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    Introduction 
 The inositol lipids regulate a wide range of cellular functions, 

from signal transduction to lipid transport ( Balla, 2006 ;  Di Paolo 

and De Camilli, 2006 ). As rare constituents on the cytosolic face 

of membranes, one of the principle means by which these lipids 

exert their function is through the recruitment of cytosolic pro-

teins that contain lipid-binding motifs ( Cho and Stahelin, 2005 ; 

 Lemmon, 2008 ). Once restricted to the two-dimensional mem-

brane surface, the increased local concentration of these proteins 

facilitates their interaction with binding partners and substrates. 

 Many interacting motifs bind specifi cally to a particular 

inositol lipid with high affi nity, whereas others are more promis-

cuous, with a lower affi nity that requires a secondary interaction 

for recruitment ( Carlton and Cullen, 2005 ;  Lemmon, 2008 ). The 

most abundant inositol lipid-binding motif in eukaryotic genomes 

is the pleckstrin homology (PH) domain ( Yu et al., 2004 ;  Lemmon, 

2008 ). Many high-affi nity PH domains bind to the  d- 3 phosphory-

lated inositol lipids phosphatidylinositol 3,4,5-trisphosphate 

(PtdIns(3,4,5) P  3 ) and phosphatidylinositol (3,4)-bisphosphate 

(PtdIns(3,4) P  2 ), whose synthesis is driven by activated cell sur-

face receptors ( Park et al., 2008 ); this causes recruitment of the 

PH domain – containing proteins to the plasma membrane, where 

they participate in the subsequent signal transduction cascade. 

However, the majority of PH domains bind with little selectivity 

and with lower affi nity to inositol lipids ( Yu et al., 2004 ;  Lemmon, 

2008 ). Examples include the cytohesin family of ARF guanine 

nucleotide exchange factors: in these, the 3G splice variants bind 

with low affi nity and selectivity to phosphatidylinositol 4,5-

bisphosphate (PtdIns(4,5) P  2 ) and PtdIns(3,4,5) P  3  ( Klarlund et al., 

2000 ), and their plasma membrane recruitment is assisted by an 

interaction with ARF-like GTPases ( Cohen et al., 2007 ;  Hofmann 

et al., 2007 ;  Li et al., 2007 ). 

 Because the inositol lipids may be quite sparsely distrib-

uted on the cytosolic face of membranes, binding proteins must 

retain suffi cient mobility to meet their interacting partners. Re-

cent estimates place the lateral diffusion coeffi cients of PtdIns

(4,5) P  2  and PtdIns(3,4,5) P  3  at 0.5 – 1  μ m 2 /s ( Haugh et al., 2000 ; 

 P
olyphosphoinositol lipids convey spatial informa-

tion partly by their interactions with cellular proteins 

within defi ned domains. However, these interac-

tions are prevented when the lipids ’  head groups are 

masked by the recruitment of cytosolic effector proteins, 

whereas these effectors must also have suffi cient mobil-

ity to maximize functional interactions. To investigate 

quantitatively how these confl icting functional needs 

are optimized, we used different fl uorescence recovery 

after photobleaching techniques to investigate inositol 

lipid – effector protein kinetics in terms of the real-time 

dissociation from, and diffusion within, the plasma mem-

brane. We fi nd that the protein – lipid complexes retain a 

relatively rapid ( � 0.1 – 1  μ m 2 /s) diffusion coeffi cient in 

the membrane, likely dominated by protein – protein in-

teractions, but the limited time scale (seconds) of these 

complexes, dictated principally by lipid – protein inter-

actions, limits their range of action to a few microns. More-

over, our data reveal that GAP1 IP4BP , a protein that binds 

PtdIns(4,5) P  2  and PtdIns(3,4,5) P  3  in vitro with similar af-

fi nity, is able to  “ read ”  PtdIns(3,4,5) P  3  signals in terms of 

an elongated residence time at the membrane.

 Reversible binding and rapid diffusion of proteins 
in complex with inositol lipids serves to coordinate 
free movement with spatial information 
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2000 ). Also shown ( Fig. 1 A , top) is YFP targeted to the plasma 

membrane by the palmitoylation and myristoylation sequence 

from Lyn kinase (PM-YFP). Epifl uorescence images of the ad-

hesion plane, or  “ footprint, ”  show the uniform haze from the 

basal plasma membrane, along with a ring of lateral membrane. 

Conversely, only uniform fl uorescence in the footprint is seen 

 Yaradanakul and Hilgemann, 2007 ;  Golebiewska et al., 2008 ). 

Measurements in model membranes and the outer leafl et of 

plasma membranes yield a value threefold higher, which sug-

gests that endogenous PtdIns(4,5) P  2  is spending two thirds of its 

time in complex with slow or immobile membrane components 

( Golebiewska et al., 2008 ). Furthermore, previous work has shown 

that several proteins maintain a comparable mobility when bound 

to inositol lipid as when free in the cytosol ( Brough et al., 2005 ). 

 The picture is further complicated by the ability of inositol 

lipids to act at a more local level within a given membrane ( Haugh 

et al., 2000 ). For example, localized synthesis of PtdIns(3,4,5) P  3  

at the leading edge of motile cells (coupled to its degradation to-

ward the sides and rear) is required for effi cient cell motility (see 

Discussion for further examples;  Kolsch et al., 2008 ). Therefore, 

as well as maintaining suffi cient mobility to form interactions, 

inositol lipid effector proteins must be constrained from diffusing 

too far from the site of lipid synthesis, because if they do, as long 

as they  “ mask ”  the inositol lipid head group, they will protect it 

from metabolism, and so  “ smear out ”  the lipid gradient. 

 So, how can free mobility be reconciled with a constrained 

localization in the same membrane? One possibility is that an 

inositol lipid-bound protein retains lateral mobility but is cor-

ralled into specifi c membrane subdomains, such as cholesterol-

enriched  “ rafts ”  ( Pike and Miller, 1998 ) or actin-based  “ picket 

fences ”  ( Morone et al., 2006 ). Alternatively, the protein may 

rapidly exchange between the bound and free states, which, 

coupled to rapid diffusion through the cytosol, leads to re-

peated sampling of the target membrane ( Teruel and Meyer, 2000 ; 

 Matsuoka et al., 2006 ). 

 In this study, we assess quantitatively the mechanisms gov-

erning spatial and temporal recruitment of PH-domain contain-

ing proteins to the membrane. Specifi cally, we concentrate on 

proteins with high-affi nity PH domains, targeted to the plasma 

membrane via their interaction with PtdIns(4,5) P  2  and/or PtdIns

(3,4,5) P  3 . FRAP techniques are used that can discriminate lat-

eral diffusion on the membrane versus exchange between bound 

and unbound molecules. Our results suggest that, whereas the 

protein – lipid complexes retain free lateral diffusion ( � 0.1 – 1 

 μ m 2 /s), they are constrained by the short-lived (seconds) time 

scale of this interaction. 

 Results 
 FRAP of proteins in complex with inositol 
lipids using total internal refl ection 
fl uorescence (TIRF) 
 The central aim of this paper was to distinguish lateral diffusion 

of inositol lipid-bound proteins from their exchange with an un-

bound, cytosolic pool. Therefore, we conceived a FRAP experi-

ment whereby the entire basal membrane could be bleached 

selectively by TIRF microscopy, a technique that allows the 

imaging of the plasma membrane adherent to a glass coverslip 

( Axelrod, 2001 ).  Fig. 1 A  shows HEK cells expressing GFP 

fused to the isolated PH domain from phospholipase C � 1 

(PLC � 1) and the PH domain – containing protein GAP1 IP4BP , 

both of which are targeted to the plasma membrane by interac-

tion with PtdIns(4,5) P  2  ( V á rnai and Balla, 1998 ;  Cozier et al., 

 Figure 1.    FRAP by total internal refl ection.  (A) Epifl uorescence and TIR 
fl uorescence micrographs of the adhesion planes ( “ footprints ” ) of HEK cells 
expressing either the myristoylated and palmitoylated sequence of Lyn 
kinase fused to YFP (PM-YFP), GFP fused to the PH domain of PLC � 1, or GFP 
fused to full-length GAP1 IP4BP  as indicated. The latter two are targeted to the 
plasma membrane via an interaction with PtdIns(4,5) P  2 . (B) The rationale 
behind the FRAP experiment: after bleaching by TIR (1), entry of unbleached 
protein into the adhesion plane via lateral diffusion through the membrane 
should cause fl uorescence recovery from the periphery (2), whereas ex-
change with a cytosolic pool would lead to uniform recovery across the foot-
print (3). (C) Example micrographs taken at the indicated times after an 8-s 
bleach; residual postbleach fl uorescence was subtracted from the images 
(see Fig. S1 for details, available at http://www.jcb.org/cgi/content/full/
jcb.200809073/DC1). Stills are taken from Videos 1 – 3. Bar, 10  μ m.   
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 To achieve substantial photobleaching of fl uorescence 

( ≤ 50%) in the cellular footprint, we found it necessary to bleach 

for 8 s. To highlight the recovering fl uorescence, residual fl uor-

escence immediately after bleaching was subtracted from sub-

sequent images, and the contrast was rescaled (this procedure is 

described in Fig. S1, available at http://www.jcb.org/cgi/content/

full/jcb.200809073/DC1). Representative images from such ex-

periments are presented in  Fig. 1 C  and Videos 1 – 3; as expected, 

PM-YFP (with its integral lipid anchors) recovered its fl uores-

cence from the cell periphery, which is consistent with lateral 

diffusion in the plane of the membrane. The PtdIns(4,5) P  2 -targeted 

by TIRF when the evanescent fi eld decays with a length con-

stant of  � 100 nm ( Fig. 1 A ). Consistent with a previous paper 

( van Rheenen et al., 2005 ), we saw no local enrichment of these 

PtdIns(4,5) P  2 -binding proteins in the adhesion plane. 

 We reasoned that the recovery of fl uorescence in the foot-

print after photobleaching by TIRF would then proceed via two 

mechanisms: lateral diffusion through the membrane, which 

would approach from the border of the footprint where the basal 

membrane is continuous with the apical surfaces, and exchange 

with the overlying cytosolic pool, which would occur uniformly 

throughout the footprint ( Fig. 1 B ). 

 Figure 2.    Fitting diffusion coeffi cients and 
dissociation time constants to Gaussian bleach 
profi les.  (A) Rationale behind the experi-
ment: illustrations show a GFP-tagged protein 
targeted to the plasma membrane; the mem-
brane-bound pool of protein is assumed to be 
at equilibrium with a smaller, cytosolic pool. 
After bleaching with a pulse of light from a 
laser beam with a Gaussian intensity profi le 
(i), the fl uorescence intensity profi le along the 
membrane will refl ect this profi le and have a 
defi ned Gaussian radius  r  and depth  B . Lat-
eral diffusion of bleached molecules along the 
plane of the membrane causes a widening of 
the profi le radius  r , while maintaining area 
under the curve (ii); conversely, exchange with 
the cytoplasmic pool maintains the radius but 
leads to a decrease in the area under the curve 
(iii). The model described in Eq. 2 accounts for 
both processes. (B) Fluorescence micrographs 
before bleaching of HEK cells expressing either 
single or tandem PH domains from PLC � 1 
fused to GFP, or PM-YFP. The enlarged images 
show the bleached area at indicated times 
after bleaching. Bar, 10  μ m. (C) Membrane 
fl uorescence intensity profi les at the indicated 
postbleach times for the PH-GFP cell shown in 
B; the lines represent fi ts produced from Eq. 2 
(see Materials and methods). (D and E) Data 
points show the changes in gaussian radius  r  
(D) or the area under the curve (E) from mem-
brane intensity profi les fi tted with Eq. 1; the 
lines show the predicted diffusion coeffi cients 
 D  and membrane dissociation times  �  estab-
lished by fi ts of these curves with Eq. 1.   
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curve; the rate of change of the square of the Gaussian radius 

with time is proportional to the apparent lateral diffusion coeffi -

cient  D  ( Fig. 2 A , ii;  Fig. 2 D ; and Materials and methods). 

Conversely, dissociation of bleached molecules from the mem-

brane and their replacement with unbleached protein causes a 

decrease in the area of this Gaussian profi le, without a change in 

the radius. Assuming the majority of bleached material is the 

protein bound to the membrane, and there is little change in the 

total cellular levels of unbleached protein, it has previously 

been shown that the dissociation rate constant governs fl uores-

cence recovery ( Bulinski et al., 2001 ). Thus, a membrane disso-

ciation time constant  �  can be found that should be the reciprocal 

of the dissociation rate constant ( Fig. 2 A , iii; and  Fig. 2 E ; see 

Discussion). A simple relationship ( Oancea et al., 1998 ) has 

been shown to account for simultaneous lateral diffusion  D  and 

dissociation  � , and can assign values to each parameter ( Fig. 2 C  

and Materials and methods). 

 The bleaching and subsequent imaging were performed 

with the pinhole on the confocal laser scanning microscope 

(CLSM) fully open in order to produce an extended bleach re-

gion above and below the plane of focus. Thus, recovery of fl uor-

escence from the z axis (which could occur by diffusion but not 

change the Gaussian radius) should be excluded. To test whether 

this assumption was correct, we used PM-YFP, which, being 

integral to the inner leafl et of the plasma membrane, should 

recover solely by lateral diffusion. As expected, this protein dis-

played lateral diffusion ( Fig. 2 D ) and usually showed no appar-

ent displacement from the membrane ( Fig. 2 E ). Considering all 

proteins, however, showed a uniform recovery of fl uorescence 

across the footprint, which suggests recovery via exchange with 

the overlying cytosol. 

 Together, these experiments suggest that over the scale of 

a cellular footprint ( � 10  μ m) and a time period of several sec-

onds, exchange between bound and unbound molecules domi-

nates recovery. However, because an extended time period was 

required for bleaching relative to the recovery time, we cannot 

determine quantitatively (a) the time course of this exchange and 

(b) whether there is lateral diffusion of the bound molecules. 

 Spot bleaching to measure lateral diffusion 
and membrane dissociation 
 To quantify lateral diffusion and membrane dissociation, we 

turned to a simpler bleaching paradigm ( Fig. 2 A ) developed by 

 Oancea et al. (1998)  to quantify lateral diffusion and dissocia-

tion of diacylglycerol-binding C1 domains. Here, a laser-scanning 

microscope is used, and bleaching is achieved via a brief 

(10 ms) pulse of light centered on the plasma membrane ( Fig. 2 B ). 

Because the laser beam has a Gaussian intensity profi le, a 

Gaussian distribution can be fi t to the bleach profi le ( Fig. 2 A , i), 

as long as the cellular fl uorescence is not completely photo-

bleached toward the center of the beam. Experiments with fi xed 

cells confi rmed these criteria, and Gaussian fi ts to the bleach 

profi le showed the maximum extent of bleaching in the center 

of the profi le to be 83  ±  1.4% ( n  = 6; unpublished data). Lateral 

diffusion of bleached molecules along the membrane causes a 

widening of this profi le while conserving the area under the 

 Table I.    Summary of results for all proteins analyzed in this study  

Notes Lipid bound Localization Ratio F PM /F Cyt D   �  Range (63%) Range 
(95%) 

 n 

  μ m 2 /s  s   μ m   μ m 

GFP None None Cytoplasm ND 31.36  ±  5.06 NA NA NA 13

PM-YFP None Integral PM ND 0.79  ±  0.06    2.12  ×  10 21  
 ±  2.11  ×  10 21 

 �  � 43

GFP-PH123-MyoX None PIP2 + PIP3 PM 1.15  ±  0.04 0.07  ±  0.02 6.96  ±  0.93 0.98 1.70 14

PH-PLC � 1-GFP None PIP2 PM 2.07  ±  0.12 1.24  ±  0.14 2.44  ±  0.27 2.46 4.26 52

PH-PLC � 1 R40L -GFP None None Cytoplasm ND 21.47  ±  3.01 NA NA NA 21

GFP-PH-PH-PLC � 1 None PIP2 PM 3.49  ±  0.17 0.24  ±  0.02 11.13  ±  1.83 2.29 3.97 33

PH-PH-PLC � 1-GFP None PIP2 PM 4.45  ±  0.40 0.28  ±  0.03 11.08  ±  2.01 2.50 4.33 30

PH R40L -PH-PLC � 1-GFP None PIP2 PM 2.13  ±  0.12 0.34  ±  0.05 2.87  ±  0.26 1.40 2.43 30

PH-PLC � 1-GFP CHO-M1 PIP2 PM 1.66  ±  0.11 0.60  ±  0.10 2.21  ±  0.22 1.63 2.82 15

GFP-PH-PH-PLC � 1 CHO-M1 PIP2 PM 2.99  ±  0.27 0.05  ±  0.01 7.03  ±  0.77 0.85 1.48 13

GFP-GAP1 m LY None Cytoplasm ND 3.96  ±  0.66 NA NA NA 28

Insulin PIP3 PM 1.52  ±  0.08 1.33  ±  0.29 3.42  ±  0.44 3.02 5.23 30

GFP-GAP1 IP4BP LY PIP2 PM 2.55  ±  0.11 0.35  ±  0.04 3.50  ±  0.26 1.57 2.72 40

Insulin PIP2 + PIP3 PM 4.44  ±  0.27 0.27  ±  0.02 6.46  ±  1.12 1.86 3.22 46

GFP-GAP1 IP4BP 10  μ M 
Wmn

None Cytoplasm ND 4.62  ±  0.54 NA NA NA 19

GFP-GAP1 IP4BP - � C2 LY PIP2 PM 2.33  ±  0.13 0.41  ±  0.04 3.34  ±  0.50 1.65 2.85 36

Insulin PIP2 + PIP3 PM 4.28  ±  0.27 0.49  ±  0.04 7.93  ±  1.78 2.79 4.84 38

GFP-PH-GAP1 IP4BP LY PIP2 PM 3.31  ±  0.18 0.59  ±  0.04 3.64  ±  0.38 2.07 3.58 51

Insulin PIP2 + PIP3 PM 4.99  ±  0.37 0.70  ±  0.04 7.37  ±  1.06 3.21 5.56 47

All experiments were in HEK cells unless otherwise stated. The localization of the protein (either plasma membrane [PM] or cytoplasm) is noted, along with the lipid 
bound (PtdIns(4,5) P  2  or PtdIns(3,4,5) P  3 ). The parameters are the ratio of fl uorescence at the PM verses the cytoplasm (ratio of  F  PM / F  Cyt ) as a crude index of membrane 
recruitment, lateral diffusion coeffi cient ( D ), and membrane dissociation time constant ( � ). The range refers to the expected distance traveled on the membrane for 
the proportion of these proteins indicated in parentheses, and are estimated as  √ (2  ×   D   ×   � ) for 63% and  √ (2  ×   D   ×  3  ×   � ) for 95%, respectively ( Teruel and Meyer, 
2000 ). NA, not applicable; ND, not determined.
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the tandem dimers showed much less fl uorescence in the cyto-

plasm ( Fig. 4 A ). 

 Unexpectedly, the tandem dimers also displayed a diffu-

sion coeffi cient approximately fourfold lower than for the single 

domains ( Fig. 4 B ). We were concerned that this may indicate 

a more complex interpretation of our parameters. In particular, 

we could envisage a scenario whereby random walks of the pro-

teins diffusing in the cytosol adjacent to the plasma membrane 

could lead to multiple collisions with the surface, and thus re-

peated incidences of lipid binding. Our membrane diffusion co-

effi cient would thus represent cytosolic diffusion interrupted by 

occasional binding to relatively slow lipid molecules. Because 

the tandem PH domain would have to release two lipid mole-

cules before it could undergo a period of rapid cytosolic diffu-

sion, this would happen less often and the protein would thus 

appear to diffuse much slower. 

 We addressed this issue with two approaches. First, we 

rendered the fi rst domain of a tandem dimer incapable of binding 

PtdIns(4,5) P  2  by mutation of arginine 40. As expected, this pro-

tein appeared similarly distributed to the single domain ( Fig. 4 A ) 

and yielded a similar  �  ( Fig. 4 C ). Yet, its apparent diffusion co-

effi cient was unchanged and identical to the wild-type tandem 

domains ( Fig. 4 B  and  Table I ). This indicates that  D  is not 

determined primarily by lipid binding, as posited in the preced-

ing paragraph, but is rather caused by some other property of 

the protein, most likely transient binding to other, less-mobile 

the cells imaged ( n  = 43), a range of dissociation time constants 

 �  were found, from 9.6 s to  � 10 22  s; the lower value suggests 

that in certain cases, diffusion from above and below the focal 

plane was contributing to recovery. However, the range of val-

ues collectively produces a mean value for  �  that is essentially 

infi nite ( Table I ), which led us to conclude that the model accu-

rately assigns lateral diffusion verses dissociation across a suffi -

cient sample size. 

 To further verify our approach, we considered a protein 

whose lateral diffusion coeffi cient had already been determined 

by single particle tracking (SPT), namely the three tandem PH 

domains from myosin X. Spot bleaching yielded an estimated  D  

of  � 0.07  μ m 2 /s ( Table I ), which is in excellent agreement with 

measurements by SPT in fi broblasts of 0.06 – 0.1  μ m 2 /s ( Mashanov 

and Molloy, 2007 ). The protein also displayed an apparent  �  of 

 � 7 s ( Table I ); note that this is longer than the time for which a 

single protein can be tracked (because of bleaching), which is 

why this parameter could not be determined by SPT ( Mashanov 

and Molloy, 2007 ). 

 This model also assumes that lateral diffusion in the cyto-

plasm is rapid and thus does not affect the plasma membrane 

profi le. To test this assumption, we also determined cytoplas-

mic diffusion coeffi cients, again from spot bleaching and the 

subsequent rate of increase of a Gaussian radius ( Fig. 3 ), as 

described in  Seiffert and Oppermann (2005) . Cytosolic diffu-

sion of GFP was estimated as  � 31  μ m 2 /s ( Table I ), which is 

consistent with previous estimates; e.g.,  Braeckmans et al. 

(2007)  and  Brough et al. (2005) . 

 Studies of the PtdIns(4,5)P 2 -binding PH 
domain form PLC � 1 
 The PH domain from PLC � 1 binds with high affi nity and speci-

fi city to PtdIns(4,5) P  2  both in vitro ( Garcia et al., 1995 ;  Lemmon 

et al., 1995 ) and in cells ( V á rnai and Balla, 1998 ), where it is lo-

calized to the plasma membrane ( Fig. 4 A ). Lateral diffusion of 

this probe on the membrane was rapid,  � 1.2  μ m 2 /s ( Fig. 4 B  

and  Table I ; see  Fig. 2 D  for an example), a speed similar to that 

of its PtdIns(4,5) P  2  ligand ( Golebiewska et al., 2008 ), which 

suggests that the lipid limits diffusion. Consistent with this, we 

used a point mutation of arginine 40, which renders the domain 

incapable of high affi nity PtdIns(4,5) P  2  binding ( V á rnai and 

Balla, 1998 ), leading to a cytosolic localization ( Fig. 4 A ). The 

cytosolic protein is very much more mobile than the membrane-

bound wild type, with a  D  of  � 21  μ m 2 /s ( Fig. 4 B  and  Table I ; 

see  Fig. 3  for an example). 

 The apparent membrane dissociation time for PH-PLC � 1 

at the plasma membrane was 2.4 s ( Fig. 4 C  and  Table I ; see 

 Fig. 2 E  for an example). We reasoned that if this time constant 

refl ects the time a typical molecule spends bound to a lipid (i.e., 

the inverse of the off-rate constant), then fusing two such PH 

domains in tandem should cause greater avidity and thus a 

longer  � .  Fig. 4 C  shows that such a tandem dimer, tagged at the N 

or C terminus, exhibited an apparent  �  approximately fourfold 

longer than that of a single domain. That this refl ects increased 

membrane affi nity was further indicated by the cellular local-

ization: whereas the single domains showed mainly membrane 

fl uorescence with a weaker haze of unbound protein in the cytosol, 

 Figure 3.    Estimating cytoplasmic diffusion coeffi cients.  (A) A HEK cell ex-
pressing the R40L mutant of the PH-PLC � 1-GFP; the enlarged images show the 
strip of the cell imaged at the indicated times after bleaching. Bar, 10  μ m. 
(B) Fluorescence intensity profi les across the bleached spot at the indicated times 
after bleaching; lines are fi tted from the Gaussian function described in Eq. 3. 
(C) Increase in the square of the Gaussian width  w  with time is fi tted in terms of 
the diffusion coeffi cient  D  using Eq. 4; see Materials and methods for details.   
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 We observed (a) that the value of  �  in response to PLC ac-

tivation or by bleaching was signifi cantly longer for the tandem 

dimer than the isolated domains and that, (b) importantly, for 

each protein,  �  was not signifi cantly different when comparing 

the values derived from the two methods ( Fig. 5 C ). Therefore, 

we conclude that the membrane dissociation time  �  does indeed 

represent the time for individual protein – lipid complexes to dis-

sociate; i.e., it is the reciprocal of the dissociation rate constant 

(and so is related to affi nity). 

 Studies of the RAS GTPase-activating 
proteins GAP1 m  and GAP1 IP4BP  
 GAP1 m  contains a PH domain with high affi nity for PtdIns

(3,4,5) P  3 , and so translocates to the plasma membrane in re-

sponse to PI 3-kinase activation ( Lockyer et al., 1999 ). HEK 

cells transfected with GFP-GAP1 m  and incubated in serum-

free medium and a PI 3-kinase inhibitor (to ensure no produc-

tion of PtdIns(3,4,5) P  3 ) showed cytosolic fl uorescence ( Fig. 6 A ) 

and a rapid diffusion coeffi cient of  � 4  μ m 2 /s ( Fig. 6 B  and 

 Table I ). Conversely, addition of insulin to the cells in serum-

containing medium induces PtdIns(3,4,5) P  3  synthesis and par-

tial translocation of the protein to the plasma membrane ( Fig. 6 A ), 

where, like PH-PLC � 1, it exhibits a slower  D  of around  � 1.3 

 μ m 2 /s ( Fig. 6 B ) and a  �  of  � 3.4 s ( Table I ). This confi rms that 

when bound to membranes, GFP-GAP1 m  retains a high mobil-

ity ( Brough et al., 2005 ), though that earlier study overesti-

mated the  D  by not taking dissociation into account, thus 

missing the detectable decrease in  D  value caused by mem-

brane binding ( Table I ). 

membrane components. If such protein – protein interactions are 

to regulate  D  independently of  � , they must self-evidently occur 

over a faster timescale than lipid – protein interactions, so again 

it is important to confi rm that our  �  calculations quantitatively 

refl ect protein – lipid dissociation. 

 So, in a second approach, we estimated the membrane 

dissociation time via a different and completely independent 

method. Activation of PLC has been shown to trigger dissocia-

tion of PH-PLC � 1 from the plasma membrane in response to 

PtdIns(4,5) P  2  breakdown into Ins(1,4,5) P  3  and diacylglycerol 

( V á rnai and Balla, 1998 ). CHO cells expressing the M1 receptor 

and GFP-tagged single or tandem PH domains showed rapid dis-

sociation of membrane fl uorescence in response to 1 mM carba-

chol ( Fig. 5 A ). The concomitant increase in cytosolic fl uorescence 

could be fi tted by a single exponential time constant ( Fig. 5 B ). 

 Making the assumption that PLC cannot hydrolyze PtdIns

(4,5) P  2  when it is bound by a PH domain, we can envisage the 

following scenarios: if a PH domain makes multiple, transient in-

teractions with the lipid while diffusing through the cytosol in the 

plane of the membrane, then activation of PLC will reduce the 

free PtdIns(4,5) P  2  levels, thus decreasing the chances of the PH 

domain meeting another lipid and hence accelerating its dissocia-

tion from the membrane. So, its  �  by PLC activation would be 

shorter than that measured at steady state by spot bleaching. Alter-

natively, if the steady-state measurement refl ects the time for a 

single PtdIns(4,5) P  2 -PH domain complex to dissociate, this value 

of  �  will limit how fast the protein can dissociate after activation 

of PLC because the enzyme will have to  “ wait ”  for the PH domain 

to release its bound lipid before the latter can be hydrolyzed. 

 Figure 4.    Dissociation and diffusion of PH-
PLC � 1.  (A) Fluorescence micrographs of HEK 
cells expressing single or tandem PH domains 
from PLC � 1 fused to GFP; where indicated, the 
domains carry the R40L point mutation in one 
of the domains. The graph on the right summa-
rizes the ratio of fl uorescence intensity at the 
plasma membrane relative to the cytosol for 
all cells analyzed, as described in Materials 
and methods. Bar, 10  μ m. (B) Fitted diffusion 
coeffi cients; PH-GFP and PH R40L -GFP are signifi -
cantly different from each other and the other 
proteins (P  <  0.001, Kruskall-Wallis test with 
a post hoc Dunn ’ s multiple comparison test). 
(C) Fitted membrane dissociation time con-
stants  � ; GFP-PH-PH and PH-PH-GFP were signifi -
cantly different from PH-GFP and PH R40L -PH-GFP 
(P  <  0.001, Kruskall-Wallis test with post hoc 
Dunn ’ s multiple comparison test). Data are 
means  ±  SEM.   D
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accompanied by a nearly twofold increase in the dissociation 

time ( Fig. 7 C ). This result was unexpected because even at 

the height of PI 3-kinase activation, plasma membrane PtdIns

(3,4,5) P  3  levels reach only a fraction ( < 10%) of PtdIns(4,5) P  2  

levels ( Stephens et al., 1993 ), but it does suggest that GAP1 IP4BP  

can recognize receptor-generated PtdIns(3,4,5) P  3 , and this in turn 

points to the possibility that it might be a PtdIns(3,4,5) P  3  effector. 

 GAP1 IP4BP  can be displaced from the membrane by high 

concentrations of wortmannin, most likely because of inhibition 

of PI 4-kinase activity and depletion of PtdIns(4,5) P  2  ( Cozier 

et al., 2000 ). Incubation of cells with 10  μ M wortmannin led to 

cytosolic localization of the protein, where it diffused much 

faster at  � 4.6  μ m 2 /s ( Table I ), which is very similar to GAP1 m  

(as seen also by  Brough et al., 2005 ). 

 The PH domain of GAP1 IP4BP  was shown to be necessary 

for its inositol lipid-dependent targeting to the plasma mem-

brane ( Lockyer et al., 1997 ). To investigate if it was also suffi cient 

to explain the protein ’ s slower lateral mobility and dissociation 

compared with GAP1 m , we produced two truncations. First, we 

removed the two N-terminal C2 domains ( � C2), as these are 

known to contribute to membrane targeting in other proteins ( Cho 

and Stahelin, 2005 ;  Lemmon, 2008 ). Second, we produced the 

isolated PH domain ( Fig. 7 A ). Both truncations localized 
 The highly homologous GAP1 IP4BP  makes an interesting 

contrast with GAP1 m  because in addition to binding PtdIns

(3,4,5) P  3 , GAP1 IP4BP  protein also binds with high affi nity to 

PtdIns(4,5) P  2  ( Cozier et al., 2000 ). As a result, this protein is 

constitutively targeted to the plasma membrane ( Fig. 7 A ). 

Under conditions of no PtdIns(3,4,5) P  3  production, there is a slight 

cytosolic haze of unbound protein ( Fig. 7 A ), but the majority is 

bound to the plasma membrane, where it binds with an apparent 

 �  of  � 3.5 s and moves with a lateral diffusion coeffi cient some-

what slower than GAP1 m  at  � 0.3  μ m 2 /s (see also  Brough et al., 

2005 ). Activation of PtdIns(3,4,5) P  3  synthesis in the cells leads 

to a minor effect on the lateral diffusion coeffi cient ( Fig. 7 B  

and  Table II ). However, it causes an increase in the ratio of 

plasma membrane to cytosolic fl uorescence ( Fig. 7 A ), as the 

cytosolic haze is no longer discernable in most cells. This was 

 Figure 5.    Membrane dissociation of PH-PLC � 1 in response to carbachol 
(CCh).  (A) CHO-M1 cells expressing single or tandem PH domains either 
before or at the indicated times after addition of 1 mM CCh. Bar, 10 
 μ m. (B) Normalized cytosolic fl uorescence intensity for the cells shown in 
A; CCh was added at time 0. Data are fi tted to a single exponential as-
sociation (red lines). (C) Before addition of CCh, cells were subjected to 
a spot-bleach experiment.  �  values for PH-PH-GFP are signifi cantly greater 
than PH-GFP (P  <  0.0001, Mann-Whitney test) by bleaching or after CCh 
addition, but were not different between methods for either PH-GFP (P = 
0.85, paired test) or GFP-PH-PH (P = 0.13). Data are means  ±  SEM.   

 Figure 6.    Diffusion of GAP1m in the presence and absence of PtdIns
(3,4,5) P  3 .  (A) Fluorescence micrographs of HEK cells expressing GFP-
GAP1 m  after 1 h stimulation with 100 nM insulin in 10% serum, or 5  μ M 
LY294002 in serum-free medium as indicated. Bar, 10  μ m. (B) Diffusion 
coeffi cients under the above conditions; cytosolic diffusion in the presence 
of LY294002 is signifi cantly faster than on the membrane in the presence 
of insulin (P  <  0.0001, Mann-Whitney test). Data are means  ±  SEM.   

 Table II.    Differences between diffusion coeffi cients of GAP1 IP4BP  
truncations  

 � C2 PH

   5  μ M LY294002

Full length NS P  <  0.01

 � C2 NA NS

   100 nM insulin

Full length P  <  0.001 P  <  0.001

 � C2 NA P  <  0.05

Results are from a Kruskal-Wallis test with a post hoc Dunn ’ s multiple compari-
son test, and are considered signifi cant at P  <  0.05. NA, not applicable; NS, 
not signifi cant.
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although we cannot reach a defi nitive conclusion from these 

data as to whether the C2 domains infl uence this lateral mobility. 

 Discussion 
 Our results show that the PH domain – containing pro-

teins studied here spend seconds bound to the membrane but, 

during this short interaction, are able to undergo appreciable 

lateral diffusion of  � 1  μ m 2 /s. Using these values, the mean 

distance proteins will travel on the membrane before a defi ned 

fraction dissociates can be estimated as equal to  √ (2  ×   D   ×   � )  

 (Teruel and Meyer, 2000 ); these estimated values are also pre-

sented in  Table I  as “Range” of a protein before either 63% or 

identically to the full-length protein, with the exception of the 

PH domain, which was partially localized to the nucleus in the 

absence of PtdIns(3,4,5) P  3 , explaining its slightly high plasma 

membrane – to – cytosolic fl uorescence ratio ( Fig. 7 A ). Notably, 

in the presence or absence of PtdIns(3,4,5) P  3  production,  �  did 

not differ from the full-length protein ( Fig. 7 C  and  Table III ), 

which confi rms that the PH domain is not only suffi cient for 

inositol lipid binding of GAP1 IP4BP  but also dictates the kinetics 

of that binding. 

 There was little effect of PtdIns(3,4,5) P  3  generation on 

the lateral diffusion coeffi cient of the isolated PH domain of 

GAP1 IP4BP  ( Fig. 7 B ), and it clearly showed a  D  that was approx-

imately twofold faster than the full-length protein with or with-

out PtdIns(3,4,5) P  3  and was also faster than the  � C2 truncation 

( Fig. 7 B  and  Table II ). Note that the difference between full-

length and  � C2 protein was less clear, as the only signifi cant 

difference was in the presence of PtdIns(3,4,5) P  3  ( Table II ). We 

conclude that, as for the PH domain from PLC � 1, lipid binding 

to the PH domain largely dictates the membrane dissociation time. 

Lateral diffusion, however, is limited by interactions beyond the 

lipid – protein interaction, likely with other proteins, which, as 

discussed earlier, would be over a faster timescale than the lipid –

 protein interaction. Moreover, in the case of GAP1 IP4BP , these 

interactions involve parts of the protein beyond the PH domain, 

 Figure 7.    Diffusion and dissociation of GAP1 IP4BP  bound to PtdIns(4,5) P  2   ±  PtdIns(3,4,5) P  3 .  (A) Domain organization in the primary sequence of GAP1 IP4BP  
and its truncations. The fl uorescence micrographs show HEK cells expressing the indicated constructs after 1 h stimulation with 100 nM insulin + 10% 
serum, 5  μ M LY294002, or 10  μ M wortmannin. Bar, 10  μ m. (inset) The graph shows the ratio of fl uorescence intensity at the plasma membrane relative 
to the cytosol for all cells analyzed. The fi tted diffusion coeffi cients  D  and membrane dissociation times  �  are shown in B and C, respectively. Results of 
statistical analysis are shown in  Tables II and III . Data are means  ±  SEM.   

 Table III.    GAP1 IP4BP  and truncations treated with insulin versus 
LY294002  

GAP1 IP4BP Ratio (F PM /F Cyt ) D  � 

Full length P  <  0.0001 P = 0.0633 P = 0.0006

 � C2 P  <  0.0001 P = 0.2077 P  <  0.0001

PH P  <  0.0001 P = 0.0373 P  <  0.0001

Results are from a Mann-Whitney test. Results are considered signifi cant at 
P  <  0.05. No difference between full length,  � C2, or PH was observed for the 
values of  �  after either insulin or LY294002 treatment (Kruskal-Wallis test with a 
post hoc Dunn ’ s multiple comparison test, P  >  0.05).
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brane components ( Golebiewska et al., 2008 ). SPT has shown 

that full-length PLC � 1 shows anomalous diffusion that is con-

sistent with trapping in 0.7- μ m membrane partitions ( Mashanov 

and Molloy, 2007 ). A popular idea is that such partitions might 

consist of viscous, cholesterol-enriched microdomains ( “ rafts ” ). 

However, the inositol lipids contain polyunsaturated fatty acid 

tails, and so they have been shown to partition into cholesterol-

enriched fractions only through electrostatic interactions be-

tween the head group and polybasic proteins such as NAP-22 

( Epand et al., 2004 ). PH domains bind inositol lipids via a deep 

canonical binding pocket ( Lemmon, 2008 ), effectively screen-

ing the head group. This would exclude head group – assisted 

partitioning, and so we would expect PH domain – lipid com-

plexes to be excluded from any such localization. 

 The membrane dissociation times described here vary be-

tween 2 and 7 s ( Table I ). As discussed in the results, these times 

most likely refl ect the dissociation rate constants ( k  off ) for the 

lipid – protein complexes, and are therefore a determinant of af-

fi nity between a PH domain and its ligand, given by  K D   =  k  off / k  on . 

This leads to interesting implications for the kinetics and affi n-

ities of PH domain – inositol lipid interactions. Dissociation con-

stants ( K  D ) for high-affi nity PH domain interactions of the type 

studied here are in the micromolar range ( Garcia et al., 1995 ; 

 Lemmon et al., 1995 ;  Cozier et al., 2000 ); so, assuming that 

these estimates apply in vivo, our measured dissociation times in 

turn lead to  k  on  values for binding of the order of 10 5  M  – 1 s  – 1 , sig-

nifi cantly slower than a diffusion-limited binding (which would 

be nearer to 10 7  M  – 1 s  – 1 ;  Shoup et al., 1981 ;  Lauffenburger and 

Linderman, 1996 ). A similarly low value was estimated from 

in vitro binding experiments with several PH domains ( Manna 

et al., 2007 ) and suggests that formation of an inositol lipid – PH 

domain complex follows more complex, reaction-limited kinet-

ics. Such kinetic parameters can include accessory interactions 

with other anionic lipids within the membrane ( Garcia et al., 

1995 ;  Corbin et al., 2004 ) or possible hydrophobic interactions 

between the bound PH domain and the membrane ( Flesch et al., 

2005 ;  Manna et al., 2007 ). Nonetheless, an on-rate constant of 

10 5  M  – 1 s  – 1  predicts translocation of proteins in the nanomolar-

to-micromolar concentration range to inositol lipid signals with 

micromolar concentration ( Stephens et al., 1993 ) within sec-

onds, which is consistent with experimental measurements for 

translocation of PH domains to newly generated inositol lipids; 

e.g.,  Haugh et al. (2000)  and  V á rnai and Balla (1998) . 

 Materials and methods 
 DNA constructs 
 PH-PLC � 1-GFP wild type and R40L mutant ( V á rnai and Balla, 1998 ), and 
the GFP- PH-PLC � 1  ×  2 ( van Rheenen et al., 2005 ) were gifts of T. Balla 
(National Institute of Child Health and Human Development, Bethesda MD) 
and K. Jalink (the Netherlands Cancer Institute, Amsterdam, Netherlands). 
The tandem PH-PH-GFP and PH(R40L)-PH-GFP from PLC � 1 were made 
by insertion of a second, wild-type domain in-frame into the respective 
PH-PLC � 1-GFP constructs at BamH1 sites, as described previously ( van 
Rheenen et al., 2005 ). PH123-MyoX ( Mashanov et al., 2004 ) was a gift 
of M. Peckham (University of Leeds, Leeds, England, UK). GFP-GAP1 m  and 
GFP-GAP1 IP4BP  were as described previously ( Lockyer et al., 1997 ). The 
isolated PH domain of GAP1 IP4BP  was amplifi ed from the full-length con-
struct via PCR using the primers 5 � -CG GAATTC TGTGCTTAAAGAAGGG-
TTC-3 �  (forward) and 5 � -TGCTCGCCCTGCACTGGCTAA GGTACC CC-3 �  

95% dissociates. What is clear is that, despite appreciable 

mobility on the membrane, the inositol lipid-bound proteins 

studied here do not travel farther than a distance of  � 1 – 3 μm 

from where they bind. This range is a little farther than that 

described for the  Dictyostelium discoideum  CRAC protein, 

which binds PtdIns(3,4,5) P  3  with an estimated  �  of 0.12 s and 

diffuses at 0.14  μ m 2 /s ( Matsuoka et al., 2006 ), giving an esti-

mated range of  � 0.2  μ m. 

 Our estimates are consistent with the qualitative data ob-

tained by TIR bleaching ( Fig. 1 ). Consider a typical HEK cell 

with a footprint 16  μ m in diameter: it might take a single mole-

cule of PH-PLC � 1  � 40 s to diffuse from the periphery to the 

center of the cell, but it dissociates with a  �  of  � 2.4 s ( Table I ). 

Indeed, during the 8-s bleaching period, the majority of PH-

PLC � 1 and GAP1 IP4BP  molecules will have dissociated from the 

membrane, explaining why mobility on the scale of a cellular 

footprint ( � 10  μ m) is dominated by dissociation from the mem-

brane, as opposed to lateral diffusion. 

 This limited diffusion of inositol lipid-binding proteins 

has important functional implications. Free diffusion of the ino-

sitol lipids themselves, coupled to subcellular distributions of 

the enzymes that modify their head groups, can lead to the gen-

eration of local inositol lipid signals: many studies highlight the 

importance of PtdIns(3,4,5) P  3  generated at the leading edge of  

cells for effi cient cell motility ( Kolsch et al., 2008 ), and local 

PtdIns(3,4,5) P  3  signals are also required for epithelial cell po-

larity ( Gassama-Diagne et al., 2006 ). Other examples include 

local generation of PtdIns(4,5) P  2  at the cleavage furrow during 

cytokinesis ( Emoto et al., 2005 ;  Field et al., 2005 ) and at re-

gions of endocytosis and actin dynamics in adipocytes ( Huang 

et al., 2004 ). Notably, all these locally produced inositol lipid 

signals have dimensions of micrometers. Hence, the limited dif-

fusion of effector proteins described here ( Table I ) show that 

once recruited to these regions, the rapid diffusion of the pro-

teins will allow them to thoroughly explore the locality of the 

signal and make functional interactions, whereas their dissocia-

tion ensures the lipid – effector complexes do not stray too far 

from the locally directed lipid synthesis. This provides a mecha-

nism for inositol – lipid-mediated recruitment of proteins to spe-

cifi c regions of the plasma membrane. 

 The upper limit of the diffusion coeffi cients for the pro-

teins described herein ( Table I ) are in good agreement with 

those described for the lipids themselves ( Haugh et al., 2000 ; 

 Yaradanakul and Hilgemann, 2007 ;  Golebiewska et al., 2008 ) at 

 � 1  μ m 2 /s; this makes sense given that the higher viscosity of the 

lipid bilayer produces a greater hindrance to lateral diffusion 

than the aqueous cytosol ( Saffman and Delbr ü ck, 1975 ). How-

ever, we are left with the curious observation that lateral diffu-

sion on the membrane varies over an order of magnitude for the 

different proteins, irrespective of their membrane dissociation 

times (see  Table I ). Short-lived interactions or retention in mem-

brane corrals that hinder free diffusion manifest as a slower dif-

fusion coeffi cient when they occur over a much faster time scale 

than the measurements performed in this study ( Ritchie et al., 

2005 ). A similar suggestion has been made for PtdIns(4,5) P  2 , 

which exhibits slower diffusion in cells than in vitro, suggesting 

that the major fraction is transiently bound by immobile mem-
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centered on the plasma membrane was divided by the same size rectangle 
placed over the cytosol, as described previously ( Teruel and Meyer, 2000 ). 

 Estimating the diffusion coeffi cient and dissociation times 
of membrane-bound proteins 
 We have used the approach defi ned by  Oancea et al. (1998) ; for a discus-
sion of the principle behind this technique, see Results. 

 Image stacks from spot bleach experiments in the Leica image fi le 
(lif) format were imported into ImageJ using the LOCI bioformats importer 
(http://www.loci.wisc.edu/ome/formats.html). Stacks were subject to 
3  ×  3 smoothing, and the 10 prebleach frames were averaged to form a pre-
bleach baseline, to which all subsequent frames were normalized. Next, 
the segmented line tool was used to trace a line along the plasma mem-
brane across the bleached spot; the fl uorescence intensity profi le along this 
line was then recorded for several postbleach frames in the normalized 
image stack, using the built-in  “ record profi le ”  macro. These data were then 
copied into an Excel spreadsheet (Microsoft) and normalized to the total 
cellular fl uorescence (relative to the fi rst frame) at each time point to correct 
for photobleaching during acquisition. 

 Corrected intensity profi les were then copied into Prism 4 (Graph-
Pad Software) and fi t independently with the following Gaussian function: 
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 where  F  is the normalized fl uorescence intensity,  c  represents the 
center of the bleach profi le (of distance  x , in  μ m),  B  represents the depth of 
the Gaussian profi le, and  r  represents the Gaussian radius at  e   – 1 . Fits to 
these three parameters from the fi rst time point were then used to defi ne  B  0 , 
 r  0 , and  c  for the following function ( Oancea et al., 1998 ): 
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 where  D  is the apparent lateral diffusion coeffi cient (in  μ m 2 /s) and  �  
is the apparent membrane dissociation time (in seconds). Thus, this Gauss-
ian function fi nds a single value of  D  and  �  for the change in shape of all 
the profi les with time caused by lateral diffusion and membrane dissocia-
tion, respectively. 

 A semi-independent check was then performed for the fi tted values 
from Eq. 2. First, the values of  r  2  were calculated from those values fi tted 
from Eq. 1; these were plotted against time, and a line on the graph was 
defi ned in terms of the value of  D  obtained from Eq. 2 using: 

   r Dt r2
0
24= + .    

 Second, the relative area under the curves was estimated as  √ (2 � ) Br , 
normalized to the fi rst postbleach frame, and plotted against time. Again, 
a curve was plotted using Eq. 2 ’ s fi tted value of  � : relative area =  e   � (   t   / � ) . 
This allowed the goodness of fi t for the defi ned curves from Eq. 2 to be in-
spected, relative to the independent values of  r  and  B  fi tted using Eq. 1. 

 Estimating the cytosolic diffusion coeffi cient of soluble proteins 
 This technique estimates the diffusion coeffi cient from the rate of expansion 
of a Gaussian bleach profi le with time, as described by  Seiffert and 
Oppermann (2005) . Image stacks were normalized as described earlier 
for membrane proteins, and a straight line through the bleach spot was re-
corded from several time points. These profi les were bleach-corrected 
as for membrane proteins, and fi t in Prism 4 using the following Gauss-
ian function: 
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 where  F  is the normalized fl uorescence intensity,  B  is the depth of bleach-
ing at the center of the spot  c , and  w  is the full width at half maximum of 
the Gaussian profi le. Fitted values of  w  2  were then plotted against their re-
spective time  t , and the diffusion coeffi cient fi t from: 

   w Dt w2
0
22= +    (4). 

(reverse), and cloned into pEGFP-C1 (Clontech Laboratories, Inc.) at 
EcoR1 – BamH1 sites (underlined). The  � C2 domain truncation was ampli-
fi ed using 5 � -GC GAGCTC GCCTAAAGCCAGACGACC-3 �  (forward) and 
5 � -CCTCCACTCATTCCATTTAA GGTACC GG-3 �  (reverse), and cloned into 
pEGFP-C1 at Sac1 – Kpn1 sites (underlined). PM-YFP is the palmitoylated/
myristoylated N-terminal 11 residues of human Lyn kinase (MGCIKSKG-
KDS) cloned into pEYFP-N1 (Clontech Laboratories, Inc.) at EcoR1 – BamH1 
sites, and was a gift of T. Meyer (Stanford University, Stanford, CA). Iso-
lated GFP was expressed from the pEGFP-N1 vector (Clontech Laborato-
ries, Inc.). All constructs were subject to dideoxy sequencing. 

 Cell culture and transfection 
 CHO cells expressing the M1 receptor (CHO-M1) were a gift from M. 
Edwardson (University of Cambridge, Cambridge, England, UK). CHO-M1 
and HEK 293 cells were maintained in DME supplemented with 10% 
FCS, 100  μ g/ml penicillin, 100 units/ml streptomycin. 1 d before trans-
fection, 50,000 – 100,000 cells were seeded in the central 12-mm glass-
bottomed well of a 35-mm dish (WillCo Wells), which had been coated 
with poly- L -lysine. Cells were transfected with 2  μ g DNA using 6  μ g Lipo-
fectamine 2000 (Invitrogen) in Opti-MEM (Invitrogen) according to the 
manufacturer ’ s instructions. After 24 h, cells were rinsed and then im-
aged in DME without phenol red (Invitrogen) containing 25 mM Hepes, 
and supplemented with 10% FCS. 100 nM insulin (Sigma-Aldrich) was 
included where indicated, and the cells were preincubated for 1 h at 
37 ° C before imaging. When cells were treated with 5  μ M LY294002 
(Sigma-Aldrich), 10% FCS was omitted and cells were preincubated for 
1 h at 37 ° C before imaging. 

 TIRF microscopy 
 A custom-built  “ through-the-lens ”  TIRF microscope was used as described 
previously ( Holt et al., 2004 ); essentially, this consisted of a modifi ed in-
verted microscope (Axiovert S100TV; Carl Zeiss, Inc.) fi tted with a 60 ×  plan 
apochromatic 1.45 NA oil immersion objective (Olympus). Images were ac-
quired at  � 5 frames/s on a Pentamax cooled charge-coupled device cam-
era (Princeton Instruments) controlled by IPlab software (version 3.9; BD). 
Excitation was with the 488-nm line of an Argon ion laser (100 mW, Melles 
Griot), power was set to 80%, and the beam was attenuated by 99% via a 
neutral density fi lter. Photobleaching within the evanescent fi eld was achieved 
by removal of the neutral density fi lter for 8 s. 20 frames were acquired be-
fore bleaching, and postbleach images were acquired until fl uorescence re-
covery was complete. Experiments were performed at room temperature. 

 Image stacks were exported from the IPlab software as TIFF fi les. 
These were opened with ImageJ (version 1.38; http://rsb.info.nih.gov/ij/) 
and converted to 8 bit. The  “ image calculator ”  function was used to sub-
tract the fi rst postbleach image intensity from the other images in the stack 
to highlight the fl uorescence recovery. Contrast was then adjusted to show 
only the fi rst 100 gray levels (see Fig. S1). 

 Spot bleaching experiments 
 Experiments were conducted on a laser scanning confocal microscope 
(SP5 TCS; Leica) attached to a DMI6000 inverted microscope equipped 
with a 63 ×  plan-apochromatic 1.4 NA oil immersion objective (Leica). 
The microscope was fi tted with an environmental chamber (Solent Scien-
tifi c) that maintained a steady temperature of 37 ° C throughout the experi-
ments. The pinhole was opened fully (optical section,  � 1  μ m) to permit 
maximum light acquisition, and to defocus the bleaching light beam and 
effectively bleach fl uors above and below the focal plane. FRAP experi-
ments were performed using the FRAP wizard within the LAS AF soft-
ware= (version 1.8.2; Leica). In brief, images were scanned in bidirectional 
scanning mode using a line average of 2 (to reduce noise) at the maxi-
mum scan speed (1400 Hz), using either the 488-nm or 514-nm laser 
lines of an Argon laser for GFP and YFP, respectively. For membrane pro-
teins, images of 256  ×  256 pixels were acquired, giving  � 5 frames/s. 
For cytosolic proteins, a strip across the center of the cell of 256  ×  16 – 67 
pixels was imaged in order to increase the frame rate to up to 50 frames/s 
without line averaging. 10 prebleach frames were acquired at attenu-
ated laser power (typically 3 – 5%) before bleaching with 100% laser 
power in a focused spot, either on the membrane or centered in the cyto-
sol, for 10 ms. Fluorescence recovery was then followed until recovery 
was complete. Emitted light was collected between 500 and 550 nm 
(GFP), or 525 and 575 nm (YFP). Transmitted light (bright fi eld or differ-
ential interference contrast) images were scanned in parallel to verify that 
cells were healthy and adherent. 

 To estimate the ratio of fl uorescence at the plasma membrane relative 
to the cytosol, mean pixel intensity in a small rectangular region of interest 
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