome for-
mation and maturation using spinning-disc confocal microscopy.
As shown in Fig. 3 and Fig. S4, GFP-Lact-C2 is found at the plasma
membrane as well as in intracellular organelles that were identi-
fied earlier as components of the endocytic pathway (Yeung
et al., 2008). During the course of phagocytosis, GFP-Lact-C2
was associated with the phagosomal membrane for at least 1 h
(Fig. 3 C). The levels of PS, as estimated by the density of GFP-
Lact-C2 per unit area, were similar to those found in the plasma
membrane (Fig. 3 D and Video 2).

Comparison of the density of GFP-Lact-C2 with that of
the membrane markers mRFP-Palm and GT46 provides clues
of the source of the PS. At the earliest times, a transient accu-
mulation of GFP-Lact-C2 at the phagosomal cup was paralleled
by accumulation of the Palm probe (similar observations were
made for GT46; Fig. 3, A and D). This probably reflects the
increased density of membranes at sites of engulfment as a result
of convolution or recycling of the plasma membrane. Shortly
after sealing (Fig. 3, B and D [5-min data]; and Fig. S2 D), the
density of all the probes is comparable with that in the plasma-
lemma, suggesting that PS is neither enriched nor depleted dur-
ing invagination of the phagosomal membrane. However, after
1 h, the density of both Palm and GT46 decreases markedly
(Fig. 3, B and C; and Fig. S2 E) as the phagosome matures and
the remnants of the plasma membrane are gradually depleted.

Remarkably, the density of GFP-Lact-C2 remains nearly constant
from 5 min to 1 h. This implies that either (a) components of the
plasma membrane are removed selectively with PS persisting
longer than the microdomains that harbor the Palm and GT46
probes or (b) PS is delivered from other sources, as the PS origi-
nally present in the invaginated plasmalemma is removed. We
favor the latter interpretation because endosomes and lyso-
somes, which are known to fuse with the maturing phagosome,
are well endowed with PS (Yeung et al., 2008). Indeed, dynamic
visualization of the maturation process revealed active and con-
tinuous interaction of PS-enriched vesicles with the maturing
phagosome (Video 2).

To more directly confirm the occurrence of fusion of inter-
nal organelles bearing PS with the maturing phagosomes, we
labeled endocytic membranes by pulsing the cells for 15 min with
the membrane-associated impermeant dye FM4-64 (Fig. S4, A-C).
The labeled membranes overlapped extensively with the PS endo-
membrane compartment (the Manders colocalization coeffi-
cient for FM4-64/Lact-C2 was 0.933). During the course of
maturation, phagosomes acquired FM4-64 (Fig. S4 B, arrows),
which is indicative of fusion with endocytic membranes. Because
the overwhelming majority of the FM4-64-labeled structures
were also labeled by Lact-C2, such fusion must have delivered
PS to the phagosomal membrane. Indeed, while acquiring videos,
we were able to capture fusion events of phagosomes with struc-
tures labeled with both FM4-64 and Lact-C2 (Fig. S4 C).

Despite the ongoing delivery of PS-containing vesicles
to the phagosome, neither its surface area nor its PS content
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Distribution of PS during phagosome formation and maturation. (A-C) RAW macrophages cotransfected with mRFP-Palm and the PS biosensor

GFP-Lact-C2. The cells were exposed to IgG-opsonized sRBC. Confocal images were acquired 1 min (A), 5 min (B), or 1 h (C) after initiation of phago-
cytosis. The GFP fluorescence of the PS biosensor is shown in the left column, mRFP-Palm is shown in the middle, and the two channels were merged in
the right column. Images in A-C are representative of 30 cells from two independent experiments. (D) Quantification of the fluorescence intensity of GFP-
Lact-C2 (green bars) and mRFP-Palm (red bars) atf the specified stage of maturation. The results are presented as the ratio of fluorescence intensity of the
phagosome fo that in the bulk, unengaged plasma membrane (PM). Asterisks indicate location of sRBCs. Data are means + SD of 10 cells from a typical

experiment. Bars, 2 pm.

increases visibly during maturation. This is probably attributable
to the concomitant removal of membranous material, which
in all likelihood includes PS. This notion was verified by label-
ing the membrane at the time of phagocytosis with cholera
toxin subunit B. As shown in Fig. S4 (D-F), tubules (arrows)
colabeled by Lact-C2 and cholera toxin were observed to
extend from the phagosome and eventually undergo fission.
Together, these observations indicate that, although its overall
concentration is nearly constant during maturation, PS is con-
tinuously delivered to and removed from phagosomes during
the process.

We also studied the fate of PS in phagosomes formed by
ingestion of latex beads. In this case, PS similarly persisted in the
phagosomes, although at a somewhat reduced level (Fig. S1, F-I).
Of note, the association of the 5+ probe was also reduced in these
phagosomes (Fig. S1 B). The mechanisms underlying the differ-
ence between phagosomes that contain red blood cells versus latex
beads and other synthetic particles is unclear (Oh and Swanson,
1996), but the parallel behavior of the GFP-Lact-C2 and 5+ probes
in both cases supports the notion that PS is an important determi-
nant of the charge of maturing phagosomes.

We inferred from the previous experiments that PS is delivered
to the phagosome during maturation through fusion with com-
partments of the endocytic pathway. To test this hypothesis, we
exploited as phagocytic targets pathogenic microorganisms that,
while entering plasma membrane—derived vacuoles as do inert
particles, subsequently coopt the cellular machinery to divert traffic
away from the endolysosomal pathway. Legionella pneumophila
is one such intracellular pathogen. After entry into the host cell,
L. pneumophila propagates in a unique compartment derived
largely from the endoplasmic reticulum (Swanson and Isberg,
1995). This phenotype was readily replicated in the RAW macro-
phages used in this study. As illustrated in Fig. 4 A, 4-6 h after
infection, L. pneumophila occupies a vacuole enriched in sec61a,
an ER marker. Importantly, the L. pneumophila—containing vacuole
was devoid of PS, as indicated by the absence of mRFP-Lact-C2
(Fig. 4, B and D). The paucity of Lact-C2 was likely the result
of bacterial effectors that are delivered to the host cell where
they actively divert membrane traffic (Shin and Roy, 2008). This
could be demonstrated by killing the bacteria before phagocytosis.

PHOSPHATIDYLSERINE IN PHAGOSOME MATURATION
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Figure 4. L. pneumophila—containing vacuoles are devoid of PS. (A) RAW macrophages transfected with secé1a-GFP were infected with L. pneumophila
for 2 h, washed, and further incubated for 2-4 h. Cells were fixed and permeabilized with cold methanol, and the internalized bacteria were stained with
an anti-L. pneumophila antibody followed by a Cy3-conjugated secondary antibody. (B and C) RAW macrophages transfected with the PS biosensor mRFP-
Lact-C2 were infected with live (B) or were allowed to phagocytose PFA+reated (C) L. pneumophila expressing GFP-flaA for 2 h. The RAW macrophages
were washed and further incubated for 2-4 h. Insets in C show a magpnification of the boxed areas showing a Lact-C2-positive L. pneumophila-containing
vacuole. Images in A-C are representative of 30 cells from two similar experiments. (D) Quantification of the percentage of vacuoles containing either live
or PFAkilled L. pneumophila that bound Lact-C2. Data are means + SEM quantified from >30 phagosomes. Bars, 2 pm.
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Figure 5. Assessment of the presence of PS in C. trachomatis inclusion vacuoles. (A) RAW macrophages transfected with GFP-LactC2 were infected with
C. trachomatis elementary bodies for 6 h. Cells were fixed and permeabilized with cold methanol, and the internalized bacteria were stained with poly-
clonal anti~C. trachomatis antibodies followed by Cy3-conjugated secondary antibody. Insets highlight the typical vacuole marked by the boxed regions.
(B) RAW macrophages transfected with mRFP-Lact-C2 were infected with C. trachomatis elementary bodies for 18 h. Cells were incubated with the DNA
stain Drag$ fo identify the C. trachomatis invasion vacuoles (x). N indicates the location of the macrophage nucleus. Images are representative of 30 cells
from three similar experiments. (C) Quantification of the percentage of C. trachomatis inclusion vacuoles that bound Lact-C2 at 6 and 18 h. Data are means
+ SEM quantified from at least 50 phagosomes from two experiments. Bars, 2 pm.

When macrophages were allowed to phagocytose PFA-fixed
L. pneumophila, the resulting phagosomes matured normally,
acquiring PS (Fig. 4, C and D).

C. trachomatis is another intracellular pathogen that evades
the endolysosomal pathway. The microorganisms initially enter
the conventional endocytic pathway but subsequently deploy
effectors that reroute the pathogen to a unique compartment often

found in the proximity of the Golgi apparatus from where it is
thought to draw lipids (Salcedo and Holden, 2005; Brumell and
Scidmore, 2007). We therefore analyzed the PS content of the
C. trachomatis inclusion vacuole at early and late times after
infection. 4-6 h after infection, most vacuoles contained single
bacteria, which were detectable by immunostaining. At this early
stage, the vacuole surrounding C. trachomatis was prominently
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Figure 6. PS is required for the targeting of Src to the phagosome. (A and B) RAW macrophages cotransfected with ¢-Src-GFP (green) and the PS bio-
sensor mRFP-Lact-C2 (red; A) or cotransfected with c-Src-GFP (green) and the PI[3]P biosensor mRFP-PX (red; B). The cells were exposed to IgG-opsonized
sRBCs, and confocal images were acquired 1 h after initiation of phagocytosis. Asterisks denote phagosomes. (C-E) RAW macrophages transfected with
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decorated by the Lact-C2 probe (Fig. 5, A and C), indicating that
it contained a substantial level of PS. However, after 18 h, C. tra-
chomatis resided and proliferated within an unusually large mem-
brane-bound vacuole. As shown in Fig. 5 (B and C) and Fig. 6 D,
although surrounded by Lact-C2—positive structures, C. tra-
chomatis inclusion vacuoles were themselves devoid of Lact-C2.
Thus, the vacuoles surrounding bacteria that evade the endolyso-
somal system lack PS. These observations add credence to the
notion that in normal phagosomes, PS levels are maintained by
dynamic interactions with endosomes and lysosomes.

PS contributes to the phagosomal
targeting of signaling proteins with

cationic motifs

The negative charge conferred to phagosomes by PS was shown
in Fig. 1 B to correlate and most likely promote the recruitment
of probes with an intermediate surface charge (e.g., 5+). By ex-
tension, it can be expected that the negative surface charge of
maturing phagosomes would similarly induce the recruitment
of moderately cationic signaling molecules. One possible target
is the tyrosine kinase Src, which is important for phagocytosis
and phagolysosome fusion (Majeed et al., 2001; Peyron et al.,
2001). Like our intermediate surface charge probes, Src pos-
sesses a cationic motif of net charge 5+ in the vicinity of a hydro-
phobic (myristoyl) tail located at its N terminus. As shown in
Fig. 6 A, Src was targeted to the plasma membrane and to inter-
nal organelles in macrophages. Although phosphoinositides
likely contribute to the electrostatic partitioning of Src to the
plasma membrane, they are not important determinants of its
association with endomembrane compartments. Neither PI[4,5]P,
nor PI[3,4,5]P; are found in endomembranes, and, as shown in
Fig. 6 B, PI[3]P in endosomes does not colocalize well with in-
tracellular Src. Instead, the distribution of Src overlaps exten-
sively with that of PS (Fig. 6 A).

The contribution of PS to the endomembrane distribution
of Src is further illustrated by experiments using C. trachomatis
as the phagocytic target. As shown in Fig. 5, C. trachomatis
inclusion vacuoles contain PS at early but not late stages. The
same pattern was noted for Src, which was present on vacuoles
4-6 h after infection (Fig. 6, C and F) but not after 18 h (Fig. 6,
D and G). The absence of Src from the late C. trachomatis vacu-
oles is in all likelihood the result of their reduced surface charge,
as the vacuoles also fail to bind the 5+ probe (Fig. 6, E and G).

Discussion

We previously reported that the surface charge of the region of the
membrane engaged in phagocytosis was altered drastically during
the course of particle engulfment (Yeung et al., 2006b). Specifi-
cally, we found that highly cationic (8+) probes detached from the

nascent phagosome, indicating a decrease in the surface charge.
The collapse of charge was postulated to be the result of the
metabolism or redistribution of phosphoinositides and/or PS dur-
ing phagocytosis. In particular, the tetravalent PI[4,5]P,, which is
estimated to constitute 2-5% of the lipid of the inner leaflet of the
plasma membrane, disappears from forming phagosomes with
kinetics that mirror closely the fate of the 8+ surface charge probes
(Botelho et al., 2000; Yeung et al., 2006b). However, the fate of PS
could not be determined unequivocally as a result of limitations of
the reagents available at the time (see Results; Fig. S3). The recent
development of a genetically encoded PS biosensor allowed us the
unprecedented opportunity to monitor in vivo the fate of this lipid
during the course of phagosome formation and maturation. Using
this probe, we found that, unlike PI[4,5]P,, PS persists for ex-
tended periods on the membrane of formed, maturing phago-
somes. This observation is consistent with an earlier study that PS
constitutes ~9% of the total lipid content of isolated phagosomes
(Desjardins et al., 1994). A fraction of the PS originally present in
nascent phagosomes most likely derives from the plasma mem-
brane, which invaginates to provide the bulk of the membrane of
early phagosomes. This is confirmed by the presence in early
phagosomes of a variety of plasmalemmal markers regardless of
whether they are diacylated, transmembrane, or GPI-linked pro-
teins (Fig. 1 and Fig. S2; Yeung et al., 2006b). However, PS per-
sists in the membrane of maturing phagosomes even after the
plasmalemmal markers have been depleted by fusion and selec-
tive fission events (Fig. S4). Previously, we reported that early and
late endosomes as well as lysosomes contain PS in their cytosolic-
facing monolayer (Yeung et al., 2008). In this study, we observed
that PS-positive endosomes were continuously being delivered to
the phagosomes as they mature (Fig. S4 and Video 2). Based on
these results, we concluded that the PS content of the phagosome
is dictated by the maturation sequence and is liable to be affected
when the process is subverted by pathogens.

Although PI[4,5]P, is eliminated from maturing phago-
somes, the persistence of PS raised the intriguing possibility that
the phagosome may not be totally devoid of charge. Unlike the
highly cationic 8+ probes, which are almost quantitatively bound
by the highly negative plasmalemma, probes of intermediate
charge (e.g., 5+) are not fully partitioned to the plasma membrane
and permit the visualization of organelles with lower yet signifi-
cant charge. Using GFP-5+, we found that the cytosolic leaflet of
phagosomes is indeed negatively charged throughout the matura-
tion process. Phosphoinositides do not contribute significantly to
this charge; PI[4,5]P, is not detectable in formed phagosomes,
and PI[3,4,5]P; persists for <1 min after sealing. PI[3]P, which is
formed subsequently, and its derivative, PI[3,5]P,, are not essen-
tial to confer charge to maturing phagosomes, which bind compa-
rable amounts of the 5+ probe both before and after treatment
with inhibitors of the class III PI 3-kinase (Fig. 2). These findings

c-Src and cotransfected with mRFP-LactC2 (D) or GFP-5+ (E) were infected with C. frachomatis elementary bodies for 4 (C) or 18 h (D and E). Cells in
C were stained with anti-C. trachomatis antibodies, whereas those in D and E were incubated with the DNA stain Drag5 to identify the C. trachomatis
invasion vacuoles (x). N indicates the location of the macrophage nucleus. Insets show a magnified C. frachomatis elementary body at 4 h as marked by
the box. Images in A-E are representative of at least 30 cells from two similar experiments. (F) Quantification of the percentage of C. trachomatis inclusion
vacuoles that bound ¢-Src at é and 18 h. (G) Quantification of the percentage of C. trachomatis inclusion vacuoles that bound the 5+ probe. Data in F and G
are means + SEM quantified from at least 35 phagosomes from two similar experiments. Bars, 2 pm.
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are most likely explained by the postulate that PS is the primary
determinant of the phagosomal charge. However, the possible
contribution of other anionic lipids such as PA and lysobis-PA
should not be neglected, pending the development of suitable
probes to detect these species.

Although the correlation between phagosomal PS and sur-
face charge is strong, it is difficult to establish unambiguously the
causal relationship between these parameters. Mammalian cells
cannot be fully depleted of PS by either genetic deletion of the PS
synthase isoforms or by pharmacological means. However, in the
case of phagosomes, the subversion of the maturation process by
certain intracellular pathogens provides an opportunity to test
the role of PS. To avert killing, virulent microorganisms like
L. pneumophila and C. trachomatis coopt the machinery of host
cells to divert maturation away from the endolysosomal path-
way. As shown in Figs. 4-6, the mature pathogen-containing vac-
uoles are devoid of detectable PS and, importantly, are also devoid
of either the 5+ probe or the similarly charged Src. These findings
further support the notion that PS is a key contributor to the
charge of phagosomes and invasion vacuoles.

Regardless of its contribution to the surface charge, the pres-
ence of PS in phagosomes is expected to have important functional
consequences. In this regard, we have preliminary evidence that
yeast that are deficient in the PS synthase gene (chol), and there-
fore lack PS, have defective vacuolar acidification (Fig. S5 A), and
their endocytic pathway has abnormal appearance and traffic as
revealed by FM4-64 pulse-chase analyses (Fig. S5, B and C).
Although the mechanisms accounting for the aberrant phenotype
remain to be explored, they likely include the failed targeting
of PS-binding proteins.

A sizable number of proteins contain C2 domains that bind
PS with varying degrees of selectivity. Several of these, such as
protein kinase C and phospholipase C isoforms, are engaged in
signal transduction, whereas others, like the synaptotagmins, con-
trol membrane fusion events. Both phenomena are central to the
maturation of endosomes and phagosomes. Similarly, regardless of
whether PS is its main determinant, the negative charge of phago-
somes will serve to target proteins with polycationic clusters or
polybasic domains, particularly those that also contain hydro-
phobic moieties. Indeed, our work reveals that the phagosomal dis-
tribution of one such molecule, the tyrosine kinase c-Src, shows
strong correlation with the presence of PS in the phagosomal mem-
brane. Similarly, PS may be a critical determinant in the distribu-
tion of small GTPases of the Rab and Rho superfamilies, which
have been shown to be guided electrostatically to cellular mem-
branes (Heo et al., 2006) and are important participants in phago-
some formation and maturation.

In summary, we found that PS enters phagosomes as the
plasma membrane invaginates and that its concentration is main-
tained at a comparatively high level by ongoing fusion with
endosomes and lysosomes. Being exposed to the cytosolic aspect
of the membrane, PS will serve to recruit to the phagosome
proteins containing PS-selective C2 domains. Moreover, by con-
ferring onto the phagosomal surface a considerable negative
charge, PS will contribute to the recruitment of cationic proteins.
The congregation of these proteins on the phagosomal surface
likely remodels this organelle and directs its maturation.
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Materials and methods

Plasmids

The plasmids encoding GFP-2+, GFP-5+, and GFP-8+ (Roy et al., 2000)
were provided by J. Silvius (McGill University, Montreal, Ontario, Canada).
GFP-sec61 (Greenfield and High, 1999), GFP-PX (Kanai et al., 2001), and
¢-Src-GFP (Donepudi and Resh, 2008) were provided by S. High (University
of Manchester, Manchester, England, UK), M. Yaffe (Massachusetts Institute
of Technology, Cambridge, MA), and M. Resh (Memorial Sloan-Kettering
Cancer Center, New York, NY), respectively. Construction of the plasmids
encoding mRFP-Palm (Yeung et al., 2006b) and GFP-Lact-C2 (Yeung et al.,
2008) was described previously. c-Sre-mRFP was constructed by digesting
c-Src-GFP with Xhol and BamHI and subcloning the excised fragment into
the mRFP-N1 vector, which was provided by R. Tsien (University of Califor-
nia, San Diego, La Jolla, CA). mRFP-PX was provided by G. Mallo. mRFP-
2FYVE was constructed by digesting GFP-2FVYE with Xhol and BamHI and
then subcloning the excised fragment into the mRFP-C1 vector.

Cell culture, transfection, and treatment

RAW264.7 macrophages from American Type Culture Collection were
grown as previously described (Yeung et al., 2008). Transient transfection
of cDNA plasmids was performed using FuGene HD (Roche) as described
previously (Yeung et al., 2008). Where indicated, the cells were treated
with 200 nM wortmannin (EMD) for 15 min to inhibit PI 3kinase.

Synchronous phagocytosis assay

RAW macrophages were grown on circular glass coverslips placed in-
side 6-well plates. Sheep RBCs (sRBCs) obtained from MP Biomedicals
were opsonized with rabbit anti-RBC IgG (MP Biomedicals) as described
previously (Botelho et al., 2000). To synchronously initiate phagocytosis,
opsonized RBCs were sedimented onto the RAW macrophages by cen-
trifugation for 1 min at 1,000 rpm using a tabletop centrifuge (Beckman
Coulter). After rapidly washing nonadherent RBCs, the cells were bathed
in Hepes-buffered medium RPMI 1640 (Wisent Inc.), and phagocytosis
was allowed to proceed for 1, 5, or 60 min at 37°C. Coverslips were then
transferred from the 6-well plate to an Attofluor live cell imaging chamber
(Invitrogen) for microscopy. To arrest further phagosome maturation, the
cells were bathed in ice-cold Hepes-buffered medium RPMI 1640 during
the course of image acquisition. Synchronous phagocytosis of 3-pm latex
beads was performed similarly and has been previously described
(Yeung et al., 2006b).

L. pneumophila infection protocol

L. pneumophila (strain LpO2) and L. pneumophila expressing GFP-flaA
(MB355; Hammer and Swanson, 1999) were cultured to the postexponen-
tial phase in ACES yeast extract broth as described previously (provided
by M. Swanson, University of Michigan Medical School, Ann Arbor, M;
Byrne and Swanson, 1998). RAW macrophages were infected with
L. pneumophila for 2 h at a multiplicity of infection of 10 followed by wash-
ing to remove excess bacteria and a further 2-4-h incubation at 37°C. For
immunostaining, the infected cells were fixed and permeabilized with cold
methanol, blocked with 5% goat serum, and incubated sequentially with
rabbit anti-L. pneumophila antibody (1:2,000 dilution; provided by R. Isberg,
Tufts University, Boston, MA) followed by Cy3-conjugated donkey anti-rabbit
antibody (1:1,000; Jackson ImmunoResearch Laboratories).

C. trachomaitis infection protocol

Frozen stocks of C. trachomatis serotype L2 elementary bodies were pre-
pared as previously described (Tse et al., 2005). For infection, frozen
vials containing C. trachomatis were thawed, and elementary bodies were
added to RAW macrophages grown on coverslips at the bottom of 6-well
plates. The plates were spun for 20 min at 2,000 rpm before incubation
for 18 h at 37°C. Cells were fixed with 8% PFA (Electron Microscopy
Sciences) for 2 h C. trachomatis within RAW macrophages were visual-
ized using the fluorescent DNA stain Drag5 as suggested by the manu-
facturer (Biostatus).

Image acquisition and analysis

All fluorescence images were acquired using a microscope (Axiovert
200M; Carl Zeiss, Inc.) equipped with a 63x/1.40 NA oil immersion lens
(Carl Zeiss, Inc.), charge-coupled device camera (C9100-13; Hamamatsu
Photonics), and a spinning-disc confocal system (Quorum) as described
previously (Yeung et al., 2008). Images were captured and analyzed using
Volocity software (PerkinElmer). The ratio of the fluorescence intensity of the
phagosome to that of the bulk, unengaged plasma membrane was calculated
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as described previously (Yeung et al., 2006b). In brief, regions of inter-
est were defined in the phagosomal membrane, unengaged plasma mem-
brane, and cytosol, and their mean fluorescence infensities were measured.
After subtracting the cytosolic contribution, the excess fluorescence associ-
ated to the phagosome and bulk membranes was estimated, and their ratio
was then calculated. A value of 1 indicates similar probe density at the
phagosomal and bulk plasma membrane. A value of O indicates complete
loss of the probe from the phagosomal membrane. For quantification of
LactC2 staining of C. frachomatis— or L. pneumophila—containing vacuoles,
the fluorescence associated with the vacuolar membrane was either
scored as positive or negative and was reported as the percentage of the
total number of vacuoles counted.

Andlysis of the lipid selectivity of the anti-PS antibody

Nucleosil 120-3 C18 beads (3 pm; Richard Scientific) coated with PC or
PC plus 20% PE, 20% PS, 20% PA, 2% PI, or 2% PI[4,5]P, were prepared
as described previously (Yeung et al., 2008). Lipidcoated beads were in-
cubated with an Alexa Fluor 488-conjugated mouse anti-PS antibody (Mil-
lipore) for 1 h in 20 mM Tris-HCI, pH 7. An FACS scan flow cytometer (BD)
was used to analyze fluorescence associated with the beads.

Lipid-binding analysis of annexin-V

Large unilamellar vesicles (LUVs) of dansyl-PE:PC (2:98), dansyl-PE:PC:PE
(2:78:20), dansyl-PE:PC:PS (2:78:20), dansyl-PE:PC:PA (2:78:20), dansyl-
PE:PC:PG (2:78:20), dansyl-PE:PC:PI(4)P (2:96:2), or dansyl-PE:PC:PI(4,5)P,
(2:96:2) were prepared using a liposome exiruder (Avestin) as described
previously (Yeung et al., 2006b). The binding of annexin-V to the LUVs was
measured using a fluorescence resonance energy transfer (FRET) assay.
In brief, purified human placental annexin-V (Sigma-Aldrich) was added to
LUVs suspended in a buffer containing 10 mM Hepes and 100 pM Ca?,
pH 7.4. FRET between the tryptophan residues of annexin-V and the dan-
sylated lipids was recorded using a spectrophotometer (F-2500; Hitachi)
with excitation at 280 nm and emission at 505 nm. FRET resulting from
binding of annexin to liposomes was measured in the presence and ab-
sence of calcium, which is required for annexin binding. The FRET signal
observed in the absence of calcium, indicative of nonspecific binding, was
subtracted from the signal recorded in the presence of calcium. To facilitate
comparison between experiments, the data are normalized to the binding
to PC liposomes recorded in the absence of calcium.

Phenotypic assessment of the endocytic pathway in yeast

To assess vacuole acidification in vivo, yeast cells were stained with quin-
acrine as described previously (Weisman et al., 1987) with minor modifi-
cations. In brief, wildtype or PS synthase-deficient (chol) yeast cells
grown to the early logarithmic phase were harvested by centrifugation at
2,000 g and incubated in YPD (1% yeast extract, 2% peptone, and 2%
glucose), pH 7.6, for 30 min. Cells were harvested and resuspended in
50 mM phosphate-buffered saline, pH 7.6, containing 2% glucose, and
quinacrine was added to a final concentration of 200 pM to cells. After
5 min, the cells were harvested, resuspended in PBS-2% glucose, and ex-
amined immediately by epifluorescence and differential interference con-
trast microscopy.

To assess the traffic and appearance of the endocytic pathway, a
pulse-chase analysis using the lipophilic styryl dye FM4-64 was used as
described previously (Vida and Emr, 1995). In brief, cells were grown to
early logarithmic phase in YPD medium at 30°C, harvested, and resus-
pended at 20 ODggo U/ml in YPD medium. To pulse the cells with FM4-64,
the dye was added fo cells at a final concentration of 32 pM from a 16-mM
stock in DMSO and incubated at 4°C for 30 min while rotating. The cells
were next sedimented, resuspended in YPD medium, and incubated at
30°C for the indicated times. After this chase period, the cells were har-
vested, resuspended in PBS, placed on ice, and examined microscopically
as described in Image acquisition and analysis.

Online supplemental material

Fig. S1 shows an assessment of the surface charge of maturing phago-
somes during latex bead phagocytosis. Fig. S2 shows PS and phagosomal
membrane charge during L. pneumophila and C. trachomatis vacuole mat-
uration. Fig. S3 shows lipid-binding specificity of the anti-PS antibody and
annexin-V. Fig. $4 shows membrane fusion and fission during phagosomal
maturation. Fig. S5 shows phenotypic assessment of the endocytic pathway
in wildtype and PS-deficient yeast. Video 1 shows distribution of charge
and membrane markers during phagosome formation and maturation.
Video 2 shows distribution of PS during phagosome formation and matura-
tion. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200903020/DCT1.
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