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Introduction
Molecules travel across the nuclear envelope (NE) through 
nuclear pore complexes (NPCs). The NPC (66 MD in yeast) 
possesses eightfold rotational symmetry perpendicular to the 
plane of the NE and can be divided in three parts: a central  
core or annulus, the nuclear basket, and cytoplasmic filaments. 
Structural analyses have revealed that the central core con-
sists of distinct cytoplasmic, luminal spokes, and nucleoplasmic 
rings (Yang et al., 1998; Beck et al., 2004; Beck et al., 2007). 
Movement of macromolecules through the NPC is controlled 
by nuclear transport receptors, which bind to nuclear localiza-
tion signals (NLSs) or nuclear export signals on these mole-
cules. Karyopherins (kaps) are a family of structurally related 
proteins, of which there are 14 in yeast, that bind to different 
signals and function as importers (importins) or exporters 
(exportins; Wozniak et al., 1998). Kaps interact with a subset  
of NPC proteins (termed nucleoporins [nups]) containing  
phenylalanine-glycine repeats (termed FG-nups) that populate 
the translocation channel. Distinct models suggest that the  
FG-nups form a hydrophobic barrier (hydrogel; Frey et al., 2006; 

Frey and Gorlich, 2007) or, by the rapid Brownian motion  
of unstructured FG domains, a virtual gate (Rout et al., 2003). 
By binding FG-nups, kaps overcome this barrier and progress 
through the channel.

The FG-nups are attached to the symmetrical core that 
forms the architectural framework of the NPC. The core is com-
posed largely of nups that lack FG repeats (Hetzer et al., 2005; 
Tran and Wente, 2006). Several of these are transmembrane 
proteins (termed poms), which probably function by anchoring 
the NPC to the NE. The structural organization of nups that con-
tribute to the rings and spokes of the NPC has been investigated 
using various biochemical, genetic, and cytological techniques 
(for review see Suntharalingam and Wente, 2003). Seminal con-
tributions have included the isolation and characterization of 
subcomplexes. In yeast, these include the heptameric Nup84p 
subcomplex, the Nup188p–Nic96p–Pom152p subcomplex, and 
the Nup170p–Nup53p–Nup59p subcomplex (Nehrbass et al., 
1996; Marelli et al., 1998; Lutzmann et al., 2002; Lutzmann  
et al., 2005). Recently, through an elegant biochemical and 
computational study, Alber et al. (2007a,b) proposed a structure 

We have established that two homologous 
nucleoporins, Nup170p and Nup157p, play 
an essential role in the formation of nuclear 

pore complexes (NPCs) in Saccharomyces cerevisiae. 
By regulating their synthesis, we showed that the loss of 
these nucleoporins triggers a decrease in NPCs caused 
by a halt in new NPC assembly. Preexisting NPCs are 
ultimately lost by dilution as cells grow, causing the  
inhibition of nuclear transport and the loss of viability. 
Significantly, the loss of Nup170p/Nup157p had distinct 
effects on the assembly of different architectural components 

of the NPC. Nucleoporins (nups) positioned on the cyto­
plasmic face of the NPC rapidly accumulated in cyto­
plasmic foci. These nup complexes could be recruited 
into new NPCs after reinitiation of Nup170p synthesis, 
and may represent a physiological intermediate. Loss  
of Nup170p/Nup157p also caused core and nucleo­
plasmically positioned nups to accumulate in NPC-like 
structures adjacent to the inner nuclear membrane, 
which suggests that these nucleoporins are required for 
formation of the pore membrane and the incorporation of 
cytoplasmic nups into forming NPCs.
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et al., 2000). Studies using Xenopus egg extracts have also 
implicated nuclear and cytoplasmic pools of the Nup107–160 
subcomplex in forming NPCs within intact nuclei (D’Angelo et 
al., 2006). Intriguingly, NPC assembly also employs soluble 
components of the nuclear transport machinery including Ran, 
Kap121p, and Kap95p (Lusk et al., 2002; Ryan et al., 2003, 2007; 
D’Angelo et al., 2006).

The NUP170 gene family is conserved among eukaryotes and 
is essential for growth in various species (Gigliotti et al., 1998; 
Kiger et al., 1999; Galy et al., 2003). The S. cerevisiae genome 
encodes two homologous genes—NUP170 and NUP157—one 
or the other of which is required for growth (Aitchison et al., 
1995). Both genetic (Aitchison et al., 1995; Tcheperegine  
et al., 1999; Miao et al., 2006) and structural studies (Alber et al., 
2007a,b) suggest that Nup170p and Nup157p are located close  
to the pore membrane, where they could interact with poms  
and the membrane. Nup170p and Nup157p are predicted to con-
tain -propeller and -solenoid domains that are reminiscent of 
membrane coat proteins such as clathrin (Devos et al., 2004, 
2006). To uncover their functions, we constructed a conditional 
lethal strain that allowed repression of NUP170 in the absence 
of NUP157. We found that loss of these proteins caused a de-
crease in NPC density due to a defect in new NPC assembly. 
In the absence of Nup170p and Nup157p, newly synthesized 
nups accumulated in cytoplasmic foci and inner nuclear mem-
brane-associated structures, which is suggestive of stalled NPC 
assembly intermediates. Importantly, reinitiation of Nup170p 
synthesis induces the dissociation of the cytoplasmic foci and 
their incorporation into the NE. We conclude that Nup170p and 
Nup157p are required for the assembly of subcomplexes within 
the forming NPC at a step that likely coincides with the fusion 
of the outer and inner nuclear membranes and the formation of 
the nuclear pore.

of the NPC that provides a view of how nups are likely orga-
nized within the NPC. A growing body of crystal structures of 
nups, among them the structure of a Sec13–Nup145 complex 
(Hsia et al., 2007), have also led to predictions for the structure 
of the NPC. These varied approaches are likely to provide a 
high-resolution map of the NPC core in the near future.

The assembly of subcomplexes likely plays a role in the 
formation of mature NPCs. This process occurs both when the 
NE is intact and during NE reassembly in the final stages of  
mitosis. Postmitotic NPC assembly occurs in organisms that  
undergo an open mitosis, and at the end of mitosis, when mem-
brane vesicles and NPC components are recruited back to the 
chromatin surface. Studies using in vitro Xenopus NE assembly 
assays and tissue culture cells show that NPC formation occurs 
through the ordered assembly of nup subcomplexes on the chro-
matin surface together with coordinated interactions with the  
NE membrane (for reviews see Hetzer et al., 2005; Tran and Wente, 
2006). First, the Nup107–160 subcomplex (vertebrate equiva-
lent of the yeast Nup84p subcomplex) is recruited to chromatin 
through its interactions with ELYS/Mel28 (Rasala et al., 2006, 
2008; Franz et al., 2007; Gillespie et al., 2007). These prepores 
act as binding sites for membrane vesicles containing Ndc1 and 
Pom121 (Antonin et al., 2005; Rasala et al., 2008). This step is 
functionally linked to the incorporation of Nup155 and Nup53 
(Franz et al., 2005; Hawryluk-Gara et al., 2008) and precedes 
a cascade of events that ultimately leads to the formation of 
mature NPCs.

NPCs are also formed across an intact NE. In higher 
eukaryotic cells, the number of NPCs appears to double during  
S phase (Maul et al., 1972). Accordingly, NPC assembly has 
been observed across an intact NE of nuclei reconstituted 
in vitro using Xenopus egg extracts and in vivo using HeLa 
cells (D’Angelo et al., 2006). The assembly of NPCs across 
the NE is likely the only mechanism functioning in unicellular 
eukaryotes that undergo closed mitoses (i.e., the NE remains 
intact during mitosis). In Saccharomyces cerevisiae, the num-
ber of NPCs increases throughout the cell cycle (Winey et al., 
1997), allowing NPC numbers to be maintained in both the 
mother and daughter. A recent study suggests that the process 
may be more complicated, with new NPC formation being the 
primary source of NPCs in the daughter nucleus (Shcheprova 
et al., 2008).

A requisite step in the formation of NPCs across the NE is 
the fusion of the inner and outer nuclear membranes to form 
transcisternal nuclear pores. Poms and nups located close to the 
membrane are likely to play a role in this and accompanying 
steps of NPC assembly. In higher eukaryotes, three poms—
gp210, Pom121, and Ndc1—have each been implicated in NPC 
assembly (Antonin et al., 2005; Mansfeld et al., 2006; Stavru  
et al., 2006a,b; Funakoshi et al., 2007). Three S. cerevisiae 
poms—Pom152p, Pom34p, and Ndc1p—also appear to share a 
redundant function in NPC assembly (Chial et al., 1998; Lau 
et al., 2004; Madrid et al., 2006; Miao et al., 2006). In addition 
to poms, analyses of several yeast nups have lead to the conclu-
sion that they are required for NPC assembly. Mutants in NIC96, 
NUP192, or NSP1 cause a decrease in NPC numbers (Mutvei 
et al., 1992; Zabel et al., 1996; Kosova et al., 1999; Gomez-Ospina 

Figure 1.  Depletion of Nup170p in the nup157 background causes 
a defect in cell growth. (A) The strains TMY1098 (PMET3-HA-NUP170) 
and TMY1269 (NUP170-HA) were grown in medium lacking methio-
nine. Methionine was added to induce NUP170 shut-off and incubated 
for the indicated times. Samples were analyzed by Western blotting 
using anti-HA and anti-Gsp1p (load control) antibodies. (B) The yeast 
strains TMY1098 (PMET3-HA-NUP170) and TMY1126 (PMET3-HA-NUP170 
nup157) were streaked on CM (Met) and CM (+Met) plates, and 
grown for 2 d at 30°C.
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of methionine, the MET3 promoter is active, leading to levels  
of Nup170p that are similar to those of wild-type (WT) cells 
(Fig. 1 A). Upon addition of methionine, the promoter is repressed 
and levels of Nup170p decrease. By 4 h after methionine addi-
tion, Nup170p levels are barely detectable (Fig. 1 A). In strains 
containing Nup157p (PMET3-NUP170 NUP157), depletion of 
Nup170p had little effect on growth. However, strains lacking 
Nup157p and depleted of Nup170p (which we will refer to  
as depleted of Nup170p [nup157]) failed to form colonies on 
plates (Fig. 1 B).

To understand the functional basis for the growth inhi-
bition observed in the absence of Nup170p and Nup157p,  
we examined the morphology of the NE after repression of 
NUP170 in the PMET3-NUP170 nup157 strain. Samples were 
harvested at various time points after the addition of methio-
nine, postfixed with potassium permanganate, and analyzed 
by thin-section transmission EM (TEM). With this method, 
membranes are darkly stained while proteinaceous structures 

Results
Loss of Nup170p and Nup157p causes a 
decrease in the number of the NPCs
One of the major lineages that comprise the S. cerevisiae  
complex shares a common ancestor that underwent a whole 
genome duplication (Scannell et al., 2007). The duplicated  
S. cerevisiae genome retains 551 duplicate pairs, including 
the nup genes NUP170 and NUP157. Nup170p and Nup157p 
have both redundant and distinct functions (Aitchison et al., 
1995; Kerscher et al., 2001). Neither gene is essential for growth, 
but deletion of the pair is lethal, which suggests that they share 
essential functions.

To investigate the molecular basis underlying the syn-
thetic lethality of nup170 and nup157 null alleles, the endog-
enous NUP170 promoter was replaced by a repressible MET3 
promoter in backgrounds containing or lacking NUP157 (PMET3-
NUP170 NUP157 and PMET3-NUP170 nup157). In the absence 

Figure 2.  Depletion of Nup170p (nup157) 
leads to a progressive decrease in the density 
of NPCs. The strain TMY1126 was grown in 
media lacking methionine. Methionine was 
added to repress NUP170 expression, and 
cells were processed for examination by TEM. 
(A) Typical TEM images of TMY1126 at the 
indicated times after methionine addition.  
Arrowheads indicate gaps in the NE of a size 
consistent with NPCs. Note that by 16 h, the 
NE becomes distorted, with this section show-
ing a large invagination of the cytoplasm. 
Bars, 0.5 µm. (B) The number of NPCs was 
counted in each cell section and divided by the 
length of the NE to calculate a linear density 
of NPCs. A minimum of 30 cells was exam-
ined in each experiment, and standard devia-
tions were estimated from three independent 
experiments. White bar, TMY1098; shaded 
bar, TMY1126.
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observed upon loss of Nup170p and Nup157p occur as a con-
sequence of NPC depletion.

The loss of Nup170p and Nup157p causes 
the mislocalization of other nups
The reduction in NPCs detected upon depletion of Nup170p 
and Nup157p is likely to arise from an inhibition of new NPC 
assembly, either exclusively or in conjunction with the destabi-
lization of existing NPCs. To more closely evaluate the role of 
these nups in NPC assembly, we examined the consequences  
of depleting Nup170p and Nup157p on the association of indi-
vidual nups with the NE. To visualize each nup, a GFP tag 
was introduced at the 3 end of its open reading frame (ORF). 
In most cases, the NUP-GFP allele did not affect cell growth. 
However, strains containing the GLE2-GFP, NUP192-GFP, 
NUP57-GFP, NUP49-GFP, NSP1-GFP, and NIC96-GFP alleles 
exhibited severe growth defects upon depletion of Nup170p 
even in the presence of Nup157p (unpublished data), which sug-
gests that the C-terminal GFP compromises the function of these 
nups and causes a synthetically lethal interaction with reduced 
NUP170 expression. As a consequence, these nups were omitted 
from further analysis.

The localization of each nup-GFP fusion was examined  
6 h after methionine-induced repression of NUP170. Nups  
belonging to various subdomains of the NPC were examined, 
including those positioned on the cytoplasmic or nucleoplasmic 
face (here referred to as cytoplasmic or nucleoplasmic nups), 
and within the core, integral membrane proteins. The most  
dramatic effects of Nup170p (nup157) depletion were on 
nups positioned exclusively on the cytoplasmic face of the 
NPC, including Nup82-GFP and Nup159-GFP. Upon depletion 
of Nup170p (nup157; 6 h), the NE localization of Nup82-GFP  
and Nup159-GFP was largely lost, and the proteins were found in 
foci located in the cytoplasm and occasionally adjacent the NE 
(Fig. 4). Generally, 3–7 foci were visible per cell. In contrast, the 
nucleoplasmic nups Nup1-GFP, Nup2-GFP, Nup60-GFP, and 
Mlp1-GFP, and the membrane protein Pom152p retained their 
nuclear rim localization over the same time period (Fig. 4). Finally, 
nups that contribute to the central core of the NPC showed a 
mixed phenotype upon depletion of Nup170p (nup157). For ex-
ample, components of the Nup84p complex (Nup84-GFP, Nup85-
GFP, and Nup133-GFP), Gle1-GFP, Nup100-GFP, and Ndc1-GFP 
were still visible at the NE but generally exhibited a weaker sig-
nal than seen at the time of 0 h. In addition, these nups were also 
detected in punctate cytoplasmic structures (Fig. 4). Cytoplasmic 
foci were also visible, but less abundant, when we examined a 
group of more centrally located core nups and poms including 
Nup188-GFP, Nup59-GFP, Nup53-GFP, and Pom34-GFP  
(Fig. 4). Each of these retained an NE signal at 6 h after Nup170p 
(nup157) depletion.

To determine whether the mislocalized nups coassembled 
into foci with other nups, we examined the localization of Nup159–
monomeric RFP (mRFP) in cells coproducing Nup188-GFP, 
Nup82-GFP, Nup2-GFP, or Ndc1-GFP. All of the double-tagged 
strains grew normally when either Nup157p or Nup170p was 
present, which suggests that the tags did not alter the functions of 
these nups. 4 h after addition of methionine, both Nup159-mRFP 

are not highlighted. Thus, the NE membrane is clearly visible 
and nuclear pores appear as gaps of defined size in the conti-
nuity of the NE. WT or cells depleted of only Nup170p (PMET3-
NUP170 NUP157) contained largely spherical nuclei with 
visible nuclear pores (unpublished data). Similarly, PMET3-
NUP170 nup157 cells showed no striking changes in the 
shape or size of their nuclei through 8 h after the addition of 
methionine (Fig. 2 A). However, these nuclei contained fewer 
pores. We quantified the number of NPCs by counting the 
number of pores per micrometer of linear distance along the 
NE in multiple sections. A linear density of 0.54 ± 0.03 pores/µm 
was determined for the PMET3-NUP170 nup157 strain at 0 h, 
which was similar to that of the PMET3-NUP170 NUP157 strain 
(0.52 ± 0.05 pores/µm). As shown in Fig. 2 B, by 4 and 8 h after 
repressing NUP170 (nup157), we detected a progressive  
decrease in NPC density to 0.24 ± 0.01 pores/µm and 0.15 ± 
0.03 pores/µm, respectively. By later time points (16 h), gross 
morphological changes were observed in the nuclei, including 
the formation of NE projections and invaginations (Fig. 2 A). 
We speculate that these changes occur in response to decreased 
levels of NPCs.

Depletion of Nup170p and Nup157p is 
accompanied by a progressive loss of 
nuclear transport
As described in the previous section, by 4 and 8 h after repres-
sion of NUP170 (nup157), the numbers of NPCs are reduced 
to one half (4 h) and one quarter (8 h) those observed in WT 
strains. To investigate the effects of depletion on nuclear trans-
port, we examined the localization of reporter proteins imported 
by Kap121p (Pho4-NLS-GFP; Kaffman et al., 1998), Kap123p 
(rpL25-NLS-GFP; Timney et al., 2006), Kap104p (Nab2-
NLS-GFP; Lee and Aitchison, 1999), and the Kap60p/Kap95p 
heterodimer (cNLS-GFP; Shulga et al., 1996). All continued 
to accumulate within nuclei 6 h after methionine addition  
(Fig. 3 A). Nuclear import rates are generally much faster than 
needed to achieve good steady-state nuclear localization. 
Therefore, we used an assay described by Shulga et al. (1996) 
that provides a relative measure of in vivo import rates. As shown 
in Fig. 3 B, the rates of Nab2-NLS-GFP import slowed between 
0 and 8 h after Nup170p (nup157) depletion. Interestingly, the 
relative rates of import decreased by 50% and 75% after  
4 and 8 h of depletion, which mirrors the decrease in NPCs  
observed at these time points. In contrast, depletion of Nup170p 
alone did not significantly alter the import rate of the Nab2-
NLS-GFP reporter, although some lag was seen at early time 
points (Fig. 3 B). The lag may be related to the increased per-
meability of nup170 NPCs to the relatively small Nab2-NLS-
GFP (Shulga et al., 2000).

We also examined the effects of the loss of Nup170p and 
Nup157p on mRNA export. FISH analysis using an oligo 
(dT50) probe showed that the number of cells that accumulated 
poly-A mRNA in their nuclei increased upon repression of 
NUP170 (nup157) but not NUP170 alone (Fig. 3 C). Over 
50% of the NUP170 (nup157) cells showed nuclear mRNA 
accumulation after 8 h of NUP170 repression (Fig. 3 D). We 
conclude that the defects in mRNA export and protein import 
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and Nup159-mRFP spots were detected. However, distinct 
Ndc1-GFP and Nup159-mRFP foci were also seen: the Ndc1-
GFP–specific foci that likely represent spindle pole body– 
associated protein, and the Nup159-mRFP–specific foci perhaps 
arising from their positioning away from membrane containing 
Ndc1-GFP. Finally, little or no colocalization of Nup2-GFP and 
Nup159-mRFP was detected in cells at 4 or 8 h after depletion 
(Fig. 5). These results suggest that the depletion of Nup170p 

and Nup82-GFP colocalized to the same cytoplasmic foci  
adjacent the NE (Fig. 5). In contrast, Nup188-GFP, Nup2-GFP, 
and Ndc1-GFP were generally restricted to the NE at the 4-h 
time point (Fig. 5). By 8 h, Nup188-GFP and Ndc1-GFP began 
to accumulate in cytoplasmic foci (Fig. 5). The Nup188-GFP 
cytoplasmic foci generally colocalized with Nup159-mRFP, which 
suggests that Nup188-GFP can associate with structures con-
taining the cytoplasmic nups. Similarly, overlapping Ndc1-GFP 

Figure 3.  Decrease in NPC density caused by the depletion of Nup170p (nup157) is accompanied by a decrease in the rate of protein import and mRNA 
export. (A) TMY1126 cells harboring plasmids encoding the cNLS-GFP, Nab2-NLS-GFP, rpL25-NLS-GFP, and Pho4-NLS-GFP reporters were transferred 
to media containing methionine for the indicated times to repress NUP170 expression, then examined using an epifluorescence microscope. Bar, 5 µm. 
(B) Analysis of Nab2-NLS–mediated import. Strains of TMY1098 and TMY1126 harboring a Nab2-NLS-GFP plasmid were grown in media containing 
methionine for the indicated times. A relative measure of in vivo import rates of the Nab2-NLS-GFP reporter was examined. Standard deviations estimated 
from at least four independent measurements are shown as error bars. (C) NUP170 expression was repressed in the TMY1098 and TMY1126 strains, 
and, at the indicated times, the localization of poly-A mRNA was examined by FISH analysis using an oligo (dT50) probe. Bar, 5 µm. (D) For TMY1126  
(PMET3-NUP170 nup157), the number of cells that showed a nuclear accumulation of poly-A mRNA at each time point was determined. A minimum of 200 
cells was counted in each experiment and standard deviations were estimated from two independent experiments.
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foci and its normal NE association was lost, a pattern largely 
similar to that observed in the cytoplasmic nups. Consistent 
with this, we observed that the Kap95-GFP signal colocalized 
with Nup159-mRFP (Fig. 6 B). Kap121-GFP and Kap123-GFP 
were less frequently seen in cytoplasmic foci and remained  
concentrated at the nuclear periphery at the 4-h time point.  

(nup157) causes the mislocalization of cytoplasmically posi-
tioned nups into foci, which at later time points also contain 
detectable amounts of core nups and certain poms.

The distributions of certain importins were also affected 
by Nup170p (nup157) depletion (Fig. 6). By 4 h after methio-
nine addition, Kap95-GFP was visible primarily in cytoplasmic 

Figure 4.  The loss of Nup170p and Nup157p has distinct effects on the localization of NPC components. (A) The endogenous gene encoding the indicated 
nup was tagged with GFP in the TMY1098 and TMY1126 strains, and the fusion proteins were examined at the indicated times after repression of NUP170 
expression using an epifluorescence microscope. Pom152p localization was analyzed by indirect immunofluorescence using an anti-Pom152p antibody 
(mAb118C3). Note, the brighter Ndc1-GFP foci of seen at the NE at 0 h likely reflect the shared spindle pole body association of Ndc1p (Chial et al., 
1998). Diagrams adjacent to the images depict the general localization of each nup within the NPC (red). Nup100p is present on both faces of the NPC 
but is biased to the cytoplasm. Bars, 5 µm.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/185/3/459/1891097/jcb_200810029.pdf by guest on 08 February 2026



465NUP170P/NUP157P FUNCTION IN NPC ASSEMBLY • Makio et al.

depletion, in contrast to what is seen in cycling cells (Fig. 7 B). 
Moreover, Nup82-GFP also accumulated in cytoplasmic foci, 
which is consistent with the inhibition of new NPC biogenesis. 
These foci were not detected in arrested cells expressing 
NUP170 (Fig. 7 B).

The fates of existing NPCs and the formation of new ones 
in the absence of Nup170p and Nup157p was also examined  
using nups tagged with the fluorescent protein Dendra. Dendra 
undergoes a photoconversion from green to red fluorescent 
states in response to visible blue or UV light (Gurskaya et al., 
2006). This allows one to distinguish the pool of Dendra-tagged 
protein present at the point of photoconversion from that syn-
thesized after exposure. We used this tag to follow the fates 
of existing and newly synthesized Nup82-Dendra and Nup60-
Dendra after depletion of Nup170p (nup157). These nups 
were selected as they represent different NPC substructures, 
and they exhibited different localization patterns after depletion 
of Nup170p (nup157). After addition of methionine, cells 
were flashed with UV light to induce conversion of Nup-Dendra-
green to Nup-Dendra-red. After conversion, no Nup82-Dendra-
green signal was visible, and Nup82-Dendra-red appeared along 
the NE in an NPC-like pattern (Fig. 8 A). By 6 h after repression 
of NUP170 (nup157), the Nup82-Dendra-red signal showed  
a striking decrease (Fig. 8 A), which is consistent with our  
observed decrease in NPCs (Fig. 2 B). In most cells, the remaining 
Nup82-Dendra-red signal was largely localized in a roughly 
spherical pattern, which is consistent with its continued presence  

This distribution pattern appeared to have more similarity to 
that seen with core nups such as Nup53 (Fig. 4). Finally, cellular 
distribution of Kap104-GFP appeared unaffected by depletion 
of Nup170p (nup157).

The decrease in NPC density upon loss 
of Nup170p and Nup157p is caused by a 
defect in NPC assembly
Our data are consistent with a model in which the loss of Nup170p 
and Nup157p inhibits new NPC assembly, and preexisting NPCs, 
being largely stable, are diluted out between mother and daugh-
ter cells during repeated cell cycles. Based on this model,  
we predict that the inhibition of the cell cycle would prevent 
the loss of preexisting NPCs. To test this idea, we inhibited cell 
cycle progression using -factor to arrest cells in G1 phase, and 
TEM analysis was performed to determine NPC density (Fig. 7 A). 
When Nup170p was present in the nup157 background, the 
linear density of NPCs in the NEs of cells arrested with -factor 
for 6 h was estimated at 0.49 NPC/µm, which was similar to 
cycling cells (0.51 NPC/µm; Fig. 7 A). In cells incubated for  
6 h in the presence of -factor and methionine, in order to 
inhibit Nup170p synthesis, NPC density decreased slightly  
(to 0.37 NPC/µm) when compared with cells expressing NUP170 
but was significantly higher than that seen in cycling cells  
depleted of Nup170p (nup157) for 6 h (0.17 NPC/µm). Con-
sistent with these data, Nup82-GFP remained visible at the NE 
in -factor–arrested cells after 6 h of Nup170p (nup157)  

Figure 5.  Cytoplasmic foci contain multiple 
nups. Strains expressing Nup159-mRFP and 
either Nup188-GFP, Nup2-GFP, or Ndc1-GFP 
within the PMET3-NUP170 nup157 background 
were examined at the indicated times after  
repression of NUP170 expression using a 
confocal fluorescence microscope. It should 
be noted that the foci of Ndc1-GFP and 
Nup188-GFP generally colocalize with those 
of Nup159-mRFP (arrows) but not vice versa 
(arrowheads). Bars, 5 µm.
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Nup60p is one of the nups whose association with the  
NE was unaffected after 6 h of Nup170p (nup157) depletion 
(Fig. 4). Because NPC formation is inhibited under these condi-
tions, we were interested in comparing existing Nup60-Dendra 
to that synthesized after depletion of Nup170p (nup157). 6 h 
after photoconversion and repression of NUP170 (nup157), 
newly synthesized Nup60-Dendra-green was visible along the 
NE in foci that were, in many cases, distinct from Nup60- 
Dendra-red in preexisting NPCs (Fig. 8 B). Because few NPCs 
are formed in the absence of Nup170p and Nup157p, the nature 
of these deposits was of interest.

Loss of Nup170p and Nup157p induces 
the formation of proteinaceous structures 
adjacent to the inner nuclear membrane
As the loss of Nup170p and Nup157p inhibits NPC formation, 
we were perplexed by the continued localization of core and 
nucleoplasmic nups at the NE after 6 h of Nup170p (nup157) 
depletion. To further investigate the basis for these observations, 

in the dwindling number of NPCs. In contrast, newly synthe-
sized Nup82-Dendra-green appeared in cytoplasmic foci with 
occasional foci adjacent to the NE (Fig. 8 A). These foci were 
generally distinct from the Nup82-Dendra-red containing NPCs, 
which suggests that the Nup82-Dendra-green failed to incorpo-
rate into existing or new NPCs.

Figure 6.  Kap95p binds cytoplasmic foci in cells lacking Nup170p 
and Nup157p. (A) Strains producing GFP-tagged Kap95p, Kap104p, 
Kap121p, or Kap123p in the PMET3-NUP170 nup157 background were 
transferred to media containing methionine to repress NUP170 expres-
sion. Kap-GFP localization was examined using an epifluorescence micro-
scope at the indicated times. At 4 h after NUP170 repression (nup157), 
Kap95-GFP was visible at cytoplasmic foci (arrowheads). (B) A PMET3-
NUP170 nup157 strain producing Kap95-GFP and Nup159-mRFP  
was grown in media containing methionine for the indicated times.  
Images were acquired using a confocal microscope. As indicated by the 
arrowheads, the Nup159-mRFP foci overlap with those of the Kap95-GFP. 
Bars, 5 µm.

Figure 7.  Cell cycle arrest induced by -factor inhibits the decrease in 
NE-associated Nup82-GFP after the repression of NUP170 (nup157).  
(A) The strain TMY1203 (PMET3-NUP170 nup157) was transferred to media 
lacking (dark gray bars) or containing (light gray bars) -factor in the pres-
ence (+Met) or absence (Met) of methionine for 6 h. The linear density of 
NPCs was calculated as in Fig. 2. A minimum of 30 cells was examined 
in each experiment, and the standard deviation was estimated from two 
independent experiments. (B) Nup82-GFP localization. The localization of 
Nup82-GFP in TMY1209 (PMET3-NUP170 nup157 NUP82-GFP) cells was 
examined by epifluorescence microscopy after 6 h with or without -factor 
and in the presence (+Met) or absence (Met) of methionine. Bar, 5 µm.
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we examined Nup170p (nup157)-depleted cells using TEM 
techniques (osmium tetroxide fixation and uranyl acetate staining) 
that highlight NPCs. In addition to NPCs, we observed electron-
dense structures adjacent to the nucleoplasmic face of the inner 
nuclear membrane at 4 h after repression of NUP170 (nup157; 
Fig. 9, B and C, white arrowheads). The inner and outer NE 
membranes were clearly distinguishable at these sites, with no 
connecting pore membrane domain. Measurements of the width 
and thickness of these structures (71 ± 7 nm wide and 34 ± 9 nm 
thick; n = 32) revealed that they are similar in dimension to those 
of native NPCs (75 ± 7 nm wide and 33 ± 4 nm thick; n = 32). 
Similar structures were not detected before repression of NUP170 
(nup157; 0 h) or in strains lacking only Nup170p or Nup157p 
(Fig. 9 A and not depicted). We propose that these structures arise 
from core and nucleoplasmic nups forming NPC assembly inter-
mediates at the inner membrane. To further test this conclusion, we 
performed immunoelectron microscopy analysis using mAb414, 
a monoclonal antibody that binds to several XFXFG repeats con-
taining nups but mainly the core and nucleoplasmic nups Nsp1p 
and Nup2p (Kenna et al., 1996). We detected mAb414 binding  
to NPCs, as defined by discontinuities in the lumen of the NE 
(Fig. 9 D, black arrowheads). After Nup170p (nup157) deple-
tion, however, a significant number of gold particles were also 
observed at sites apart from NPCs (Fig. 9 D, white arrowheads; 
and Table I) and adjacent to the inner nuclear membrane. These 
results support the conclusion that core and nucleoplasmic nups 
contribute to the proteinaceous structures accumulating along the 
inner nuclear membrane.

Reinitiation of Nup170p synthesis induces 
targeting to the NE of cytoplasmic pools of 
mislocalized nups
If the structures observed upon depletion of Nup170p (nup157) 
represent an accumulation of intermediates in NPC assembly, it 
is possible that these nups could be used in new NPC formation 
after reinitiation of Nup170p synthesis. To test this idea, Nup82-
Dendra-green was induced to accumulate in cytoplasmic foci 
by a 5-h depletion of Nup170p (nup157), then converted  
to Nup82-Dendra-red. Cells were then switched to medium 
lacking methionine to induce Nup170p synthesis. As shown in 
Fig. 8 C, Nup170p production induced both the disassembly of 
the cytoplasmic foci and the relocation of Nup82-Dendra-red to 
the NE in a pattern consistent with its localization to NPCs, 
which suggests that nups in the cytoplasmic foci remain compe-
tent to assemble into NPCs.

Figure 8.  Nup170p and Nup157p are required for the incorporation of  
newly synthesized nups into NPCs. The strains KWY2216 (NUP82-Dendra 
PMET3-NUP170 nup157; A) and KWY2215 (NUP60-Dendra PMET3-
NUP170 nup157; B) were transferred to media containing methionine 
to repress NUP170 expression. At the same time, UV light was applied to 
the cells to induce photoconversion of Dendra (green to red). Cells were 
imaged at 0 and 6 h after photoconversion. Nup82-Dendra produced  
after photoconversion (green) appears at foci generally distinct from exist-
ing NPCs (A, arrowheads). NE-associated Nup60-Dendra-green foci that 
were distinct from Nup60-Dendra-red were also detected (B, arrowheads). 
(C) KWY2216 cells were switched to media containing methionine; then, 
at 5 h after NUP170 repression, UV light was applied to the cells to induce 
photoconversion of Dendra to the red fluorophore. Cells were transferred 
to the media lacking methionine for reinduction of NUP170. At 0 and 2 h 
after induction, images of the Nup82-Dendra (red) were captured using an 
epifluorescence microscope. Bars, 5 µm.

Table I.  Quantification of mAb414 immunogold labeling of 
Nup170p (nup157)-depleted cells

+Met (h) Total number of 
gold particles

Gold particles at 
NPCs

Gold particles at the  
inner nuclear membrane

0 98 82 (84%) 16 (16%)
4 110 54 (49%) 56 (51%)

The +Met (h) column shows time after addition of methionine to the TMY1126 
strain. Gold particles present at discontinuities in NE lumen of a size consistent 
with NPCs were scored as NPC associated. Gold particles at the inner nuclear 
membrane but distinct from NPCs were scored as inner membrane associated. 
Percentages of the total number of particles counted are given in parentheses.
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consistent with the predicted stability of these structures (Daigle 
et al., 2001; Rabut et al., 2004a,b). However, the loss of these 
nups leads to the arrest of NPC formation and small foci com-
posed of distinct groups of nups accumulated in either the cyto-
plasm or the nucleus adjacent to the inner nuclear membrane. 
We demonstrate that the cytoplasmic foci represent pools of 

Structures similar to the cytoplasmic foci seen in Nup170p 
(nup157)-depleted cells have also been observed in strains 
lacking Apq12p (Scarcelli et al., 2007). This ER membrane pro-
tein has been proposed to play a role in the biophysical prop-
erties of the nuclear membrane and the formation of NPCs.  
An apq12 strain at 23°C accumulates cytoplasmic foci con-
taining nups, including Nup82-GFP. The addition of benzyl 
alcohol to the medium disperses these nups and promotes their 
association with the NE and incorporation into NPCs (Scarcelli 
et al., 2007). Similarly, we observed that the incubation of 
apq12 cells with another alcohol, 3% hexane-1, 6-diol, also 
induced the dispersion of Nup82-GFP–containing cytoplasmic 
foci and localization to the nuclear periphery (Fig. 10). This 
alcohol has been demonstrated to disrupt nup–nup interactions 
in various contexts, including dispersing cytoplasmic aggregates 
of FG-nups (Patel et al., 2007). Treatment with 3% hexane-1,  
6-diol also partially dispersed Nup82-GFP–containing foci 
formed upon loss of Nup170p and Nup157p, but Nup82-GFP 
failed to relocalize to the nuclear rim (Fig. 10) and remained 
diffusely distributed throughout the cytoplasm. Thus, although 
hexane-1, 6-diol can bypass the requirement for Apq12p and  
induce reassembly of cytoplasmic nups onto the NE, this latter 
process requires the presence of Nup170p and Nup157p.

Discussion
The assembly of NPCs across an intact NE requires the fusion 
of the inner and outer NE and the assembly of nups within the 
newly forming NPC. Here, we show that the related nups 
Nup170p and Nup157p are required for the assembly of sub-
complexes within the forming NPC at a step before or coincid-
ing with the membrane fusion and pore formation. Depletion of 
these nups does not appear to affect existing NPCs, which is 

Figure 9.  NPC-like structures accumulate at 
the inner nuclear membrane after the loss of 
Nup170p and Nup157p. (A–C) The strains 
TMY1098 (PMET3-NUP170; A) and TMY1126 
(PMET3-NUP170 nup157; B and C) were har-
vested at 4 h after NUP170 repression. The  
cells were then examined by TEM. Black  
arrowheads indicate the mature NPCs. White 
arrowheads indicate structures attached on the 
inner nuclear membrane with similar size and 
staining properties of NPCs. (D) TMY1126 
cells were grown in media containing methio-
nine for the indicated time points. Cells were 
then harvested and analyzed by immunoelec-
tron microscopy using the mAb414 antibody. 
The nucleoplasm (N) and the cytoplasm (C) 
are indicated. Black arrowheads indicate gold 
particles bound to NPCs as defined by dis-
continuities in NE lumen. White arrowheads 
indicate gold particles attached to the inner 
nuclear membrane. Bars, 0.2 µm.

Figure 10.  Hexane-1, 6-diol suppresses the NPC assembly defect of 
the apq12 strain but not that of cells lacking Nup170p and Nup157p. 
apq12 (TMY1290) and PMET3-NUP170 nup157 (TMY1135) strains  
expressing Nup82-GFP were grown in YPD overnight at 23°C, and for  
6 h in media containing methionine to induce NPC assembly defects and 
accumulation of Nup82-GFP foci. Hexane-1, 6-diol (+HD; final 3% wt/vol) 
was then added to the media, and samples were taken at the indicated 
times. Images of Nup82-GFP were acquired using an epifluorescence  
microscope. Bar, 5 µm.
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Nup170p and Nup157p appear essential for the incorporation of 
the cytoplasmically positioned nups into NPCs. Although dis-
placed from the NE, these nups appear to associate with known 
binding partners (e.g., the interaction of the Nup82p/Nup159p 
with the Nup84p complex) within cytoplasmic foci. These foci 
are likely composed of assembly intermediates, not nonspecific 
aggregates, as their nups remain competent to target to the NE 
after derepression of NUP170, and appear to assemble into  
NPCs (Fig. 8 C).

We propose that Nup170p and Nup157p function at the 
NE membrane, where they facilitate insertion of the core and 
cytoplasmic structures into the forming nuclear pore, poten-
tially by assisting in the fusion of the inner and outer nuclear 
membranes. Alternatively, these factors could be required for 
the bending and stabilization of the incipient nuclear pore, 
which may form but collapse in their absence. These activities 
would necessitate the positioning of these proteins at or near 
the membrane. A growing number of observations support these 
ideas; among these are synthetic lethal interactions between 
mutations in NUP170 and POM152 or POM34 (Aitchison  
et al., 1995; Tcheperegine et al., 1999; Miao et al., 2006). 
These interactions appear to be based, in part, on physical 
associations. Nup170p binds directly to the pore-exposed  
region of Pom152p (Fig. S1) and is detected in subcomplexes 
with Ndc1p, Pom34p, and Pom152p; Nup157p is detected 
bound to Pom34p (Alber et al., 2007b; see Onischenko et al. 
on p. 475 of this issue). Also, based on their analysis, Alber 
et al. (2007a,b) have positioned Nup170p and Nup157p adja-
cent to the membrane in their proposed architecture of the NPC 
(Alber et al., 2007a,b).

The placement of Nup170p at or near the pore is also 
consistent with functions suggested by its structural features. 
Like members of the Nup84p complex, Nup170p and Nup157p 
are predicted to contain an N-terminal -propeller and a  
C-terminal -solenoid domain, features they also share with 
membrane vesicle coatomer proteins such as clathrin (Devos 
et al., 2004, 2006). By analogy to clathrin, these regions of 
Nup170p and Nup157p provide surfaces for interactions with 
membrane proteins and perhaps a means for these proteins to 
influence the curvature of the pore membrane. In support of 
this idea, near the N-terminal end of the -solenoid region  
of Nup170p lies a predicted membrane-binding, amphipathic 
-helix, or ALPS, domain (Drin et al., 2007). An ALPS domain 
has also been detected in Nup133p, and its ability to preferen-
tially bind curved membranes has been documented in vitro 
(Drin et al., 2007).

In addition to their own membrane binding potential, 
Nup170p and Nup157p also directly interact with Nup53p  
(Fig. S1; Lusk et al., 2002; Alber et al., 2007a,b; Onischenko 
et al., 2009; unpublished data). Nup53p contains a C-terminal 
amphipathic helix that mediates membrane binding and is required 
for the formation of inner membrane–derived tubular vesicular 
structures induced by the overexpression of Nup53p (Marelli 
et al., 2001; Patel and Rexach, 2008). We envisage that the com-
plexes formed between Nup53p–Nup170p–Nup157p are likely 
capable of interacting with the membrane at multiple interfaces 
and by various mechanisms, which are properties consistent 

nups that remain competent to assemble into NPCs after re
initiation of NUP170 expression.

Other nup mutants also show a decrease in NPC numbers, 
including nic96-1 and nup192-15 (Zabel et al., 1996; Kosova  
et al., 1999). In these mutants, the overall NE structure, protein 
import, and mRNA export are not significantly altered at early 
times after transfer into a nonpermissive condition; however, 
the number of the NPCs is significantly reduced (Zabel et al., 
1996; Kosova et al., 1999; Gomez-Ospina et al., 2000). Thus, 
much like cells lacking Nup170p and Nup157p, these mutations 
are likely to affect NPC assembly but not the function of intact 
NPCs. This difference is not always discernible, and, in the case 
of several other nup mutants, it has been difficult to discriminate 
between those mutations that affect the integrity or function  
of the NPC versus those inhibiting assembly. Among the most 
interesting phenotypes observed are those of nup mutants that 
induce NE herniations that seal over NPCs (e.g., Wente and 
Blobel, 1993). It is not clear, however, whether this phenotype 
arises as a consequence of assembly defects or represents a 
cellular response to damaged NPCs.

Of the various nup mutants that have now been exam-
ined, only cells lacking both Nup170p and Nup157p exhibit 
the unique feature of accumulating putative NPC assembly  
intermediates. These intermediates were revealed by the inspec-
tion of individual nups after loss of Nup170p and Nup157p. 
Nups that contribute to defined NPC subcomplexes or are posi-
tioned at a common location in the NPC (e.g., the nucleoplas-
mic face of the NPC) exhibited one of three distinct localization 
patterns. For example, the cytoplasmic nups Nup82p and its 
binding partner Nup159p (Belgareh et al., 1998) rapidly accu-
mulated in cytoplasmic foci after loss of Nup170p and Nup157p 
(Fig. 4). In a second phenotype, nups associated with the sym-
metrical core of the NPC showed a mixed distribution between 
the cytoplasmic foci and structures along the NE. Several nups 
thought to be closely associated with Nup82p in the NPC,  
including Gle1p, Nup100p, and members of the Nup84p com-
plex (Alber et al., 2007a,b), showed a clear association with the 
cytoplasmic foci as well as the NE. Other core nups including 
Nup188p and Nup53p exhibited a weaker, but detectable, signal 
in cytoplasm foci. Similarly, Ndc1p and Pom34p were seen in 
a subset of the cytoplasm foci, presumably those at or near the 
NE or ER membrane. Each of these core nups and poms also 
exhibited a significant punctate NE localization (Fig. 4). In con-
trast, nucleoplasmic nups were found exclusively at the NE 
after the loss of Nup170p and Nup157p (6 h; Fig. 4). These  
results, coupled with the results of the Nup60-Dendra and the 
immunoelectron microscopy experiments (Fig. 8 and 9), have 
lead us to conclude that association of the core and nucleoplasmic 
nups with the NE reflected their presences in the inner membrane–
associated, NPC-like structures.

The nup localization patterns seen after the loss of Nup170p 
and Nup157p provide important insights into their role in 
NPC assembly. We conclude that the removal of Nup170p and 
Nup157p does not inhibit the targeting of core and nucleoplasmic 
nups to the nuclear periphery or their assembly into structural 
precursors of the NPC, which are what we interpret the inner  
nuclear membrane–associated structures to represent. In contrast, 
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Whether or not these cytoplasmic foci are membrane associ-
ated remains to be addressed.

Null mutants lacking the integral ER and NE membrane 
protein Apq12p also contain mislocalized cytoplasmic nups and 
inner nuclear membrane–associated, NPC-like structures when 
grown at a semipermissive temperature (Scarcelli et al., 2007). 
Moreover, combinations of apq12 and mutations in several 
NPC components, including Pom34p, Ndc1p, and Nup170p,  
exhibit synthetic growth defects, with an apq12 nup170 mutant 
showing especially strong defects in nuclear membrane struc-
ture. Although the role of Apq12p in NPC assembly remains to 
be clearly established, it has been proposed that it contributes to 
membrane fluidity by modulating the lipid composition of the 
NE (Scarcelli et al., 2007). This conclusion is based, in part, on 
the observation that benzyl alcohol treatment of apq12 cells 
can induce the dispersion of the cytoplasmic nup foci and the 
recruitment of their nups to the NE, presumably stimulating 
their assembly into NPCs. We observed a similar effect using 
hexane-1, 6-diol treatment of apq12 cells. Thus, alcohols can 
suppress the defects caused by the loss of Apq12p. However, 
hexane-1, 6-diol treatment of cells depleted of Nup170p and 
Nup157p, although capable of dispersing cytoplasmic nup foci, 
did not induce their incorporation into the NE. Based on the 
phenotypic similarities caused by the loss of either Apq12p 
or Nup170p and Nup157p, we conclude that they likely func-
tion at a similar point in NPC assembly, but that their different  
responses to alcohol suggest they contribute to distinct aspects of 
the process. The relationships between these proteins are again 
consistent with a role for Nup170p and Nup157p in mediating 
structural changes in the NE membrane that drive formation of 
the pore membrane and contribute to its stability. Although they 
required for these essential processes, Nup170p and Nup157p 
are expected to function in concert with pore membrane pro-
teins, Apq12p, and other nups to guide these events. Under-
standing the physical relationships between these proteins and 
the pore membrane will be a key next step in further under-
standing the mechanisms of nuclear pore formation.

Materials and methods
Yeast strains, media, and plasmids
Yeast strains used in this study are shown in Table S1. All strains were 
grown in YPD (1% yeast extract, 2% bactopeptone, and 2% glucose) or 
synthetic media containing 0.17% yeast nitrogen base (without amino acids 
and ammonium sulfate), 0.5% ammonium sulfate, 2% glucose, and the  
appropriate supplements at 30°C. Cell transformations were performed using 
a lithium acetate method (Gietz and Schiestl, 2007) and a PCR-based, 
one-step gene modification method (Longtine et al., 1998). The plasmid 
used for the PMET3-NUP170 integration, pTM1046, was constructed by the 
replacement of the BglII–PacI region of pFA6a-kanMX6-PGAL1-3HA (Longtine 
et al., 1998) with a BglII–PacI fragment containing a promoter region of 
the MET3 gene, which was made by PCR using BY4742 genomic DNA as 
a template and the primers 5-GCGAGATCTTTTAGTACTAACAGAGAC-3 
and 5-GCGTTAATTAAAGACATGTTAATTATACTTTATTC-3. The following 
NLS reporter plasmids were used: pGAD-GFP (cNLS-GFP; Shulga et al., 
1996), pEB0836 (Pho4-NLS-GFP; Kaffman et al., 1998), pNab2(200–249)-
GFP (rg-NLS-GFP; Lee and Aitchison, 1999), and pBT008 (rpL25-NLS-GFP; 
Timney et al., 2006). The following plasmids were used for protein expres-
sion in Escherichia coli: pGST-170 (full-length NUP170 ORF cloned in 
pGEX-4T1), pGST-152N (coding region POM152 corresponding to amino 
acid residues 1–111 in pGEX-6P1), and pET53 (full-length NUP53 ORF 
cloned into pET9d).

with a role for these proteins in steps that promote membrane 
curvature and fusion during NPC assembly.

It remains to be determined whether the mammalian  
counterpart of Nup170p and Nup157p, Nup155, would play a 
similar role in interphase NPC assembly. However, Nup155 is 
essential for postmitotic NPC assembly, and its function has 
been linked to events at the membrane (Franz et al., 2005). 
Depletion of Nup155 from Xenopus extracts inhibits NPC and 
NE assembly at a step after vesicle binding to chromatin. This 
phenotype is similar to that observed upon depletion of the 
membrane proteins POM121 or NDC1 (Antonin et al., 2005; 
Mansfeld et al., 2006) and the Nup155 binding partner Nup53 
(Hawryluk-Gara et al., 2008), but is distinct from phenotypes 
seen after depletion of other nups, including members of the 
Nup107–Nup160 complex (Harel et al., 2003; Walther et al., 
2003). These results have been interpreted to suggest that the 
functions of Nup155 and Nup53 in NPC assembly are tightly 
linked to those of POM121 or NDC1, which is consistent with 
a potential role for these proteins in influencing pore membrane 
structure (Hawryluk-Gara et al., 2008).

The steps that lead to pore formation in yeast, including 
changes in membrane structure and fusion, are also likely to be 
controlled by additional factors, including non-NPC proteins 
and lipids (Schneiter et al., 1996). In this regard, mutations  
in Kap95p and Apq12p have been described that exhibit the 
accumulation of NPC intermediates similar to those we have 
documented in the Nup170p- and Nup157p-depleted cells. 
The phenotype of the kap95 mutant may be particularly relevant 
to our observations, as it disrupts the localization of Nup170p, 
thus raising the possibility that the phenotype of the kap  
mutant is, at least in part, caused by a defect in the targeting of 
Nup170p to its site of function in pore formation. Importantly, 
the kap95 mutant also exhibits a synthetic sick phenotype 
in combination with a functionally compromised nup170-GFP 
allele (Ryan et al., 2007). We have previously proposed the 
idea that kaps play an important role in NPC assembly through 
their targeting of nups to the inner nuclear membrane, where 
assembly intermediates would be formed (Marelli et al., 2001). 
In these studies, Kap121p was shown to assist in the targeting 
of Nup53p to NPCs, and it was required for the inner mem-
brane proliferation induced by overexpression of NUP53.  
In light of the phenotypic similarities between the kap95  
mutant and the Nup170p- and Nup157p-depleted cells, a similar 
role for Kap95p in targeting Nup170p and possibly other nups, 
including Nup2p (Dilworth et al., 2001), to the nucleoplasm 
seems reasonable.

In addition to contributing a nuclear targeting function, 
it has been suggested that Kap95p may play a role in the  
assembly of the cytoplasmic face of the NPC, functioning here 
to regulate the fusion of putative nup-containing vesicles to 
the outer nuclear membrane (Ryan et al., 2007). Consistent 
with a cytoplasmic role for Kap95p, we also detected Kap95-
GFP in association with the cytoplasmic nup foci formed after 
the loss of Nup170p and Nup157p (Fig. 6). The time course  
of the appearance of Kap95-GFP foci after depletion paral-
leled that of cytoplasmic nups, which suggests that the asso-
ciation of Kap95 with these foci is linked to this group of nups.  
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osmium tetroxide fixation and uranyl acetate was performed as described 
previously (Marelli et al., 2001). For potassium permanganate fixation 
experiments, the cells were harvested from cultures at various times after 
methionine addition, washed briefly with water, and fixed with 3% potassium 
permanganate. For osmium tetroxide fixation experiments, the strains 
were harvested from cultures 4 h after methionine addition. Cells were 
incubated in the supplemental media with 200 µg/ml methionine for first 
2 h and then in YPD plus 200 µg/ml methionine for another 2 h. The latter 
step has been suggested to lead to improved image contrast (Wright and 
Rine, 1989). Glutaraldehyde fixation, cell wall removal, and osmium 
tetroxide postfixation were performed as described previously (Marelli 
et al., 2001). Samples were examined with using an electron microscope 
(410; Philips), and images were collected with a CCD camera (Mega-
view III; Soft Imaging System) controlled by AnalySIS software (Soft Imaging 
System). Image processing (cropping, rotation, and linear normalization 
of images) and measurement of the length of the NE were performed with 
the ImageJ software.

Immunoelectron microscopy was performed as described previously 
(Wente et al., 1992), with modifications. Spheroplasts were incubated in 
0.6 M sorbitol and 100 mM potassium phosphate, pH 6.5 (buffer A), for 
15 min on ice ,and then fixed with 4% formaldehyde and 0.05% glutar
aldehyde in buffer A for 1 h on ice. The samples were dehydrated twice in 
50% ethanol for 10 min, twice in 80% ethanol for 10 min at room tempera-
ture, and then incubated with LR white resin for infiltration at 4°C over-
night. The resin was polymerized using UV light for 23 h at 4°C. Thin 
sections were collected on nickel grids. The samples were blocked with 1% 
BSA in TBS-T and then incubated with mAb414 (Covance) diluted 1:2,000 
in 1% BSA in TBS-T at room temperature for 1 h. After washing with 1% 
BSA in TBS-T, the grids were incubated with 12 nm of colloidal gold- 
conjugated goat anti–mouse IgG (Jackson ImmunoResearch Laboratories) 
diluted 1:30 in 1% BSA in TBS-T. After final washes, the samples were con-
trasted with 2% aqueous uranyl acetate for 5 min.

Isolation of recombinant proteins expressed in bacteria and in vitro 
binding assays
An E. coli strain BL21 (DE3) containing plasmids expressing GST, 
Nup53p, GST-Nup170p, and GST-Pom152p1111 was grown to an OD 
of 0.6–1.0 at 37°C, and induced with 1 mM IPTG for 2 h at 37°C for 
GST, Nup53p, and GST- Pom152p1–111, and overnight at room tempera-
ture for GST-Nup170p. GST and GST fusion proteins were purified on 
glutathione Sepharose 4B beads (GE Healthcare), according to the man-
ufacturer’s instructions, in lysis buffer (50 mM Tris HCl, pH 7.5, 300 mM 
NaCl, 150 mM potassium acetate, 2 mM MgCl2, 0.1% tergitol, 10% 
glycerol, 1 mM DTT, and complete protease inhibitor cocktail [Roche]). 
Nup170p was separated from GST and released from the beads by  
incubation with 0.6 units of thrombin (Sigma-Aldrich) per 10 µl of beads 
for 4 h at room temperature.

For in vitro binding assays examining the interactions of Nup170p 
and GST- Pom152p1–111, 25 µl of purified Nup170p in buffer B (50 mM 
Tris HCl, pH 7.5, 150 mM potassium acetate, 2 mM MgCl2, 0.1% tergitol, 
10% glycerol, 1 mM DTT, and complete protease inhibitor cocktail) was  
incubated with 25 µl of glutathione Sepharose 4B beads preloaded with 
either purified GST or purified GST-Pom152p1111 for 2 h at 4°C. The  
unbound fraction was obtained from the supernatant after the incubation. 
After washing, proteins were eluted from the beads with SDS-PAGE sample 
buffer and analyzed by SDS-PAGE and Coomassie blue staining.

For in vitro binding assays examining the interactions of Nup53p 
and GST-Nup170p, 15 ml of bacterial lysate containing Nup53p in lysis 
buffer was supplemented with 2 mM ATP and 10 mM MgSO4, and then  
incubated with 100 µl of glutathione Sepharose 4B beads preloaded  
with purified GST-Nup170p for 20 min at 4°C. The unbound fraction was 
obtained from the supernatant just after the incubation. After washing, pro-
teins were released from the beads by incubation with 0.6 units of thrombin. 
Proteins in the various fractions were analyzed by SDS-PAGE and Coo-
massie blue staining.

Online supplemental material
Fig. S1 shows that recombinant Nup170p directly binds an N-terminal 
fragment of Pom152p and Nup53p. Table S1 lists the strains used in 
this study. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.200810029/DC1.
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For repression of MET3-NUP170, cells were grown in the supple-
mented minimal media lacking methionine to a mid-logarithmic growth 
phase. Methionine (from the 20-mg/ml stock) was then added into the  
media to a final concentration of 200 µg/ml and incubated at 30°C for  
the indicated times. For -factor arrest experiments, -factor was added 
into the media to a final concentration of 20 ng/ml at the same time as the 
methionine addition and incubated for 6 h.

Fluorescence microscopy
Yeast strains synthesizing various GFP and mRFP fusion proteins were taken 
from cultures at various time points after methionine addition. The locations 
of GFP and mRFP fusion proteins in live cells were visualized using either 
an epifluorescence or confocal microscope. Epifluorescence images were 
obtained with either a microscope (BX50; Olympus) using a UPlanS- 
Apochromat 100×/1.40 NA oil objective lens (Olympus) and a charge-
coupled device (CCD) camera (AxioCam HRm; Carl Zeiss, Inc.) controlled 
by AxioVision software (Carl Zeiss, Inc.), or with a microscope (IX80; 
Olympus) using a UPlanS-Apochromat 100×/1.40 NA oil objective lens 
(Olympus) with a CCD camera (CoolSNAP HQ; Photometrics) controlled 
by InVivo software (Media Cybernetics). Confocal images were obtained 
with a microscope (Axiovert 200M; Carl Zeiss, Inc.) equipped with a confocal 
scanning system ( LSM 510 META; Carl Zeiss, Inc.) using a Plan-Apochromat 
63×/1.4 NA oil objective lens (Carl Zeiss, Inc.). Image processing (crop-
ping, background subtraction, and linear normalization of images) was 
performed with the ImageJ software (National Institutes of Health).

Immunofluorescence microscopy using anti-Pom152p (mAb118C3 
at 1:20 dilution; Strambio-de-Castillia et al., 1995) and Alexa Fluor 594–
labeled anti–mouse IgG (1:200 dilution; Invitrogen) was performed as  
described previously (Nishikawa et al., 2003). FISH analysis was performed 
as described previously (Amberg et al., 1992; Cole et al., 2002) using 
Texas red–labeled oligo (dT50) as a probe.

Kinetic nuclear import assay of NLS reporter proteins
For the kinetic nuclear import assay, the yeast strains expressing a Nab2-
NLS-GFP reporter protein were harvested from cultures at various time points 
after methionine addition. Nucleoplasmic equilibration of the reporter protein 
was achieved by energy depletion using sodium azide and deoxyglucose. 
Nuclear import of the reporter was initiated by removal of the metabolic  
poison and addition of media containing glucose, and cells were examined 
at the indicated times as described previously (Shulga et al., 1996).

Photoconversion of Dendra fusion proteins
We performed two sets of photoconversion experiments using Dendra 
fusion proteins. In the first set, we examined the localization of Dendra  
fusion proteins after loss of Nup170p and Nup157p. Yeast cells expressing 
Dendra fusion proteins were harvested from cultures cells grown in media 
lacking methionine. Methionine (from the 20 mg/ml stock) was then added 
to repress NUP170 expression, and cells were immediately placed on a slide-
mounted agarose pad (2% low-melt agarose containing the supplemented 
minimal medium and 200 µg/ml methionine) and then on the fluorescence 
microscope (BX61 with a UPlanFl 100×/1.30 oil objective; Olympus). 
Images were acquired with a digital camera (CA742-98; Hamamatsu  
Photonics) controlled by the Metamorph software program (MDS Analytical 
Technologies). Dendra fusion proteins were then converted by 4 × 20-ms 
pulses of UV light, and the Dendra-red signals were imaged just after  
photoconversion. Cells were then allowed to grow on the agarose pad for 
6 h at 30°C. Dendra-red (proteins present at the point of photoconversion) 
and Dendra-green (proteins synthesized after photoconversion) signals 
were imaged after the incubation. The second set of experiments examined 
the localization change of Dendra fusion proteins after derepression of 
NUP170. A PMET3-NUP170 nup157 yeast strain expressing NUP82-
3xDendra or NUP60-3xDendra was grown in media lacking methionine. 
Methionine was then added, and the cells were incubated for 5 h to induce 
cytoplasmic foci of Nup82-3xDendra or Nup60-3xDendra. The cells were 
washed with media lacking methionine and then placed on an agarose 
pad (2% low-melt agarose containing the supplemented minimal medium 
lacking methionine) to allow Nup170p production. Nup82-3xDendra or 
Nup60-3xDendra was photoconverted by 4 × 20-ms pulses of UV light, 
and the Dendra-red signals were imaged just after photoconversion. Cells 
were allowed to grow on the agarose pad for 2 h at 30°C, and images of 
the Dendra-red signal were captured.

EM
TEM for visualizing membrane structures using potassium permanganate 
fixation, and visualizing membranous and proteinous structures using 
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