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    Introduction 
 The mitotic spindle is a bipolar array of microtubules required 

for the alignment and segregation of chromosomes during mito-

sis. The poles of the spindle are major focal points for the minus 

ends of spindle microtubules and serve as the fi nal destination for 

chromosomes segregated in anaphase ( Compton, 1998 ). In animal 

somatic cell mitosis, spindle poles are coincident with centro-

somes, the major cellular microtubule-organizing structures. 

However, centrosomes are not required for the formation of 

the spindle or the pole. In vitro, DNA-coated beads catalyze the 

formation of bipolar microtubule spindles in acentrosomal  Xeno-
pus laevis  egg extracts ( Heald et al., 1996 ). Additionally, bipolar 

spindles also form in somatic mitotic cells in which centrosomes 

have been destroyed by laser ablation or prevented from forming 

normally by depletion of essential centrosomal components 

( Khodjakov et al., 2000 ;  Mahoney et al., 2006 ). Previous studies 

in  Xenopus  extracts in vitro have established a role for the abun-

dant spindle pole – localized nuclear mitotic apparatus (NuMA) 

protein in centrosome-independent spindle pole formation ( Heald 

et al., 1996 ;  Merdes et al., 2000 ). However, the relative contribu-

tions of NuMA and centrosomes in the establishment and main-

tenance of spindle pole integrity remain to be determined. 

 The attachment and movement of chromosomes on the 

mitotic spindle is mediated by kinetochore fi bers, bundles of 

microtubules that link spindle poles to the kinetochores of 

each chromosome. Microtubules are nucleated in both a cen-

trosome-dependent and -independent manner. Many are initi-

ated directly at the pole by  � -tubulin – dependent nucleation, 

whereas others are nucleated adjacent to kinetochores through 

the local activation of components such as Tpx2 ( Tulu et al., 

2006 ). In the mitotic cytoplasm, these components are inactive 

as the result of binding to the importins but can be released 

by a chromosome-generated gradient of Ran-GTP ( Gruss and 

Vernos, 2004 ). Under these conditions, microtubules nucle-

ated in the vicinity of kinetochores are elongated and captured 

by centrosomal microtubules ( Dasso, 2001 ;  Khodjakov et al., 

2003 ;  Maiato et al., 2004 ). How these kinetochore-associated 

bundles are captured and focused toward centrosomes has not 

been determined. In addition, the means for sustained anchoring 

of kinetochore fi bers at spindle poles and the role of centro-

somes in both active focusing and the maintenance of spindle 

pole integrity are not established. 

 NuMA, along with cytoplasmic dynein, has been pro-

posed to participate in focusing microtubules toward the poles 

of the mitotic spindle and physically tethering centrosomes to 
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somatic cells are focused at spindle poles, a 

process thought to include direct capture by as-

tral microtubules of kinetochores and/or noncentrosomally 

nucleated microtubule bundles. By construction and analy-

sis of a conditional loss of mitotic function allele of the 

nuclear mitotic apparatus (NuMA) protein in mice and 

cultured primary cells, we demonstrate that NuMA is an 

essential mitotic component with distinct contributions to 

the establishment and maintenance of focused spindle 

poles. When mitotic NuMA function is disrupted, centro-

somes provide initial focusing activity, but continued 

centrosome attachment to spindle fi bers under tension is 

defective, and the maintenance of focused kinetochore 

fi bers at spindle poles throughout mitosis is prevented. 

Without centrosomes and NuMA, initial establishment of 

spindle microtubule focusing completely fails. Thus, NuMA 

is a defi ning feature of the mammalian spindle pole and 

functions as an essential tether linking bulk microtubules 

of the spindle to centrosomes.
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detected in the testes and spleen, which contain large numbers 

of dividing cells. Expression of the nuclear proteins lamin A 

and C was detected in all tissues examined and closely mirrored 

the expression of NuMA (Fig. S1 A). Examination of NuMA 

localization by immunostaining of terminally differentiated motor 

or Purkinje neurons demonstrated that NuMA was exclusively 

nuclear but excluded from nucleoli (Fig. S1 B). The near-

ubiquitous expression pattern and accumulation of NuMA in 

nuclei of long-lived postmitotic cells supports the possibility of 

a nonmitotic interphase function of NuMA. 

 To test a mitotic role for NuMA without disrupting puta-

tive nuclear functions, we used gene targeting in mouse embry-

onic stem (ES) cells to create a conditional loss of mitotic 

function allele of NuMA. To do this, we identifi ed an in-frame 

deletion within the NuMA gene that eliminated its microtubule 

binding without affecting intranuclear accumulation in interphase. 

The tubulin-binding domain of NuMA is comprised of an  � 100 

amino acid region in the C-terminal globular tail of NuMA, 

which interacts directly with tubulin in vitro and mediates its 

localization to spindle poles in vivo ( Haren and Merdes, 2002 ). 

Mouse and human NuMA share 88% of amino acid identity in 

this domain, which is partially encoded by nucleotides compris-

ing the 22nd exon of the mouse NuMA gene. We tested the lo-

calization of GFP-tagged versions of the 410 amino acid 

C-terminal globular tail of the mouse NuMA protein that were 

either wild-type or deleted for residues encoded by exon 22 

(Fig. S2, A and B, available at http://www.jcb.org/cgi/content/

full/jcb.200810091/DC1). The C-terminal tail was used to avoid 

association of tagged NuMA with endogenous NuMA through 

the central coiled-coil dimerization domain ( Harborth et al., 

1995 ). As expected, a wild-type NuMA tail fragment tagged 

with GFP localized appropriately to nuclei in interphase and 

was present in the crescent-shaped pattern typical of endo g-

enous NuMA at spindle poles during mitosis (Fig. S2 C). The 

same GFP tail fragment, but lacking the 59 amino acids en-

coded by exon 22, was also nuclear during interphase but was 

severely compromised in localization to spindle poles during 

mitosis (Fig. S2, C and D). 

 Therefore, we generated a targeting construct designed to 

produce an allele of NuMA in which exon 22 could be con-

ditionally deleted through the action of the Cre recombinase. 

Homologous recombination in mouse ES cells was used to fl ank 

exon 22 with loxP sites to create a NuMA Neo  allele in which 

the Neo gene was itself deleteable by the action of the fl ipase 

(Flp) recombinase ( Fig. 1 A ). ES clones were screened by PCR 

and DNA blotting for homologous recombination at 5 �  and 3 �  

ends of the exon 22 targeting construct, and multiple targeted 

clones were identifi ed ( Fig. 1, B – D ). Two independently tar-

geted ES cell lines were used to generate mice. These animals 

were crossed to an Flp-enhanced deleter strain ( Rodriguez 

et al., 2000 ) to remove the Flp recombinase target (FRT) –

 fl anked neomycin gene from intron 22, thereby generating a 

conditional allele, NuMA fl ox . Subsequent mating to the ZP3-Cre 

mouse line expressing the Cre recombinase in the female germ 

line ( Lewandoski et al., 1997 ) produced animals heterozygous 

for the NuMA deletion allele, NuMA  � 22  ( Fig. 1 A ). Genotypes 

were confi rmed using a three-primer PCR reaction capable of 

spindle microtubules ( Merdes et al., 1996 ;  Khodjakov et al., 

2003 ). The foundation for our current mechanistic understand-

ing of the role for NuMA during mitosis was established by 

work in cell-free extracts. Compared with typical mammalian 

spindles, those formed in  Xenopus  egg extracts are much larger, 

undergo substantially greater microtubule fl ux, and have limited 

astral microtubules and no cortical attachments ( Ganem and 

Compton, 2006 ). Furthermore, spindles formed in egg extracts 

rely signifi cantly more on a gradient of Ran-GTP emanating 

from chromosomes to contribute to spindle assembly and have 

relatively few bundled microtubules comprising kinetochore 

fi bers ( Kalab et al., 2002 ,  2006 ). 

 Investigations of NuMA function in mammalian mitosis 

have previously used antibody microinjection approaches, 

which have yielded contradictory outcomes. An early study re-

ported spindle collapse to monopolarity ( Yang and Snyder, 

1992 ), and subsequent efforts demonstrated unfocused spindle 

poles and an extended mitotic delay ( Gaglio et al., 1995 ). The diffi -

culty in using siRNA to remove the abundant and long-lived 

NuMA protein has confounded strategies to determine mitotic 

NuMA function in the mammalian context ( Elbashir et al., 

2001 ;  Chang et al., 2005 ). In addition, during interphase, NuMA 

accumulates in the nucleus, where it has been proposed to 

participate in aspects of nuclear structure and/or function, 

which might also be disrupted during extended siRNA treat-

ment ( Merdes and Cleveland, 1998 ;  Harborth et al., 1999 ). 

To specifi cally test the principles of mammalian spindle assem-

bly, particularly the mechanisms of spindle pole focusing and 

the maintenance of pole integrity, we now use gene replacement 

to engineer mice and cells in which NuMA ’ s mitotic function can 

be selectively disrupted by administration of the small molecule 

4-hydroxytamoxifen (4-OHT). Using this system, we demon-

strate that NuMA is essential for early embryogenesis and cel-

lular proliferation. During the fi rst mitosis after inactivation 

of NuMA, spindles initially form with microtubules focused at 

centrosomes. However, subsequent to initial spindle assembly 

and upon generation of spindles forces, centrosome – spindle at-

tachment is uncoupled. As a consequence, kinetochore fi bers 

defocus, and centrosomes fail to maintain and reestablish con-

nection with the spindle. Surprisingly, chromosome segregation 

is largely intact even without NuMA anchoring of kinetochore 

fi bers to centrosomes. From these fi ndings, we propose that 

NuMA is essential to maintain centrosome attachments to kineto-

chore fi bers in mammalian mitosis and suggest that NuMA 

functions redundantly with centrosomes for initial focusing of 

microtubules at spindle poles. 

 Results 
 Creation of mice with a conditional exon 22 
deletion allele of NuMA 
 Immunoblotting of extracts from a panel of mouse tissues indi-

cated that NuMA was expressed at similar levels in most tissues 

examined (Fig. S1 A, available at http://www.jcb.org/cgi/

content/full/jcb.200810091/DC1). In contrast, Mad2, BubR1, 

and centromere protein E (CENP-E), which are thought to be 

primarily or exclusively functional during mitosis, were only 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/184/5/677/1898138/jcb_200810091.pdf by guest on 08 February 2026



679CONDITIONAL INACTIVATION OF N U MA  • Silk et al. 

reduction in NuMA protein levels relative to wild-type cells and 

animals ( Fig. 1 F ), most likely the result of reduction in cor-

rectly spliced NuMA mRNA caused by the presence of the in-

tronic neomycin cassette (Fig. S3, A – D, available at http://www

.jcb.org/cgi/content/full/jcb.200810091/DC1). Taking advan-

tage of this hypomorphic expression from NuMA Neo , we tested 

distinguishing wild type and each of the engineered NuMA 

alleles ( Fig. 1 E ). 

 NuMA is essential for early development 
 Assessment of NuMA levels in ES cells and multiple tissues 

from mice heterozygous for the NuMA Neo  allele demonstrated a 

 Figure 1.    Creation of conditional and disrupted NuMA alleles.  (A) Schematic representations of (i) a portion of the mouse NuMA gene including exons 
16 – 25 and EcoRI restriction sites, (ii) the exon 22 targeting vector showing the neomycin resistance (Neo) and diphtheria toxin (DT) cassettes and place-
ment of loxP and FRT sites, (iii) the structure of the correctly targeted allele with the introduced SacII restriction site and locations of genotyping primers, 
(iv) the conditional allele (fl ox) produced by Flp-enhanced recombinase – mediated recombination of FRT sites fl anking Neo, and (v) the deletion allele ( � ) 
produced by Cre recombination of loxP sites surrounding exon 22. Red bars indicate exon 22. (B) Genomic DNA blotting from neomycin-resistant ES clones 
after digestion with either EcoRI alone or EcoRI and SacII in combination and hybridization with the 5 �  probe shown in A. (C) Predicted PCR fragment sizes 
for wild-type, Neo, fl ox, and  � 22 alleles of NuMA using primer sets shown in A. (D) PCR products from neomycin-resistant ES clones using primers i, ii, and iv. 
(E) PCR products from mouse tail DNA using primers i, ii, and iii. (F) Four independently targeted ES clones and a dilution series blotted with antibodies to 
NuMA and tubulin. NR, nonrecombined; HR, homologously recombined.   
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in low serum. 4-OHT was subsequently washed out, and cells 

were maintained under growth arrest conditions for an additional 

48 h to allow turnover of endogenous NuMA ( Fig. 2 A ). Multiple 

independent NuMA fl ox/fl ox , Cre-ER TM  cell lines showed highly 

effi cient deletion of the loxP-fl anked region after 48 h of 4-OHT 

treatment ( Fig. 2 B ). 

 Quantifi cation of recombination by quantitative PCR 

(qPCR) showed time and 4-OHT dose-dependent effi ciency to 

exon 22 excision with a maximum effect observed after 48 h, 

resulting in a fi broblast population with 90% conversion of 

NuMA fl ox  alleles to NuMA  � 22  by day 4 ( Fig. 2 C ). Immunoblotting 

revealed that NuMA  � 22  accumulated to a lower than wild-type 

level ( Fig. 2 D ). Remaining NuMA protein in NuMA  � 22/ � 22  cells 

could not be eliminated by doubling the duration of cell cycle 

arrest after 4-OHT washout, suggesting that all wild-type NuMA 

had been completely turned over. As expected, the amino acids 

encoded by exon 22 were dispensable for nuclear accumulation 

of NuMA but were necessary for effi cient spindle pole localiza-

tion. We conclude that wild-type NuMA protein is absent from 

NuMA  � 22/ � 22  MEFs 4 d after 4-OHT treatment and that the mu-

tant protein accumulates to  � 30% of the level of the wild-type 

NuMA polypeptide. 

 NuMA is required for proliferation of 
primary fi broblasts 
 To directly assess the consequences of preventing NuMA accu-

mulation at spindle poles, population growth curves were gen-

erated for NuMA +/+ , NuMA fl ox/+ , and NuMA fl ox/fl ox  MEFs, each 

carrying the Cre-ER TM  transgene. After treatment with 4-OHT 

to convert the NuMA fl ox  allele to NuMA  � 22 , NuMA +/+  and 

NuMA +/ � 22  cells grew normally after release from low serum 

arrest, demonstrating that there are no dominant effects on cell 

cycle progression of mutant protein produced from the NuMA  � 22  

allele. Strikingly, NuMA  � 22/ � 22  MEFs failed to increase in num-

ber after release from growth arrest ( Fig. 2 E ), demonstrating 

that removal of exon 22 results in cell-autonomous growth 

 defects. These conclusions are consistent with cell-intrinsic de-

fects, causing early embryonic lethality in NuMA  � 22/ � 22  mice 

and the lack of dominant effects or haploinsuffi ciency observed 

in NuMA  � 22/+  animals, which develop and age normally. 

 To determine whether loss of NuMA from spindle poles 

provoked extended delays in mitosis, as has been previously re-

ported from antibody microinjection-mediated disruption of the 

the requirement for NuMA in embryonic development and via-

bility and found that the NuMA Neo  allele could not be bred to 

homozygosity. No NuMA Neo/Neo  live pups or early embryos 

were ever recovered (0/88 pups and 0/50 embryos;  Table I ). 

As expected, the conditional NuMA fl ox  allele, produced by Flp-

mediated removal of the neomycin marker, was readily bred to 

homozygosity ( Table I ). Like NuMA Neo , NuMA  � 22  (a 59 – amino 

acid internal deletion) was embryonic lethal when homozygous 

( Table I ). There was no evidence for NuMA haploinsuffi ciency 

or dominant effects that might be produced from either NuMA Neo  

or NuMA  � 22 ; in crosses of mice heterozygous for either of these 

alleles, heterozygous and wild-type animals were produced in 

expected Mendelian ratios ( Table I ). Additionally, we aged co-

horts of NuMA Neo/+ , NuMA  � 22/+ , and NuMA fl ox/fl ox  mice for up to 

18 mo, and in no case were any overt phenotypes observed. 

These observations demonstrate that NuMA is essential for one 

or more aspects of embryonic development and viability, 

NuMA flox  encodes a functional protein, and NuMA Neo  and 

NuMA  � 22  are loss of function alleles. 

 Tamoxifen-regulated Cre-mediated deletion 
of NuMA exon 22 
 To examine cellular phenotypes resulting from NuMA loss of 

function and that might explain the requirement for NuMA in 

embryonic viability, cell lines were generated in which NuMA 

deletion could be induced by the addition of the small molecule 

4-OHT. This was accomplished by crossing the NuMA fl ox  allele 

into mice carrying a Cre – estrogen receptor tamoxifen mutant 

(ER TM ) transgene, which ubiquitously expresses the Cre recom-

binase fused to a mutated form of the estrogen receptor ( Hayashi 

and McMahon, 2002 ). This receptor is insensitive to estrogen but 

binds with high affi nity to the synthetic ligand 4-OHT. Binding 

of 4-OHT allows translocation of the receptor-Cre fusion from 

the cytoplasm to the nucleus, where Cre causes recombination 

between loxP sites. 

 Mating NuMA fl ox/+ ,Cre-ER TM  to NuMA fl ox/+  mice was 

used to obtain embryonic day 14.5 embryos that were wild type, 

heterozygous, or homozygous for the conditional NuMA allele 

and that also carried the Cre-ER TM  transgene. Mouse embryo 

 fi broblasts (MEFs) were prepared from embryos of each geno-

type. To confi rm that addition of 4-OHT would drive effi cient 

recognition and recombination of loxP sites within the NuMA 

gene, contact-inhibited cells were treated with 4-OHT for 48 h 

 Table I.    Genotype incidence and frequencies of pups and embryos from NuMA Neo/+ , NuMA fl ox/+ , and NuMA  � 22/+  heterozygous crosses  

 Parental genotypes Progeny  Progeny genotypes 

 +   
  + 

 Neo   
  + 

 Neo   
  Neo 

 fl ox   
  + 

 fl ox   
  fl ox 

  � 22   
  + 

  � 22   
   � 22 

Neo/+  ×  Neo/+ Pups  a    
 Embryos  b  

23 (26%)  
 21 (42%)

65 (74%)  
 29 (58%)

0  
 0

NA  
 NA

NA  
 NA

NA  
 NA

NA  
 NA

fl ox/+  ×  fl ox/+ Pups 34 (31%) NA NA 53 (47%) 25 (22%) NA NA

 � 22/+  ×   � 22/+ Pups  
 Embryos

14 (33%)  
 7 (32%)

NA  
 NA

NA  
 NA

NA  
 NA

NA  
 NA

28 (67%)  
 15 (68%)

0  
 0

Neo, NuMA Neo ; fl ox, NuMA fl ox ;  � 22, NuMA  � 22 ; +, wild-type NuMA allele; NA, not applicable.

 a Mouse pups were genotyped at postnatal day 21.

 b Embryos were collected between embryonic days 9.5 and 14.5.
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 Spindle defects caused by loss of 
NuMA function 
 Despite normal timing of progression through mitosis, NuMA  � 22/ � 22  

primary cells displayed obvious spindle defects, most striking 

of which was the detachment of microtubule-nucleating struc-

tures from the ends of mitotic spindles. Costaining metaphase 

spindles with a  � -tubulin antibody provided strong evidence 

that the dissociated structures were bona fi de centrosomes 

(Fig. S4 A, available at http://www.jcb.org/cgi/content/full/jcb

.200810091/DC1). In some cells, spindles retained focused 

arrays of microtubule ends despite having no closely associated 

centrosome, whereas in others, even poles with associated centro-

somes lacked a discernable microtubule focus ( Fig. 3 A ). 

Greater than 50% of metaphase-like cells in the NuMA  � 22/ � 22  

population had at least one centrosome that was clearly not 

protein, the mitotic index of NuMA  � 22/ � 22 , NuMA  � 22/+ , and 

NuMA +/+  MEFs was determined ( Gaglio et al., 1995 ). There 

was no increase in the percentage of cells in mitosis after NuMA 

disruption ( Fig. 2 F ). Mitotic timing was reexamined even more 

directly in NuMA +/+ ,Cre-ER TM  and NuMA fl ox/fl ox ,Cre-ER TM  im-

mortalized fi broblasts, which were treated with 4-OHT, and the 

duration of mitosis was determined by phase-contrast time-lapse 

microscopy. After 4-OHT treatment, NuMA fl ox  was converted 

to NuMA  � 22  with the same effi ciency as seen in primary cells. 

Mitosis was defi ned as the period between the fi rst stage of cell 

rounding and the point at which cells had completely fl attened 

back onto the substrate. Consistent with the failure of NuMA 

disruption to alter mitotic index, no signifi cant difference in 

the duration of mitosis was observed between NuMA  � 22/ � 22  and 

control cells ( Fig. 2 G ). 

 Figure 2.    Tamoxifen-induced disruption of NuMA inhibits proliferation of primary embryo fi broblasts.  (A) Timeline showing experimental design in 
which confl uent primary cells are treated with 0.1  μ M 4-OHT in 2% serum for 48 h. Cells were washed and maintained in 2% serum for 48 h before 
trypsinization and dilution into media containing 15% serum for subsequent analysis. (B) Conversion of NuMA fl ox  to NuMA  � 22  in two independent primary 
NuMA fl ox/fl ox  cell lines carrying the Cre-ER TM  transgene. Recombination was monitored by PCR 48 h after treatment with 4-OHT. (C) qPCR using primers 
within the fl oxed region of NuMA was used to measure the effi ciency of Cre-mediated recombination in the genomic DNA of fi broblasts. (D) Immuno-
blotting of NuMA and tubulin in NuMA fl ox/fl ox ,Cre-ER TM  and a dilution series of NuMA +/+ ,Cre-ER TM  fi broblasts at day 4 of the experimental timeline. 
(E) Growth curves of primary fi broblasts after 4-OHT – mediated NuMA deletion;  n  = 3 – 4 experiments per cell line. Time in days follows timeline shown 
in A. (F) Mitotic index of primary MEFs treated with 4-OHT. For each genotype,  > 2,000 cells were counted in two separate cell lines. (G) Duration of 
mitosis in wild-type ( +/+ , Cre) and NuMA-disrupted ( fl ox/fl ox , Cre) immortalized embryo fi broblasts. Results represent the mean of two independent experiments. 
Error bars represent SEM.   
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of unperturbed fi broblasts with a cyclin B1 antibody confi rmed 

that the apolar centrosome and pole-defocusing phenotypes 

in NuMA  � 22/ � 22  fi broblasts occurred before anaphase onset 

(Fig. S4 B). In addition, cells arrested in metaphase by blocking 

cyclin B and securin degradation by treatment with the protea-

some inhibitor MG132 showed similar spindle defects at high 

frequency, corroborating this interpretation (Fig. S4 A). Tension 

between sister kinetochores in pole-defocused spindles was re-

duced by  � 33% compared with normal cells ( Fig. 4, A and B ), 

and chromosome alignment defects were observed more fre-

quently in metaphase NuMA  � 22/ � 22  than control NuMA +/ � 22  

fi broblasts ( Fig. 4, C and D ). Therefore, spindles in NuMA  � 22/ � 22  

cells are defi cient in their ability to apply or retain tension 

 associated with a spindle pole (apolar centrosome), and a similar 

frequency had at least one pole in which microtubules did not 

converge to a single focal point (unfocused kinetochore fi bers; 

 Fig. 3 C ). These phenotypes contrasted sharply with meta-

phases observed in wild-type and NuMA +/ � 22  cells, which showed 

typical spindle architecture with focused microtubule arrays 

terminating near centrosomes ( Fig. 3, A and C ). In addition to cen-

trosome – spindle coupling and microtubule-focusing defects, 

metaphase spindle lengths in MG132-arrested NuMA  � 22/ � 22  cells 

were on average 30% longer than either wild-type or NuMA +/ � 22  

controls ( Fig. 3 D ). 

 The spindle defects observed in NuMA  � 22/ � 22  cells were 

also present in anaphase ( Fig. 3 B ). However, immunostaining 

 Figure 3.    Spindle defects in primary NuMA  � 22/ � 22  fi broblasts.  Primary fi broblasts were processed for immunofl uorescence on experimental day 5, as 
shown in  Fig. 2 A . (A) Example of metaphase in a control cell (NuMA +/+ ) and two exon 22 – deleted (NuMA  � 22/ � 22 ) primary fi broblasts. Arrows indicate 
centrosomes. (B) Anaphase in wild-type and two NuMA  � 22/ � 22  primary cells. Each image represents a maximum intensity projection of a deconvolved series 
of z sections spanning the entire cell in 0.2- μ m intervals. Arrows indicate centrosomes. Tubulin is shown in green, and phosphorylated histone H3 is shown 
in purple. (C) Frequencies of spindle – centrosome dissociation and pole splaying defects seen in control and NuMA-depleted metaphase cells. Cells were 
scored as phenotypic if at least one centrosome was nonpolar or at least one pole displayed an obvious lack of microtubule focusing. Two independent cell 
lines were examined per genotype, with  > 50 cells counted for NuMA +/+  and  > 130 cells for each of NuMA +/ � 22  and NuMA  � 22/ � 22  fi broblasts. (D) Spindle 
length in MG132-arrested primary fi broblasts measured as the linear distance between spindle poles or the approximate position of most spindle micro-
tubule ends in defocused poles. At least 20 spindles per genotype were examined. *, P  <  0.01 using Bonferroni ’ s multiple comparison test and compared 
with NuMA  � 22/ � 22 ; **, P  <  0.001. Error bars indicate SEM.   
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 Spindle bipolarization precedes centrosome 
detachment in the absence of NuMA 
 The displacement of centrosomes from kinetochore fi bers in meta-

phase could arise either from an initial failure of NuMA  � 22/ � 22  

cells to focus microtubules at the poles of the spindle or from an 

inability to maintain centrosome attachment to a fully formed 

spindle. To distinguish these possibilities, we followed spindle 

formation and mitotic progression in live NuMA  � 22/ � 22  MEFs. 

Primary cells were transduced with a retrovirus encoding 

tubulin-YFP 2 d before the initiation of Cre recombinase 

activity with 4-OHT and arrest in G0/G1 with low serum. Cells 

were subsequently released from arrest and fi lmed by time-

lapse fl uorescence microscopy. NuMA +/ � 22  cells always formed 

bipolar spindles and maintained centrosomes at spindle poles 

throughout mitosis (6/6 morphologically normal spindles;  Fig. 

5 A ; and Video 1, available at http://www.jcb.org/cgi/content/

full/jcb.200810091/DC1). In contrast, NuMA  � 22/ � 22  fi broblasts 

exhibited a high frequency of pole defocusing and centrosome 

detachment phenotypes (9/13 spindles aberrant) ( Fig. 5 B ). Live 

cell imaging showed clearly that in NuMA  � 22/ � 22  cells, micro-

tubules can establish focusing at centrosomes during the initial 

across sister kinetochores and align chromosomes in a meta-

phase alignment. 

 Spindle abnormalities were likely not caused by a failure 

of the dynein – dynactin complex to localize appropriately. 

A component of dynactin, p150, localized to centrosomes 

independent of spindle attachment, suggesting that failure 

of centrosome – spindle coupling and loss of kinetochore fi ber 

 focusing did not result from mislocalization of dynein – dynactin, 

the major mitotic binding partner of NuMA (Fig. S4 C). 

Cold treatment to preferentially depolymerize dynamic micro-

tubules confi rmed that kinetochore fi bers remained stably at-

tached to kinetochores in NuMA-disrupted cells even when 

completely defocused at poles and detached from centrosomes 

(Fig. S4 D). 

 From these results, we conclude that spindle pole integrity 

is defective in the absence of NuMA and more specifi cally that 

NuMA is required at spindle poles to couple centrosomes to 

kinetochore fi bers. We also note that although kinetochore –

  microtubule attachments are apparently intact, tension across 

sister kinetochores is reduced, and chromosome alignment is 

defective in NuMA  � 22/ � 22  cells. 

 Figure 4.    Reduced spindle tension and ef-
fi ciency of chromosome alignment in the ab-
sence of NuMA.  (A) Distance between sister 
kinetochores in cells arrested in metaphase 
with MG132 and incubated on ice for 10 min 
to selectively depolymerize nonkinetochore 
fi ber microtubules. Images represent maxi-
mum intensity projections of a deconvolved 
series of z sections spanning the entire cell 
in 0.2- μ m intervals (projection) or single de-
convolved z sections. Kinetochore pairs were 
identifi ed in single z sections by the relative 
positioning of kinetochores and orientation 
of associated kinetochore fi bers. Blue, DNA; 
green, microtubules; red, kinetochores. Bars: 
(left) 5  μ m; and (right) 2.5  μ m. (B) Interkineto-
chore distances of paired sister chromatids in 
NuMA +/ � 22 , NuMA  � 22/ � 22 , and nocodazole 
(Noc)-treated control cells. The boxes repre-
sent the interquartile (middle 50%), and the 
whiskers represent the full range. Horizontal 
lines represent the median value. (C) Examples 
of NuMA +/ � 22  cells with fully aligned chromo-
somes and NuMA  � 22/ � 22  fi broblasts with chro-
mosome alignment defects. Cells were treated 
as in A and processed for immunofl uorescence 
to visualize DNA (purple) and tubulin (green). 
Bars, 5  μ m. (D) Percentage of spindles show-
ing chromosome alignments defects. ***, P  <  
0.0001. Error bars indicate SEM.   
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in NuMA  � 22/ � 22  cells was not responsible for the subsequent 

mitotic defi cits, we performed an in vivo test for retention of 

nuclear function of the NuMA  � 22  protein. To do this, wild-type 

NuMA was replaced with NuMA  � 22  protein in spinal cord mo-

tor neurons, a cell type in which NuMA is known to be present 

in nuclei in adult neurons (Fig. S1 B). These cells were chosen 

for two reasons: fi rst, defects in motor neuron function give rise 

to characteristic and easily scorable motor defi cits, including 

gait alterations and paralysis. Second, the lifetimes of individual 

neurons extend for the full life span of the organism, allowing 

access to any age-dependent features of loss of interphase 

NuMA function. 

 NuMA was deleted specifi cally from motor neurons 

by crossing the NuMA fl ox  allele with animals carrying the 

vesicular acetylcholine transporter (VAchT) – Cre transgene. 

This transgene has previously been demonstrated to direct 

Cre recombinase expression exclusively in motor neurons 

after the fi nal division of motor neuron progenitors, ensuring 

that any phenotypes would arise exclusively from postmitotic 

loss of NuMA ( Misawa et al., 2003 ). NuMA fl ox/fl ox ,VAchT-Cre, 

NuMA +/fl ox ,VAchT-Cre, and NuMA fl ox/fl ox  littermate controls 

were obtained, and animals of all genotypes and genders were 

produced in expected Mendelian ratios. Activity of the Cre 

recombinase and restriction of expression to motor neurons in 

VAchT-Cre mice was confi rmed by mating to the ROSA26R 

reporter strain ( Soriano, 1999 ). Examination of spinal cord 

and sagittal brain sections from VAchT-Cre,ROSA26R mice 

for  � -galactosidase activity confi rmed that Cre expression 

stages of spindle assembly but that as cells progress through 

mitosis, maintenance of centrosome – spindle coupling is lost, 

and poles subsequently defocus. 

 Despite these defects, completion of mitosis appeared 

normal, daughter cells formed morphologically normal nuclei, 

and cytokinesis, including abscission, also occurred (Video 2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200810091/DC1). 

We also measured the duration of mitosis in tubulin-YFP – 

expressing MEFs, which we defined as the length of time 

between nuclear envelope breakdown and the fi rst observable 

stage of midbody formation. Consistent with our previous ob-

servations, mitotic timing was similar for control (33  ±  9 min, 

 n  = 6) and NuMA  � 22/ � 22  cells that experienced spindle defects 

(27  ±  5 min,  n  = 5). Additionally, the kinetics of spindle bi-

polarization were similar in control (12  ±  4 min,  n  = 6) and pheno-

typic NuMA  � 22/ � 22  cells (13  ±  3 min,  n  = 5). These observations 

indicate that loss of NuMA function during mitosis does not 

prevent the initial timely establishment of focused bipolar spin-

dles but results in centrosome loss from the spindle poles before 

anaphase followed by microtubule defocusing. Surprisingly, 

despite these defects, bulk chromosome segregation proceeds 

largely as normal in NuMA  � 22/ � 22  cells ( Fig. 3 B  and Video 2). 

 The NuMA  � 22  allele supports potential 
interphase functions of NuMA 
 The ability of NuMA  � 22/ � 22  cells to enter mitosis and the spindle 

phenotypes observed were consistent with specifi c defects in 

spindle pole integrity. To confi rm that a potential nuclear defect 

 Figure 5.    Bipolar spindle formation pre-
cedes centrosome detachment in the absence 
of mitotic NuMA function.  (A and B) Selected 
images from videos of primary embryo fi bro-
blasts transduced with retrovirus encoding 
tubulin-YFP, either heterozygous (A; Video 1, 
available at http://www.jcb.org/cgi/content/
full/jcb.200810091/DC1) or homozygous 
(B; Video 2) for NuMA  � 22 , undergoing the fi rst 
mitosis after 4-OHT treatment and release from 
growth arrest. Arrows indicate centrosomes, 
and each time point shows a maximum inten-
sity projection of fi ve confocal fl uorescence z 
sections acquired in 2- μ m intervals.   
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NuMA  � 22/ � 22  cells displayed anaphase fi gures in which chro-

mosomes had segregated normally, but spindle poles were de-

focused, and centrosomes (detected as discrete foci of strong 

 � -tubulin staining) had failed to separate. 

 These results were corroborated by following the recov-

ery of spindle bipolarity in retrovirally transduced  � -tubulin-

YFP – expressing fi broblasts. After release from STLC, control 

cells were uniformly observed to recover from monopolarity by 

separating centrosomes and forming bipolar spindles with well-

focused poles (7/7 cells;  Fig. 6 D ; and Video 3, available at 

http://www.jcb.org/cgi/content/full/jcb.200810091/DC1). How-

ever, after the reestablishment of tension, NuMA  � 22/ � 22  fi bro-

blasts often formed spindles with one well-focused pole and 

one splayed spindle pole lacking a centrosome (8/13 cells;  Fig. 

6 D  and Video 4). We conclude that mitotic NuMA function is 

required to maintain centrosome – spindle attachments under 

conditions in which tension is applied across the spindle. 

 Adjacent centrosomes that failed to separate in NuMA  � 22/ � 22  

cells were always initially observed at the spindle end with 

focused microtubules. As NuMA  � 22/ � 22  cells progressed through 

mitosis, the paired centrosomes often dissociated from the pole. 

These cone-shaped spindles were not arrested monopolar spin-

dles observed in profi le because they uniformly proceeded into 

anaphase, indicating that mitotic checkpoint signaling was 

silenced. These data demonstrate that normal NuMA function is 

required for centrosome separation after recovery from a mono-

polar state. In addition, because the centrosome distal half 

of each NuMA-defi cient spindle forms a splayed pole after 

 release from STLC, we conclude that in the absence of cen-

trosomes, NuMA is required for the establishment of micro-

tubule focusing. 

 Stable kinetochore – microtubule interactions 
are required for centrosome separation 
after recovery from monopolarity 
 The aforementioned evidence demonstrates a requirement for 

NuMA in the physical tethering of centrosomes to kinetochore 

fi bers and reveals the surprising fi nding that centrosome – spindle 

connections are required for centrosome separation after recovery 

from monopolarity. This fi nding has important implications for 

the mechanism of centrosome separation during reestablishment 

of spindle bipolarity in prometaphase. Therefore, we specifi cally 

tested whether stable microtubule – kinetochore attachments are 

also required for centrosome separation in recovering mono-

polar spindles. The Ndc80 complex, a heterotetramer composed 

of the Ndc80, Nuf2, Spc24, and Spc25 proteins, is a key compo-

nent involved in the stable attachment of microtubule bundles at 

kinetochores ( Cheeseman and Desai, 2005 ). To directly test the 

requirement for kinetochore – microtubule attachment in centro-

some separation, we used siRNA to deplete Nuf2 in HeLa cells 

stably expressing fl uorescently tagged tubulin and histone H2B 

( Fig. 7 A ). These cells were arrested with monopolar spindles 

using STLC, the drug was removed, and time-lapse fl uorescence 

microscopy was used to observe recovery of spindle bipolarity. 

90 min after STLC washout, all but 3% of control siRNA-treated 

cells had separated their centrosomes and formed bipolar spin-

dles. However, in the same period of time, 35% of Nuf2-depleted 

was restricted to motor neurons (Fig. S5 A, available at http://

www.jcb.org/cgi/content/full/jcb.200810091/DC1). 

 Extensive visual observation demonstrated that NuMA fl ox/fl ox ,

VAchT-Cre animals showed no behavioral defects indicative of 

motor neuron dysfunction, even at up to 2 yr of age. Weight gain 

was also similar in control and NuMA fl ox/fl ox ,VAchT-Cre mice, 

providing no evidence for motor neuron dysfunction or mus-

cle denervation (Fig. S5 B). Finally, counting of cresyl violet –

 stained motor neuron cell bodies in spinal cord sections of 

200-d-old animals revealed no effect on motor neuron numbers 

(Fig. S5 C). Thus, the exon 22 – deleted mutant complements all 

potential nuclear functions of NuMA and does so for extended 

periods in vivo. Alternatively, NuMA may perform limited or 

redundant interphase functions in these cells. 

 NuMA is required for the maintenance 
of centrosome – spindle coupling in bipolar 
spindles under tension 
 Live imaging of tubulin-YFP – marked spindles in unperturbed 

fi broblasts demonstrated that in the absence of NuMA, initial 

microtubule focusing at the pole appeared normal. This strongly 

supports a maintenance rather than establishment role for NuMA 

in the attachment of centrosomes to kinetochore fi bers. To fur-

ther test this, we arrested NuMA wild-type, NuMA +/ � 22 , and 

NuMA  � 22/ � 22  cells in mitosis with the Eg5 inhibitor S-trityl- l -

cysteine (STLC;  Skoufi as et al., 2006 ). Eg5 is a bipolar, homo-

tetrameric, kinesin-related motor protein that is required during 

mitosis to both establish and maintain separation of centrosomes. 

It is thought to function by cross-linking and sliding apart anti-

parallel microtubules from opposing centrosomes, thereby 

pushing centrosomes apart ( Kapitein et al., 2005 ). STLC inhib-

its activity of Eg5, causing collapse of bipolar spindles. Regard-

less of genotype, in the absence of STLC, monopolar spindles 

were observed with equally low frequency in all cell lines, but 

upon STLC treatment, all MEF cell lines produced a high fre-

quency of monopolar spindles that appeared almost exclusively 

as chromosome rosettes surrounding a central  � -tubulin – positive 

pole ( Fig. 6, A and B ). This indicates that in monopolar spin-

dles, centrosomes continue to dictate the location of spindle 

pole formation when NuMA function is disrupted. Furthermore, 

under these conditions, kinetochore fi bers do not require NuMA 

for active focusing toward centrosomes. 

 Throughout the extended mitotic delay caused by treat-

ment with STLC, centrosomes persisted at the center of mono-

polar spindles in NuMA  � 22/ � 22  cells. How can this be reconciled 

with a maintenance role of NuMA in centrosome – spindle cou-

pling? Relative to bipolar metaphase spindles, monopolar 

spindles have reduced tension forces acting between centro-

somes and kinetochores. Thus, the spindle defects produced in 

cycling NuMA  � 22/ � 22  cells likely refl ect a requirement for 

NuMA in maintaining centrosomes at poles of spindles expe-

riencing typical metaphase forces. To directly test this possi-

bility, STLC was washed out from monopolar-arrested cells 

to reintroduce tension into spindles with kinetochore fi bers 

focused toward a monopole. 1 h after release, cells were fi xed 

for immunofl uorescence. In control cells, anaphases always 

had one centrosome at each pole ( Fig. 6 C ). In contrast, 
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allele with a prolonged G0/G1 arrest, we were able to achieve 

nearly quantitative turnover of accumulated wild-type NuMA 

protein before the fi rst mitotic division. Strikingly, we show that 

in the absence of functional NuMA, and despite apparently nor-

mal initial bipolar spindle formation, centrosomes are unable to 

maintain attachment to the ends of kinetochore fi bers. The sub-

sequent defocusing of microtubules at spindle poles reveals a 

distinct requirement for NuMA in the maintenance of mamma-

lian centrosome – spindle attachments. 

 Mechanisms and maintenance of 
microtubule focusing at poles 
 A previous study has implicated a role for NuMA-mediated cap-

ture of kinetochore fi bers in pole focusing ( Khodjakov et al., 2003 ). 

spindles failed to resolve their centrosomes and form bipolar 

spindles ( Fig. 7, B and C ). We conclude that effi cient centrosome 

separation after recovery from monopolar spindles relies on 

the two-point attachment of kinetochore fi bers at centrosomes 

and kinetochores. 

 Discussion 
 In this study, we describe the creation of a separation of func-

tion allele of NuMA by specifi c deletion of exon 22 of the 

mouse NuMA gene. Removal of exon 22 produces a mutant 

protein that is unable to effi ciently localize to spindle poles dur-

ing mitosis but is able to perform all essential interphase func-

tions of NuMA. By combining inducible inactivation of this 

 Figure 6.    Prometaphase centrosome separation and centrosome-independent spindle pole focusing require NuMA.  (A) Primary MEFs were arrested in 
mitosis by treatment with STLC and processed for immunofl uorescence. Green,  � -tubulin; blue, DNA; red,  � -tubulin. (B) Frequencies of monopolar spindles 
as shown in A. Two independent cell lines per genotype were used, and  > 200 mitoses per genotype were counted. (C) Anaphase in NuMA +/ � 22  control 
and NuMA  � 22/ � 22  cells 1 h after washout of STLC. In merged images, DNA is shown in purple and  � -tubulin in green. Arrows indicate centrosomes. 
(D) Stills from videos of NuMA +/ � 22  (Video 3, available at http://www.jcb.org/cgi/content/full/jcb.200810091/DC1) and NuMA  � 22/ � 22  (Video 4) primary 
embryo fi broblasts transduced with retrovirus encoding tubulin-YFP. Cells were arrested with STLC for 3 – 4 h and fi lmed after washout of the drug. Scoring 
for centrosome separation was performed blinded to genotype. Each time point shows a maximum intensity projection of 12 confocal fl uorescence z sec-
tions acquired in 1- μ m intervals. Error bars indicate SEM.   
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et al., 2001 ;  Goshima et al., 2005 ). This interpretation is cor-

roborated by our observation that after recovery from mono-

polarity, microtubules in NuMA  � 22/ � 22  fi broblasts are severely 

defocused in the acentrosomal spindle half. The formation of 

these monoastral, bipolar cone-shaped spindles provides clear 

evidence that NuMA is required for spindle pole focusing in the 

absence of centrosomes. Thus, NuMA and centrosomes func-

tion redundantly in establishing spindle poles by contributing 

independently to initial microtubule focusing. It is likely that 

mammalian acentrosomal spindle systems, including mouse 

oocytes, rely heavily on NuMA for the establishment of spindle 

poles, which is a question now testable with the NuMA  � 22  allele. 

 Disruption of dynein function gives rise to defects similar 

to those we have observed in NuMA  � 22/ � 22  MEFs, including 

centrosome – spindle uncoupling and, to a lesser extent, a mild 

degree of kinetochore fi ber defocusing during metaphase 

( Heald et al., 1997 ;  Goshima et al., 2005 ). In multiple contexts, 

dynein inhibition causes NuMA to redistribute from spindle 

poles to along the length of spindle microtubules. This suggests 

that a major function of spindle-localized dynein in mitosis may 

be to transport NuMA as a cargo to microtubule minus ends 

( Gaglio et al., 1997 ;  Merdes et al., 2000 ). The rapid kinetics of 

This has been proposed to occur through the capture of kineto-

chore fi bers by NuMA ( Khodjakov et al., 2003 ), which itself is 

transported toward spindle poles, likely on centrosomal/astral 

microtubules by dynein ( Merdes et al., 2000 ). However, centro-

somes are not required for microtubule focusing or NuMA 

localization to spindle poles ( Khodjakov et al., 2000 ). Our ef-

forts in this study have extended this to demonstrate that in the 

absence of functional NuMA, initial bipolar spindle formation 

proceeds normally. However, after the establishment of tension 

across kinetochores, centrosomes subsequently detach from 

the spindle, and microtubules defocus. This demonstrates that 

NuMA is required to physically tether kinetochore fi ber minus 

ends at the poles of bipolar spindles under tension and provides 

the fi rst evidence that an essential function of NuMA during 

mitosis is in the maintenance and not establishment of mamma-

lian centrosomal – spindle connections. 

 The normal initiation of bipolar spindle formation in the 

absence of NuMA suggests the existence of alternative pro-

cesses involved in establishing focused spindle poles. These are 

likely to be dependent on the presence of centrosomes, which 

might function in cooperation with components such as HSET 

in mammals and Ncd in  Drosophila   melanogaster  ( Gordon 

 Figure 7.    Kinetochore – microtubule attachments are required for centrosome separation in prometaphase.  (A) Immunoblot of an extract of HeLa cells 48 h 
after transfection with siRNA oligos against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or Nuf2. (B) Still images from videos of HeLa cells 
coexpressing H2B – monomeric RFP and tubulin-YFP. Cells were transfected with siRNA oligos against GAPDH or Nuf2 and 48 h later were arrested with 
STLC. Time is given in minutes relative to STLC washout. Images are maximum intensity projections of fi ve confocal z sections spaced 2  μ m apart. Green, 
tubulin; purple, histone H2B. (C) Frequency of spindles that remained monopolar 90 min after release from STLC in cells treated with siRNA to GAPDH or 
Nuf2. Error bars represent the mean and SEM of three separate experiments;  n  = 192 cells GAPDH siRNA;  n  = 228 cells Nuf2 siRNA; ***, P  <  0.0001 
by Fisher ’ s exact test.   
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NuMA-dependent pole focusing for mouse embryonic viability 

and normal cellular proliferation. This is consistent with chromo-

some missegregation driving embryonic lethality (e.g., from 

loss of the centromere motor/tether CENP-E;  Putkey et al., 

2002 ). Alternatively, the early lethality of NuMA  � 22/ � 22  embryos 

may result from missegregation of centrosomes or centrioles as 

spindle cargo ( Pickett-Heaps 1969 ), which are not required for 

mitotic spindle function but are essential for normal embryonic 

development ( Chatzimeletiou et al., 2008 ). Therefore, our evidence 

collectively demonstrates that NuMA and its role in focusing 

spindle poles is a required component of normal mammalian 

mitotic progression and embryonic development. 

 Materials and methods 
 Construction of NuMA-targeted mice 
 A mouse 129S6/SvEvTac bacterial artifi cial chromosome genomic library 
(RPCI-22; Children ’ s Hospital Oakland Research Institute, Oakland, CA) 
was screened for the NuMA gene with a probe to the largest exon of 
NuMA. A single clone was identifi ed and confi rmed by PCR to contain the 
entire NuMA gene. An 8.9-kb EcoRV – ScaI fragment containing exons 16 – 25 
was subcloned into pBluescript (Agilent Technologies). A loxP sequence and 
3 �  SacII restriction site were introduced upstream of exon 22 by cloning an 
oligonucleotide linker into a BstEII site. A loxP-FRT-PGKNeo-FRT fragment 
from pK-11 ( Meyers et al., 1998 ) was inserted downstream of exon 22. 
Finally, the diphtheria toxin negative selection marker ( Yanagawa et al., 
1999 ) was introduced downstream of the short homology arm. The target-
ing vector was linearized with NotI before electroporation into ES cells. ES 
cell culture and transfection was performed as described previously ( Putkey 
et al., 2002 ). DNA from G418-resistant ES clones was screened using PCR 
and genomic DNA blotting. The probe for targeting of exon 22 was ampli-
fi ed from R1 ES cell DNA using primers pr13 forward (5 � -TTTGGTGGT-
GGTTTGGTC-3 � ) and pr13 reverse (5 � -TGATAAGCAATGCCACGG-3 � ). 
Mice, ES cells, and embryos were genotyped as shown in  Fig. 1 A  with 
primers i (5 � -AACCGCATCGCAGAGTTGCAG-3 � ), ii (5 � -ATGCTCCAG-
ACTGCCTTGGG-3 � ), iii (5 � -GAGGAGTGGTGGCAACAGTAG-3 � ), and iv 
(5 � -GGAGGTCATTCTACTGGAAG-3 � ). ES clones carrying the appropriate 
genetic modifi cation were injected into C57/BL6 embryos at the Transgenic 
Mouse and Gene Targeting Core facility (University of California, San 
Diego, La Jolla, CA). Pups from chimeric mice were screened by coat color, 
and PCR was used to identify germline transmission. 

 Mouse embryonic fi broblast preparation and culture 
 Mouse embryonic fi broblasts were prepared as previously described 
( Putkey et al., 2002 ). Primary fi broblasts were maintained and passaged 
in an incubator set at 10% CO 2  at 37 ° C and maintained at 3% O 2  by a 
continuous fl ow of nitrogen gas to increase replicative lifespan as de-
scribed previously ( Parrinello et al., 2003 ). In all experiments using pri-
mary cells, fi broblasts were grown for no more than two cumulative weeks 
in culture after derivation. 

 To induce growth arrest, MEFs were cultured to confl uence and 
shifted to media containing 2% serum. In fi broblasts carrying the Cre-ER TM  
transgene, 4-OHT (10 mg/ml stock in ethanol; Sigma-Aldrich) was added 
to a fi nal concentration of 0.1  μ M (unless otherwise indicated) to cause nu-
clear translocation of Cre. 

 Retrovirus preparation and infections 
 Retroviral plasmids (pBABE variants) were prepared as described previ-
ously ( Shah et al., 2004 ). For retroviral infection of primary MEFs, cells 
grown in 12-well plates were washed with PBS and incubated for 15 min 
in a humidifi ed incubator with retroviral supernatant mixed with 8  μ g/ml 
polybrene (Sigma-Aldrich). Plates of cells were wrapped in parafi lm and 
spun at 1,100  g  for 30 min at room temperature, after which the super-
natant was replaced with primary MEF media, and cells were returned to 
the incubator. 

 Preparation and analysis of DNA, RNA, and cDNA 
 For analysis of splicing defects in NuMA Neo/+  cells and tissues, RNA was 
prepared from mouse fi broblasts using the RNeasy Mini kit (QIAGEN) 
and from cells and tissues using TRIZOL reagent (Invitrogen). cDNA was 

NuMA localization to spindle poles and the kinetochore fi ber –

 independent nature of NuMA accumulation at poles (unpub-

lished data) is consistent with this interpretation. Therefore, 

much of the phenotype caused by inhibition of dynein function 

may be a direct result of a failure to properly localize NuMA. 

 Function of Eg5 in prometaphase 
centrosome separation 
 In mitotic prophase before nuclear envelope breakdown, two 

duplicated centrosomes move across the nuclear envelope in a 

dynein-dependent manner to diametrically oppose each other in 

anticipation of bipolar spindle formation ( Gonczy et al., 1999 ). 

Maintenance of centrosome separation after nuclear envelope 

breakdown requires activity of the plus end – directed motor 

Eg5, which acts to slide apart antiparallel microtubules that 

 emanate directly from centrosomes. Inhibition of Eg5 activity 

causes centrosome collapse after nuclear envelope breakdown, 

triggering an extended mitotic delay ( Kapitein et al., 2005 ; 

 Skoufi as et al., 2006 ). Surprisingly, we demonstrate that centro-

some separation fails after restoration of Eg5 activity in mono-

polar NuMA  � 22/ � 22  cells, indicating a novel function for NuMA 

in mitosis. Anchoring of kinetochore fi bers at the spindle pole 

may be critical to allow Eg5 to drive initial separation of juxta-

posed centrosomes. Once this occurs, overlapping antiparallel 

arrays of microtubules are formed between centrosomes, pro-

viding forces to drive further centrosome separation. Consistent 

with this interpretation, in the absence of stable kinetochore –

 microtubule interactions, centrosome separation after re-

lease from monopolarity is also inhibited. Thus, we provide 

a demonstration that Eg5-dependent centrosome separation re-

quires the two-point attachment of microtubules at kinetochores 

and centrosomes. 

 Chromosome segregation in the absence of 
focused poles 
 The striking spindle defects observed in NuMA  � 22/ � 22  fi bro-

blasts did not delay progression through mitosis. Because a 

 single unattached kinetochore is capable of delaying anaphase 

onset ( Rieder et al., 1994 ), this indicates that microtubule cap-

ture by kinetochores occurs effi ciently in the absence of func-

tional NuMA. Furthermore, bulk chromosome segregation was 

observed to occur normally on spindles with detached centro-

somes and defocused poles. These observations indicate that 

pole focusing is not an absolute requirement for (a) all kineto-

chores to be attached to spindle microtubules and (b) the bulk of 

chromosomes to be aligned and segregated in anaphase. Indeed, 

plant cells carry out faithful mitoses without centrosomes, using 

spindles without discernibly focused poles ( Franklin and Cande, 

1999 ). Additionally, mechanical severing of kinetochore fi bers 

between spindle poles and kinetochores has been shown to 

not prevent continued poleward chromosome movements 

( Nicklas, 1989 ). 

 Although bulk chromosome segregation occurs normally, 

most NuMA  � 22/ � 22  cells exhibited modest chromosome align-

ment defects, such as an elongated spindle and reduced tension 

across sister kinetochores. These defects are likely to result in 

chromosome segregation errors that explain the requirement of 
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 Online supplemental material 
 Fig. S1 shows the expression pattern of NuMA in mouse tissues and the 
localization of NuMA in adult mouse neurons. Fig. S2 provides data char-
acterizing the localization of GFP-tagged NuMA tail fragments. Fig. S3 
provides data demonstrating splicing defects underlying hypomorphic 
expression from the NuMA Neo  allele. Fig. S4 provides additional data 
characterizing the phenotype of NuMA  � 22/ � 22  cells, including timing of 
centrosome detachment, dynactin localization, and kinetochore fi ber stabil-
ity. Fig. S5 includes data that characterize VAchT-Cre transgenic mice and 
show the phenotype of animals with deletion of NuMA exon 22 in motor 
neurons. Videos 1 and 2 illustrate spindle formation and integrity through-
out mitosis in cycling NuMA +/ � 22  and NuMA  � 22/ � 22  primary fi broblasts. 
Videos 3 and 4 show mitotic spindle structure and centrosome position-
ing during recovery from STLC-induced monopolarity in NuMA +/ � 22  and 
NuMA  � 22/ � 22  primary fi broblasts. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200810091/DC1. 
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  Note added in proof.  Since the fi nal submission of this manuscript, an in-
dependent study also identifi ed a role of kinetochore-dependent forces in pro-
metaphase centrosome separation (Toso et al., 2009). 
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prepared using the SuperScript III First-Strand Synthesis kit (Invitrogen). Splic-
ing events were detected in NuMA Neo/+  cells and tissues by PCR amplifi cation 
from cDNA with primers pr4 forward (5 � -GTTTCAGAGAACTCGCG-
GCAGG-3 � ) and Neo31 (5 � -GGATTCATCGACTGTGGCCGGCTGGGT-
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GAGAGAAAGGATT-3 � ). The degree of mRNA loss was calculated using 
the comparative cycle time method by normalizing the signal produced 
from NuMA to cyclophilin A reactions and comparing NuMA Neo/+  and 
NuMA +/+  samples. 

 For measurements of Cre-mediated NuMA exon 22 deletion in 
fi broblasts, DNA was prepared using the DNeasy Blood and Tissue kit 
(QIAGEN). The loss of NuMA fl ox  from genomic DNA was measured using 
primers 22f.4 (5 � -CTTGCTCTATACAGTTGGGCC-3 � ) and 22 reverse 
(5 � -GGTGGGTCTCAGAGGAAACTCG-3 � ). The mouse  � -actin gene was 
amplifi ed as a normalizer using primers 6590 (5 � -TGGATCAGCAAGC-
AGGAGTATG-3 � ) and 6591 (5 � -CCTGCTCAGTCCATCTAGAAGCA-3 � ). 
Reactions were performed using 40 ng genomic DNA and the SYBR 
Green Supermix qPCR reagent (Bio-Rad Laboratories). The degree of 
excision was calculated by normalizing the signal produced from an 
experimental sample to the unexcised gene  � -actin and comparing ex-
perimental samples to DNA extracted from NuMA +/+  MEFs as described 
previously ( Pfaffl , 2001 ). All qPCR reactions were run using the iCycler 
(Bio-Rad Laboratories). 

 Live cell microscopy 
 HeLa and MEF cells were seeded onto 35-mm glass-bottom dishes (MatTek) 
and incubated in CO 2 -independent medium (Invitrogen) supplemented as 
described previously ( Weaver et al., 2007 ). Dishes were placed in a heat-
controlled stage set at 37 ° C. Fluorescence imaging was conducted using 
a spinning disk confocal (McBain Instruments) attached to an inverted 
 microscope (TE2000e; Nikon) equipped with a 60 × /1.4 NA objective 
lens. Fluorescence excitation was controlled by Metamorph software (MDS 
Analytical Technologies). Z-series images were acquired using a camera 
(Orca-ER; Hamamatsu Photonics) at 3- or 5-min intervals. Z stacks were 
compiled by maximum intensity projection for presentation. 

 Immunofl uorescence 
 For indirect immunofl uorescence analysis of frozen tissue sections, brain 
and spinal cord were prepared and processed as described previously 
( Lobsiger et al., 2005 ). Antibody staining was performed overnight at 
room temperature. Sections were mounted on slides (Superfrost Plus; 
Thermo Fisher Scientifi c) in a solution of 0.2% gelatin in PBS, dried over-
night, and covered with antifade reagent (ProLong; Invitrogen) and glass 
coverslips before imaging. 
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