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    Introduction 
 The nuclear lamina underlies the inner nuclear membrane and 

is therefore an integral part of the nuclear envelope. The 

major components of the lamina are nuclear lamins, intermedi-

ate fi lament proteins encoded by three genes in humans, 

 LMNA ,  LMNB1 , and  LMNB2 . The  LMNA  gene encodes 

A-type lamins, whereas the B-type lamins, lamin B1 and lam-

ins B2 and B3, are encoded by the  LMNB1  and  LMNB2  genes, 

respectively. A-type lamins are developmentally regulated 

and are expressed in differentiated cells, whereas at least one 

B-type lamin is expressed in all vertebrate cells (for review 

see  Goldman et al., 2002 ). The nuclear lamina provides struc-

tural support and is involved in anchoring chromatin to the 

nuclear envelope in DNA replication and repair and in the 

control of gene expression ( Worman and Courvalin, 2005 ; 

 Tang et al., 2008 ). It is through these mechanisms that nuclear 

shape, and thus the nuclear lamina, is associated with the nor-

mal aging process as well as with premature aging disorders 

( Haithcock et al., 2005 ;  Lans and Hoeijmakers, 2006 ;  Scaffi di 

and Misteli, 2006 ). 

 We and others have previously reported that chromatin 

interactions with the nuclear envelope play important roles in 

the control of gene expression ( Hewitt et al., 2004 ;  Zink et al., 

2004 ;  Chuang et al., 2006 ;  Malhas et al., 2007 ;  Guelen et al., 

2008 ). An alternative mechanism by which the nuclear enve-

lope can regulate gene expression is by associating with spe-

cifi c transcription factors ( Heessen and Fornerod, 2007 ), such 

as AP-1, sterol regulatory element-binding protein, MOK2, 

and the octamer transcription factor 1 (Oct-1), and modulating 

their activities ( Imai et al., 1997 ;  Dreuillet et al., 2002 ,  2008 ; 

 Lloyd et al., 2002 ;  Capanni et al., 2005 ;  Ivorra et al., 2006 ). 

Oct-1 is a ubiquitous transcription factor known to have both 

activating and silencing activities. Two lines of evidence sug-

gest a role for the nuclear lamina in associating with and regu-

lating the activity of Oct-1. First, Oct-1 has been shown to be 

present in an insoluble nuclear fraction ( Kim et al., 1996 ), 

suggesting that it may be associated with the nuclear lamina. 

Second,  Imai et al. (1997)  have shown that the dissociation of 

Oct-1 from the nuclear periphery is accompanied by the up-

regulation of the interstitial collagenase gene and is associated 

with cellular aging. 

 I
nteraction of lamins with chromatin and transcription 

factors regulate transcription. Oct-1 has previously been 

shown to colocalize partly with B-type lamins and 

is essential for transcriptional regulation of oxidative stress 

response genes. Using sequential extraction, co-immuno-

precipitation (IP), fl uorescence loss in photobleaching, 

and fl uorescence resonance energy transfer, we confi rm 

Oct-1 – lamin B1 association at the nuclear periphery and 

show that this association is lost in  Lmnb1  � / �    cells. We 

show that several Oct-1 – dependent genes, including a 

subset involved in oxidative stress response, are dys-

reg ulated in  Lmnb1  � / �    cells. Electrophoretic mobility shift 

assay and chromatin IP reveal that Oct-1 binds to the 

putative octamer-binding sequences of the dysregulated 

genes and that this activity is increased in cells lacking 

functional lamin B1. Like  Oct1  � / �    cells,  Lmnb1  � / �    cells 

have elevated levels of reactive oxygen species and are 

more susceptible to oxidative stress. Sequestration of Oct-1 

at the nuclear periphery by lamin B1 may be a mecha-

nism by which the nuclear envelope can regulate gene 

expression and contribute to the cellular response to stress, 

development, and aging.
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susceptible to oxidative stress than normal mouse fi broblasts as a 

result of the same gene expression abnormalities. We demonstrate 

that the release of Oct-1 in the  Lmnb1  � / �    cells results in increased 

occupancy of its binding sites in target genes that are dysregulated in 

Oct-1 –  and lamin B1 – defi cient cells. Collectively, our results pro-

vide evidence that lamin B1 at the nuclear lamina directly sequesters 

Oct-1 and as a result can regulate the expression of genes involved in 

various processes, including aging and response to oxidative stress. 

 Results 
 Oct-1 – lamin B1 interactions 
 Western blotting detection of Oct-1 confi rmed the presence of 

two isoforms of the protein at comparable levels in wild-type 

 More recently,  Tantin et al. (2005)  have shown that Oct-1 

regulates genes that are essential for the cellular response to stress 

and that Oct-1 – defi cient mouse fi broblasts harbored elevated levels 

of reactive oxygen species (ROS) and were more susceptible to ox-

idative stress. Given the link between aging and ROS (for review 

see  Finkel and Holbrook, 2000 ) and that alterations to the nuclear 

envelope occur during aging, we hypothesized that the nuclear 

lamina and Oct-1 might have a cooperative role in controlling the 

expression of genes that are associated with aging and response to 

oxidative stress. To examine this hypothesis, we fi rst confi rmed 

that lamin B1 is associated with Oct-1 in normal mouse fi broblasts 

but not in cells lacking normal, full-length lamin B1 ( Lmnb1  � / �    
cells). We also found that, like Oct-1 – defi cient fi broblasts, 

 Lmnb1  � / �    cells have elevated ROS levels and that they are more 

 Figure 1.    Oct-1 is tightly associated with lamin B1.  (A) Nuclei from WT and  Lmnb1  � / �    cells were subjected to sequential extraction and analyzed by 
Western blotting. Numbers represent percentages of Oct-1 signal in each fraction from one representative experiment. (B) Oct-1 is coimmunoprecipitated 
with lamin B1 from lysates of WT but not  Oct1  � / �    or  Lmnb1  � / �    cells. The left panels show immunoblots of the input sample, and the right panels show 
immuno blots of the immunoprecipitates. A control staining of the immunoprecipitates with anti – goat heavy chain confi rms equivalent precipitation effi ciency 
in each sample. (C) Oct-1 – EGFP shows nuclear peripheral association in living WTs but not in  Lmnb1  � / �    cells. (D) FLIP in WT and  Lmnb1  � / �    cells expressing 
Oct-1 – EGFP. (left) A nuclear peripheral ROI outside the photobleached area was used to measure fl uorescence loss after photobleaching (mean values  ±  
SD shown;  n  = 10). These results indicate that Oct-1 – EGFP is more tightly associated with the peripheral nuclear lamina containing full-length lamin B1. 
(right) Quantitative FLIP of a nucleoplasmic ROI shows that there is no signifi cant difference in stability of nucleoplasmic Oct-1 – EGFP expressed in WT or 
 Lmnb1  � / �    cells. (E) Oct-1 is in tight association with lamin B1 but not lamin A/C. FRET was performed as described in Materials and methods. The red 
boxes (images) and lines (plots) represent the ROI that was selected for acceptor photobleaching using the 543-nm laser, whereas the green boxes and 
lines represent an ROI selected within the photobleached regions for analysis of FRET. The shaded areas in the plots show the time of bleaching. Note 
the increase in donor (green) fl uorescence after bleaching lamin B1 (top) but not lamin A/C (bottom), indicating that the nuclear lamina component in as-
sociation with Oct-1 is indeed lamin B1 and not lamin A/C. A representative image is shown (5% FRET effi ciency for lamin B1), but mean FRET effi ciency 
values (4.63  ±  1.4% SD and 0  ±  0.75% SD for lamin B1 and lamin A/C, respectively) from 20 nuclei in three independent experiments show a signifi cant 
difference using a Student ’ s  t  test (P  <  0.01).   
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sequences. Electrophoretic mobility shift assay (EMSA) with a 

fl uorescently labeled Oct-1 consensus oligonucleotide (FAM –

 Oct-1) was performed using equal amounts of nuclear extracts 

from WT,  Lmnb1  � / �   , and  Oct1   � / �   cells ( Fig. 2 ). A band shift is 

observed with the WT and  Lmnb1  � / �    but not with the  Oct1   � / �   

nuclear extracts. Furthermore, the intensity of the band obtained 

with  Lmnb1  � / �    extracts is more than that with the WT extracts, 

suggesting that Oct-1, which has lost its association with the 

nuclear lamina in  Lmnb1  � / �    cells, is now available for binding to 

its DNA target sequences. 

 Gene expression changes in Oct-1 –  and 
lamin B1 – defi cient cells 
 Although the aforementioned experiments show that Oct-1 re-

leased from the nuclear lamina in the absence of full-length 

lamin B1 is now available to bind to its target sequences, they do 

not prove that this has any consequence in terms of gene expres-

sion of Oct-1 targets. To establish this, we fi rst wanted to iden-

tify Oct-1 targets that are dysregulated in the  Lmnb1  � / �    cells 

(i.e., genes that are dependent on both lamin B1 and Oct-1 for 

their normal expression). We compared the gene expression pat-

terns of  Lmnb1  � / �    with WT cells using six biological replicates 

of each and six hybridizations performed with dye swaps. We 

had previously identifi ed 790 dysregulated genes (P  <  0.05 

using CyberT) in the absence of normal full-length lamin B1 (Ar-

rayExpress accession no.  E-MEXP-538 ). CyberT is a web-based 

implementation of a Bayesian probabilistic framework for the 

analysis of microarray data designed for the analysis of data 

with high measurement noise and variability and typically low 

replicate numbers ( Baldi and Long, 2001 ). This Bayesian ap-

proach has been shown to be more appropriate for the analysis 

of microarray data than the signifi cance analysis of microarray 

( Tusher et. al., 2001 ) program and the Student ’ s  t  test when  n  is 

small ( Choe et al., 2005 ), although this difference is reduced 

when  n   >  5 as in our experiments ( Baldi and Long, 2001 ). 

 We compared the gene expression changes in the 

 Lmnb1  � / �    cells with those previously reported in  Oct1   � / �   cells 

(WT) mouse embryonic fi broblasts and  Lmnb1  � / �    cells that lack 

the C-terminal 273 amino acids of lamin B1 ( Vergnes et al., 

2004 ). Using a previously described nuclear envelope subfrac-

tionation protocol involving differential extraction ( Maske et al., 

2003 ), we found that in WT cells, Oct-1 is detected in all fractions 

of increasing extraction stringency, including the 4-M urea frac-

tion. However, in  Lmnb1  � / �    cells, more Oct-1 is released in the 

earlier fractions, and no Oct-1 is detected in the 4 M urea fraction 

( Fig. 1 A ). This profi le of extraction is consistent with tight asso-

ciation with the nuclear lamina because in WT cells, this pool 

contains  > 40% of the full-length lamin B1 in the nucleus ( Maske 

et al., 2003 ). Immunoprecipitating lysates from WT cells with an 

anti – lamin B1 antibody resulted in coimmunoprecipitating Oct-1 

( Fig. 1 B ). Oct-1 was not coimmunoprecipitated with lamin B1 in 

lysates of  Oct1   � / �   cells despite the successful precipitation of 

lamin B1. The anti – lamin B1 antibody used in immunoprecipita-

tion (IP) was directed toward the C terminus, which is lacking in 

the  Lmnb1  � / �    cells, and therefore, the IP samples of these cell ly-

sates contained neither lamin B1 nor Oct-1 ( Fig. 1 B ). This pro-

vides evidence of a direct interaction between lamin B1 and 

Oct-1. This was also confi rmed by expressing fl uorescently 

tagged Oct-1 in WT and  Lmnb1  � / �    cells. Oct-1 is observed at the 

nuclear periphery in WT cells but not in the  Lmnb1  � / �    cells 

( Fig. 1 C  and Fig. S1, available at http://www.jcb.org/cgi/content/

full/jcb.200804155/DC1). Fluorescence loss in photobleaching 

(FLIP) reveals that Oct-1 – EGFP shows very slow turnover when 

expressed in WT cells, with only 8% being exchanged within 100 s 

( Fig. 1 D ). The turnover is faster in  Lmnb1  � / �    cells, in which 43% 

of Oct-1 – EGFP is being exchanged within the same time frame. 

This experiment shows that the stability of Oct-1 association is 

tighter in the presence of full-length lamin B1 than in the absence 

of the latter ’ s C terminus. 

 To test whether the FLIP results are caused by a tight associa-

tion between Oct-1 and lamin B1, we performed fl uorescence reso-

nance energy transfer (FRET) confocal microscopy using the 

acceptor photobleach method. In brief, the method involves photo-

bleaching an acceptor fl uorophore (e.g., Cy3) and looking for an 

increase in the fl uorescence signal detected for the donor (e.g., 

EGFP). An increase in the donor fl uorescence expressed as the 

FRET effi ciency (see Materials and methods) indicates that the two 

proteins are indeed within 1 – 10 nm of each other and thus likely 

interact directly. In this case, the donor was Oct-1 – EGFP, and the 

acceptor was lamin B1 or lamin A/C detected with Cy3-conjugated 

secondary antibodies. The F ö rster radius (at which FRET effi ciency 

is half-maximal) is 6.0 nm for the GFP-Cy3 FRET pair ( Wouters 

and Bastiaens, 1999 ). Using this approach, we found that the fl uor-

escence of Oct-1 – EGFP increases after the bleaching of Cy3 used 

for lamin B1 detection (FRET effi ciency of 4.6%;  n  = 20;  Fig. 1 E ). 

However, in the negative control, photobleaching of Cy3 used for 

lamin A/C detection does not result in an increase in Oct-1 – EGFP 

fl uorescence (P  <  0.001;  Fig. 1 E ), confi rming the absence of an 

Oct-1 – lamin A FRET signal. 

 Increased available nucleoplasmic Oct-1 
in  Lmnb1  � / �    cells 
 Next, we wanted to investigate whether the Oct-1 – lamin B1 as-

sociation and its loss in  Lmnb1  � / �    cells has any functional con-

 Figure 2.    Oct-1 that is released from the nuclear lamina in  Lmnb1  � / �    cells 
is more readily available to bind to its target DNA sequences.  EMSA was 
performed using a FAM-labeled Oct-1 consensus-binding oligonucleotide. 
A band shift is observed in both WT and  Lmnb1  � / �    but not in  Oct1   � / �   
nuclear extracts. The intensity of the shifted band using the  Lmnb1  � / �    ex-
tract is also increased (relative intensity of shifted band in  Lmnb1  � / �    com-
pared with WT = 1.94 in this representative experiment), indicating that 
the Oct-1 that is released from the nuclear lamina is available to occupy 
more of its targets.   
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Fig. S4, available at http://www.jcb.org/cgi/content/full/jcb

.200804155/DC1;  Marinescu et al., 2005 ). EMSA using FAM-

labeled oligonucleotide duplexes with the predicted Oct-1 – binding 

sequences of  Rdm1 ,  Gpx3 ,  Mgst1 , and  Mmp13  confi rms that the 

sequences can specifi cally bind Oct-1 because the intensities of 

the shifted bands are reduced by the inclusion of a nonlabeled 

oligonucleotide with the Oct-1 consensus sequence in the assay 

( Fig. 4 A ). Increased intensities of the shifted bands are also ob-

served in the  Lmnb1  � / �    cell extract assays compared with the 

WT cell extracts, further confi rming that there is an elevated 

amount of free Oct-1 in the  Lmnb1  � / �    cells that can bind to its 

target sequences in the promoter regions of the tested genes 

( Fig. 4 B  and Fig. S2). 

 To confi rm that this is occurring in the  Lmnb1  � / �    cells, 

we performed ChIP using anti – Oct-1 on WT and  Lmnb1  � / �    
cells and determined the relative enrichment of Oct-1 occu-

pancy of potential targets using quantitative real-time PCR 

(Gene Expression Omnibus [GEO] accession no.  GDS1446 ; 

 Tantin et al., 2005 ). We found that 1,937 genes are unchanged 

in both cell types and are therefore independent of Oct-1 or 

lamin B1 ( Fig. 3 , blue region). 54 genes were dysregulated in 

 Oct1  � / �    but not in  Lmnb1  � / �    cells and are thus dependent on 

Oct-1 but not lamin B1 for their expression ( Fig. 3 , yellow re-

gions), whereas 1,030 genes were dysregulated in  Lmnb1  � / �    
and not  Oct1  � / �    cells, implying that their expression is depen-

dent on lamin B1 but not Oct-1 ( Fig. 3 , orange regions). The 

57 genes in the white quadrants ( Fig. 3 ) represent those that 

are dysregulated in both cell types and are therefore dependent 

on both Oct-1 and lamin B1 for their expression (Table S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200804155/DC1). 

To assess the signifi cance of fi nding this number of genes al-

tered in both experimental conditions, the bootstrapping method 

was used with 500,000 samples (see Materials and methods). 

This method shows that the probability of a chance observa-

tion of 57 genes that are changed in both experiments is 

 < 0.00012 (Fig. S3). 

 EMSA and chromatin IP (ChIP) 
 We selected some of the genes identifi ed as Oct-1 targets using 

the aforementioned gene expression analysis to test whether 

they have functional Oct-1 – binding sites. Putative Oct-1 – binding 

sites within the promoter regions of the genes were selected 

using an online version of a hidden Markov profi le comparison 

tool (multigenome analysis of positions and patterns of ele-

ments of regulation [MAPPER]; http://bio.chip.org/mapper; 

 Figure 3.    A scatter plot of the log 2  fold changes of genes in  Oct1  � / �    and 
 Lmnb1  � / �    cells.  The shaded areas show genes that are either unchanged 
or moderately dysregulated as defi ned by a 0.5 cutoff. Only 54 genes are 
signifi cantly dysregulated in Oct-1 – defi cient cells and not in  Lmnb1  � / �    cells 
(yellow), whereas 1,030 genes are dysregulated in  Lmnb1  � / �    cells and 
not in Oct-1 – defi cient cells (orange). Genes outside the shaded areas are 
those that are signifi cantly dysregulated in both defi cient cell types (i.e., 
the regulation of which is dependent on both Oct-1 and lamin B1). There 
are also 1,937 genes that are not dysregulated in either cell type (central 
blue region).   

 Figure 4.    Oct-1 can bind to its target sequences within the regulatory 
regions of genes that are dysregulated in both Oct-1 –  and lamin B1 –
 deficient cells.  (A) Oct-1 in nuclear extracts from  Lmnb1  � / �    cells show band 
shifts using a consensus Oct-1 – binding oligonucleotide (Cons) as well as 
predicted Oct-1 – binding sequences in the promoter regions of  Rdm1  and 
 Gpx3 . The specifi city of binding is confi rmed by including an excess of 
nonlabeled consensus oligonucleotide (+ lanes), which reduces the inten-
sity of the shifted bands. (B) The shifted bands are more intense in the case 
of  Lmnb1  � / �    extracts as a result of the release of Oct-1 from the nuclear 
lamina. Relative intensity values ( Lmnb1  � / �   /WT) are 2.44 for  Rdm1  and 
1.68 for  Gpx3 . Similar results were obtained using the Oct-1 – binding 
sequences of  Mgst1  and  Mmp13  (Fig. S3, available at http://www.jcb
.org/cgi/content/full/jcb.200804155/DC1).   
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higher scores ( Fig. 5 B ). When we repeated the ChIP/qRT-PCR 

experiment using primer pairs selective for the highest scoring 

Oct-1 site, we found a signifi cant change in occupancy ( Fig. 5 , 

compare  Gnrhr  1 with  Gnrhr  2). 

  Lmnb1  � / �    cells are more susceptible to 
oxidative stress 
 Some of the genes that are dysregulated in Oct-1 and  Lmnb1  � / �    
cells are involved in cellular responses to oxidative stress, as 

shown in Table I. The Oct-1 – defi cient cells have already been 

shown to harbor elevated ROS levels and be more susceptible 

to oxidative stress ( Tantin et al., 2005 ). Cell survival assays in 

the presence of H 2 O 2  showed that the  Lmnb1  � / �    cells are also 

more susceptible to oxidative stress ( Fig. 6 A ). Using the 

(qRT-PCR). We selected seven genes for ChIP analysis, 

including genes previously shown to be regulated by Oct-1 

gonadotropin-releasing hormone receptor ( Gnrhr ) and genes 

identifi ed in this study as both Oct-1 and lamin B1 dependent. 

Increases in Oct-1 occupancy of the predicted binding sites of 

 Csnb ,  Mmp13 ,  Rdm1 ,  Gpx3 ,  Mgst1 , and  Serping1  were de-

tected in the  Lmnb1  � / �    cells relative to the WT cells, whereas 

no relative increase in occupancy was detected for  � -actin, 

which does not have an Oct-1 – binding site ( Fig. 5 A ). Interest-

ingly, the Oct-1 site in the  Gnrhr  promoter previously identi-

fi ed using a mobility shift assay showed no change in Oct-1 

occupancy  Gnrhr  1. To understand this unexpected discrep-

ancy, we examined the  Gnrhr  promoter region using MAPPER 

and found additional predicted Oct-1 – binding sites with much 

 Figure 5.    Enrichment of Oct-1 binding to target sequences 
in  Lmnb1   � / �   cells.  After ChIP of  Lmnb1  � / �    and WT cells us-
ing an anti – Oct-1 antibody, target genes were detected by 
quantitative real-time PCR as described in Materials and 
methods. All targets showed signifi cant enrichment of Oct-1 
binding (P  <  0.05) except for  Gnrhr  1. (A and B) Note 
that the  Actb  sequence does not have an Oct-1 – binding se-
quence, and thus, no enrichment in binding is detected. The 
MAPPER scores and E values as well as the MAPPER Oct-1 – 
binding models are also shown for the Oct-1 – binding sites 
that were analyzed using ChIP. (C) The mouse  Gnrhr  pro-
moter region has several potential Oct-1 – binding sites. Two 
sets of primers producing two PCR products were used to 
examine the occupancy of Oct-1 in the  Gnrhr  promoter. 
 Gnrhr  2 was enriched, whereas  Gnrhr  1 was not, suggest-
ing that Oct-1 preferentially binds to the sequences within 
 Gnrhr  2. Data shown are from two separate nuclear ex-
tracts assayed in triplicate and are means  ±  SD. Sequence 
alignment data are provided in Fig. S4 (available at http://
www.jcb.org/cgi/content/full/jcb.200804155/DC1).   D
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regulated in the  Lmnb1  � / �    cells); this down-regulation is re-

versed when Oct-1 is lowered by siRNA (i.e., control siRNA – 

normalized fold change greater than one). Similarly, a gene that 

is activated by Oct-1 and thus up-regulated in  Lmnb1  � / �    cells 

( Mmp13 ) shows a reversal of this effect when Oct-1 is reduced 

by siRNA (i.e., control siRNA – normalized fold change less 

than one). Final confi rmation that this is a direct effect of Oct-1 

comes from the converse experiment in which Oct-1 is indepen-

dently overexpressed in WT cells ( Fig. 7 B , gray bars). In this 

case, the genes normally repressed by Oct-1 ( Gpx3  and  Rdm1 ) 

are down-regulated by Oct-1 overexpression, whereas the gene 

normally activated by Oct-1 shows increased expression. 

 Discussion 
 Given that not all of the gene expression changes observed in 

the absence of full-length lamin B1 could be explained by al-

tered chromatin – lamina interactions ( Malhas et al., 2007 ), we 

sought additional mechanisms. In particular, it has previously 

been reported that Oct-1 colocalizes with lamin B and that the 

dissociation of Oct-1 from the nuclear periphery results in the 

up-regulation of the collagenase gene ( Imai et al., 1997 ). There-

fore, we considered the possibility that some of the gene expres-

sion changes observed in the  Lmnb1  � / �    cells might be a result of 

the dissociation of Oct-1 from the nuclear lamina in the absence 

of full-length lamin B1. 

 We fi rst showed that Oct-1 associates with lamin B1, that 

the loss of this interaction leads to elevated Oct-1 levels in the 

nucleoplasm, and that the released Oct-1 can bind to its consen-

sus target sequences. We then wanted to investigate whether this 

increased binding can have a functional effect and therefore 

sought to identify the genes that are dysregulated in the  Lmnb1  � / �    

cell-permeable probe 2 � ,7 � -dichlorodihydrofl uorescein diace-

tate (H 2 DCFDA) for ROS level detection ( Sanchez Ferrer et al., 

1990 ), the  Oct1  � / �    and  Lmnb1  � / �    cells were found to have 

signifi cantly elevated levels of ROS compared with the WT 

cells ( Fig. 6, B and C ). To demonstrate that this change was 

directly dependent on lamin B1 function, we reduced its ex-

pression acutely in WT cells using  Lmnb1  siRNA ( Fig. 6, 

B and C ). Cells in which lamin B1 levels were reduced showed 

increased ROS levels ( Fig. 6 C ). This effect is not a conse-

quence of siRNA transfection per se because a control siRNA 

had no effect on ROS levels ( Fig. 6 D ). As a further control, 

we repeated ROS measurements in  Lmnb1  � / �    cells after resto-

ration of lamin B1 expression (by transfecting cells to express 

full-length lamin B1) and showed that ROS levels were de-

creased to WT levels in those transgenic fi broblasts that were 

expressing lamin B1 ( Fig. 6 E ). 

 ROS levels were also reduced to near WT levels in 

 Lmnb1  � / �    cells, whereas Oct-1 levels were reduced using  Oct1  

siRNA ( Fig. 6 C ). Furthermore, reduction of Oct-1 levels in 

 Lmnb1  � / �    cells reduced their susceptibility to oxidative stress, 

whereas overexpression of Oct-1 in WT cells increased their 

susceptibility in comparison with cells that are transfected with 

a control siRNA or a control EGFP construct (H2B-EGFP), re-

spectively ( Fig. 7 A ). These experiments indicate that the ele-

vated ROS levels and susceptibility to oxidative stress in the 

 Lmnb1  � / �    cells is indeed mediated by Oct-1. 

 Further support for a direct effect of Oct-1 comes from 

experiments in which Oct-1 levels in  Lmnb1  � / �    cells are reduced 

by siRNA.  Fig. 7 B  (white bars) shows the effect of  Oct1  siRNA 

on the expression of three genes that are involved in the re-

sponse to oxidative stress. Two of the genes ( Gpx3  and  Rdm1 ) 

are normally repressed by Oct-1 (and therefore are down-

 Table I.    Fold changes of genes involved in oxidative stress responses  

Gene Fold change References

In  Oct1  � / �      a  In  Lmnb1  � / �     b  

Peroxiredoxin 2 ( Prdx2 ) 10.2 0.8  Sanchez-Font et al., 2003   c  

Serine (or cysteine) proteinase inhibitor, clade G,  
    member 1 ( Serping1 )

4.7  � 1.5  Tantin et al., 2005 

RAD52 motif 1 ( Rdm1 ) 3.6  � 1.05  Tantin et al., 2005 

Glutathione peroxidase 1 ( GPx1 ) 0.2 0.4  Fu et al., 2001   c  

Glutathione peroxidase 3 ( Gpx3 ) 2.6  � 1.65  Ouyang et al., 2005 

Tissue inhibitor of metalloproteinase 3 ( Timp3 ) 2.53  � 0.72  Winokur et al., 2003   c  

Interleukin 6 ( Il-6 ) 2.48  � 3.8  Orosz et al., 2007 

Growth arrest specifi c 6 ( Gas6 ) 2.04  � 0.50  Valverde, 2005 

Growth arrest specifi c 5 ( Gas5 )  � 3.52 0.01  Tantin et al., 2005 

Superoxide dismutase 1, soluble ( Sod1 ) 2  � 0.4  Ali et al., 2006   c  

Selenoprotein P, plasma, 1 ( Sepp1 ) 2  � 1.13  Steinbrenner et al., 2006   c  

GST, mu 1 ( Gstm1 ) 2  � 0.6  Aydemir et al., 2007   c  

GST, mu 2 ( Gstm2 ) 2  � 2  Tantin et al., 2005 

Microsomal GST ( Mgst ) 0.5  � 4  Hayes and Strange, 2000 

Glutamate cysteine ligase ( � -glutamyl-cysteine synthetase),  
    regulatory ( Glclr )

0.3  � 0.4  Rozet et al., 1998 

Log fold changes with P  <  0.05 are shown.

  a  Data from  Tantin et al., 2005 .

  b  Log 2  fold ratios.

  c  Reports of down-regulation being associated with increased susceptibility to ROS.
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B1 – chromatin interactions or lamin B1 – Oct-1 interactions. Ef-

forts are continuing to identify the mechanism by which lack of 

a stable B-type lamina affects expression of these genes. Only 

54 genes are dependent on Oct-1 and not lamin B1 for their 

normal expression. We surmise that these represent genes with 

a stringent requirement for low levels of Oct-1 and that in both 

WT and  Lmnb1  � / �    cells, the Oct-1 level exceeds this permissive 

requirement. We identifi ed 57 genes that are dependent on both 

lamin B1 and Oct-1 for their normal expression. Several of 

these genes have been found to be involved in the response to 

cells as a result of the altered Oct-1 distribution. To test this, we 

made use of existing data on gene expression in murine Oct-1 

knockout cells ( Tantin et al., 2005 ). We found that 1,030 genes 

are either unchanged or moderately dysregulated in the absence 

of Oct-1 but are signifi cantly dysregulated in the absence of 

full-length lamin B1, indicating a dependence on lamin B1 but 

not Oct-1. This group includes most of the small number of 

genes we identifi ed as dependent on processed lamin B1 

( Malhas et al., 2007 ) but must also include many genes whose 

lamin B1 dependence cannot be accounted for by either lamin 

 Figure 6.     Lmnb1  � / �    cells are more susceptible to oxidative stress and harbor high levels of ROS.  (A) Percentages represent viable cell counts for treated 
wells relative to untreated wells of cells of the same type assayed in parallel.  Lmnb1   � / �   cells are signifi cantly more susceptible to oxidative stress than WTs 
(P  <  0.001 by Student ’ s  t  test). (B) The cell-permeable fl uorogenic probe H 2 DCFDA was used for intracellular ROS detection.  Oct1  � / �   ,  Lmnb1  � / �   , and  Lmnb1  
siRNA – treated WT cells show a signifi cantly more intense fl uorescent signal after treatment with the dye, indicating that they have higher levels of ROS than 
the untreated WT cells. (C) Quantitation of ROS levels in WT,  Oct1  � / �   , and  Lmnb1  � / �    cells before and after treatment with  Lmnb1  siRNA, showing that 
ROS levels are elevated in the mutant cells and after a reduction of lamin B1 expression in the WT cells. ROS levels are also normalized to near WT levels 
in  Oct1  siRNA – treated  Lmnb1  � / �    cells. 50 cells were analyzed for each condition. (D) WT cells were transfected with  Lmnb1  siRNA. ROS levels (green) 
and lamin B1 (red) were measured 48 h after transfection. Cells showing reduced levels of lamin B1 expression have higher levels of ROS. The arrowheads 
show a lamin B1 – expressing cell that has lower ROS levels compared with the surrounding cells. (E) Cells transfected with a control siRNA (Trap1) do not 
show elevated levels of ROS. The arrowheads indicate examples of a cell with reduced Trap1 expression and no increase in ROS levels. (F) Transfecting 
 Lmnb1  � / �    cells to express full-length lamin B1 (red) reduces the levels of ROS, indicating that the effect on ROS levels in the  Lmnb1  � / �    cells is directly linked 
to the loss of full-length lamin B1 expression. Mean  ±  SD values are shown (P  <  0.001 by analysis of variance). Bars, 10  μ m.   
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vulnerability to oxidative stress (Table I). It is worth noting that 

the increased Oct-1 occupancy, target gene dysregulation, and 

the resulting phenotype are caused by Oct-1 release and not its 

overexpression because the expression of the  Oct1  gene itself is 

unchanged in the  Lmnb1  � / �    cells compared with the WTs (both 

at transcript level and protein level;  Fig. 1 A ). 

 Oct-1 is known to have repressive as well as activating ef-

fects on gene expression. Oxidative stress response genes that 

are dysregulated in the  Oct1   � / �   cells are mostly down-regulated 

in the  Lmnb1   � / �    cells (Table I), suggesting that in the WT cells, 

Oct-1 is sequestered by lamin B1, and thus the oxidative stress 

response genes that have octamer sequences are expressed at 

normal levels. In the  Lmnb1   � / �    cells, where there are higher 

levels of nucleoplasmic Oct-1 as a result of the loss of the se-

questration by lamin B1, Oct-1 moves away from the periphery, 

binds to the octamer sequences, and down-regulates the target 

genes involved in response to oxidative stress, which we detect 

using EMSA, ChIP, and microarray, respectively. As a result, 

the  Lmnb1   � / �    cells harbor high levels of ROS and are more sus-

ceptible to oxidative stress. Other examples of genes that are re-

pressed by Oct-1 are the  Gnrhr  gene ( Cheng et al., 2002 ) and 

the vascular cell adhesion molecule 1 (Vcam1;  dela Paz et al., 

2007 ), which are also down-regulated in the  Lmnb1   � / �    cells 

(fold ratios of 0.3 and 0.7, respectively). 

 The  Gnrhr  gene offers a further interesting insight. An 

Oct-1 – binding site has previously been identifi ed and con-

fi rmed using an in vitro mobility shift assay ( Cheng et al., 

2002 ), but our ChIP/qRT-PCR analysis failed to detect a 

change in occupancy at this site in  Lmnb1   � / �    cells, whereas all 

other sites tested showed an increase in Oct-1 occupancy. 

However, this site is very weakly predicted as an Oct-1 – binding 

site by the MAPPER algorithm, and much stronger Oct-1 

sites are predicted elsewhere in the promoter region of  Gnrhr  

( Fig. 5 C ). When we repeated ChIP and qRT-PCR using prim-

ers designed to detect these additional predicted Oct-1 sites, 

we found a signifi cant increase in Oct-1 occupancy in  Lmnb1   � / �    
cells. We conclude that the relatively modest increase in nu-

cleoplasmic Oct-1 protein levels between WT and  Lmnb1  � / �    
cells has enabled us to detect subtle differences in the behavior 

of different Oct-1 – binding sites in the same promoter.  Fig. 5 B  

shows site occupancy changes ranging from 1.22 in  Csnb  to 

2.85 in  Gpx3 , indicating that different Oct-1 sites respond dif-

ferently to the same increase in Oct-1 level. Because the ele-

vated binding is observed in the EMSA on short duplexes, 

they cannot depend on the sequence context and steric effects 

of transcription factor binding to adjacent sites. Moreover, be-

cause these differences are still detected by ChIP, they are not 

abrogated by transcription factor binding in a wider sequence 

context in intact nuclei. 

 Oct-1 is also known to function as an activator of expres-

sion of some targets, such as the U6 small nuclear RNA and os-

teopontin ( Opn  or  Spp1 ;  Botquin et al., 1998 ;  Remenyi et al., 

2002 ), which are both up-regulated in the  Lmnb1  � / �    cells (fold 

ratios of 1.7 and 10, respectively). Again, this can be explained 

by the loss of Oct-1 sequestration and an increase in nucleoplas-

mic Oct-1, which is now available to promote the transcription 

of such genes.  Imai et al. (1997)  observed that an up-regulation 

oxidative stress ( Tantin et al., 2005 ). 15 of these genes are also 

dysregulated in the  Lmnb1  � / �    cells (Table I). If the hypothesis 

that Oct-1 is released from sequestration in  Lmnb1  � / �    cells is 

correct, we would expect Oct-1 – dependent genes to show ex-

pression changes in opposite directions in  Oct1   � / �   and  Lmnb1  � / �    
cells. This is true for 13 of the 15 genes involved in oxidative 

stress responses. At fi rst glance, one might expect the resulting 

phenotypes to be opposite (i.e., if there is increased vulnerabil-

ity to oxidative stress in  Oct1  � / �    cells, there would be reduced 

vulnerability in  Lmnb1  � / �    cells). However, it is important to 

note that for six of these genes there is already published evi-

dence that either increased or decreased expression increases 

 Figure 7.    The dysregulated gene expression and susceptibility to oxida-
tive stress in the lamin B1 – defi cient cells are mediated by Oct-1.  (A) WT 
cells were transfected with Oct-1 – EGFP or H2B-EGFP as a control (gray 
bar), whereas  Lmnb1  � / �    cells were transfected with  Oct1  siRNA or a con-
trol siRNA (white bar). After treatment with 2 mM H 2 O 2 , cell survival assays 
were performed as described in Materials and methods. The normalized 
cell survival is a ratio of percent cell survival of the treated versus control 
cells. A ratio  > 1, as in the case of the  Lmnb1  � / �    cells where Oct-1 levels 
have been reduced, refl ects an improvement of cell survival. A ratio  < 1, 
as in the case of the WT cells overexpressing Oct-1, refl ects a reduction in 
cell survival. Overexpression of Oct-1 in the WTs increases their suscepti-
bility, whereas reduction of Oct-1 levels in the  Lmnb1  � / �    cells reduces their 
susceptibility, demonstrating that the sensitivity to oxidative stress in the 
lamin B1 – defi cient cells is mediated by Oct-1. (B) The expression levels of 
 Gpx3 ,  Rdm1 , and  Mmp13  in WT cells transfected with Oct-1 – EGFP (gray 
bars) and  Lmnb1  � / �    cells transfected with  Oct1  siRNA (white bars) were 
measured and are presented as fold changes versus the relevant controls. 
The results show that overexpression of Oct-1 in the WTs or the reduction 
of its levels in the lamin B1 – defi cient cells reverses the gene expression pat-
terns of these genes, which are involved in the response to oxidative stress. 
The horizontal lines indicate a ratio of 1, which is where the bars would 
be if no changes in gene expression or susceptibility in comparison with 
the controls were observed. Data are means  ±  SD of three independently 
performed replicates.   
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using protein G PLUS-Agarose (Santa Cruz Biotechnology, Inc.) and 
immunoprecipitated overnight at 4 ° C using goat anti – lamin B1 (Santa 
Cruz Biotechnology, Inc.). IP complexes were captured using protein G 
PLUS-Agarose, eluted using Laemmli loading buffer, and analyzed by 
Western blotting using anti – lamin B1 (Santa Cruz Biotechnology, Inc.), 
anti – Oct-1 (Santa Cruz Biotechnology, Inc.), or donkey anti – goat HRP con-
jugate (Jackson ImmunoResearch Laboratories). 

 RNA isolation and gene expression analysis 
 RNA isolation, gene expression analyses, and validation have been de-
scribed previously ( Malhas et al., 2007 ). Full details of the slide layout, cul-
ture conditions, detailed protocols, and primary extracted data fi les have 
been submitted to ArrayExpress (ArrayExpress accession no.  E-MEXP-538 ). 
The Oct-1 dataset was downloaded from the GEO database, uploaded to 
BioArray Software Environment ( Saal et al., 2002 ), and analyzed with the 
lamin B1 dataset for all comparisons. 

 To calculate the probability of having a particular number of genes 
changed in both experiments, a repeat sampling bootstrapping method 
was used. Specifi cally, for each cycle, 113 genes are randomly drawn 
from the list of 3,080 common genes, generating set A, and 1,089 genes 
are drawn randomly from the same 3,080 list, generating set B. Then, the 
number of genes present in both A and B ( n ) is recorded. After 500,000 
cycles, the values of  n  were plotted to give a probability distribution histo-
gram. The probability distribution is shown in Fig. S3. 

 Immunofl uorescent labeling and laser-scanning microscopy 
 Cells were fi xed in 4% PFA and 250 mM Hepes, pH 7.4, on ice for 
10 min and in 8% PFA and 250 mM Hepes, pH 7.4, for 50 min at room tem-
perature. Cells were incubated in 25 mM glycine in PBS for 10 min, per-
meabilized with 0.4% Triton X-100 in PBS for 5 min, and blocked with 
0.4% fi sh skin gelatin in PBS for 30 min at room temperature. Incubations 
with primary and secondary antibodies were for 1 h each at room tem-
perature. Cells stained with concanavalin A – Alexa Fluor 633 (Con A 
633; Invitrogen) were incubated with 100  μ g/ml Con A conjugate for 1 h 
at room temperature. Primary antibodies used were goat anti – lamin B1, 
mouse monoclonal anti – lamin B1 (8D1;  Maske et al., 2003 ), rabbit 
anti – Oct-1 (Thermo Fisher Scientifi c), and mouse anti – lamin A/C (Novo-
castra). Secondary antibodies used were donkey anti – goat, anti – mouse, 
and anti – rabbit (Jackson ImmunoResearch Laboratories) conjugated to 
Alexa Fluor 488, HRP, Cy3, or Cy5. For ROS detection, cells were 
washed with PBS, incubated with 20  μ M H 2 DCFDA (EMD) in phenol red-
free DME for 30 min, and washed with PBS. All imaging was performed 
using a microscope (LSM 510 META; Carl Zeiss, Inc.) on an Axio Imager.
Z1 (Carl Zeiss, Inc.) with a 63 ×  NA 1.4 oil immersion objective lens. 
Laser lines used were 405 nm, 488 nm, 543 nm, and 633 nm to excite 
DAPI, Alexa Fluor 488, Cy3 and Cy5, or Alexa Fluor 633, respectively. 
Fluorescence was detected using the following fi lters: base pairs 420 –
 480, base pairs 505 – 530, base pairs 560 – 615, and long pass 650. 
Images were analyzed using MetaMorph (MDS Analytical Technologies) 
or Image Browser (Carl Zeiss, Inc.) software. 

 Photobleaching experiments 
 FLIP was performed as described previously ( Malhas et al., 2007 ) except 
that an inverted microscope (LSM 510 META) was used. In brief, a region 
of interest (ROI) was photobleached at full laser power while scanning at 
4% laser power elsewhere. For quantitative analysis, background intensity 
was subtracted, and intensities of a specifi c ROI outside the photobleached 
area were measured over time and normalized using intensities of an ROI 
in a transfected but nonbleached cell. 

 FRET 
 FRET using the acceptor photobleaching method ( Kenworthy, 2001 ) was 
used after immunolabeling of peripheral lamin B1 with 8D1, anti – mouse 
conjugated to Cy3 was used as the acceptor, and Oct-1 – EGFP was used 
as the donor. An ROI was selected, and both the donor and acceptor were 
scanned 10 times (1.61  μ s/pixel). The ROI was bleached with the 543-nm 
laser at 100% laser power. This was followed by scanning to detect any 
changes in the acceptor and donor intensities. FRET effi ciency was calcu-
lated using the following formula: 100  ×  (1 � [I b /I a ]), where I b  and I a  are the 
intensities of the donor before and after bleaching, respectively. 

 ChIP 
 Cells ( � 10 6  each of  Lmnb1  +/+  and  Lmnb1  � / �    cells) were fi xed with 1% 
formaldehyde for 10 min and incubated with 125 mM glycine for 5 min at 
room temperature. All subsequent washes and lysis steps were performed 
in the presence of complete protease inhibitor cocktail (Roche). Cells were 
washed with ice-cold PBS, scraped, pelleted, and lysed with 10 mM Tris, 

of the human interstitial collagenase gene accompanied the loss 

of Oct-1 from the nuclear periphery during cellular aging. We 

also observe an up-regulation in the mouse interstitial collage-

nase gene  Mmp13  and an elevated level of Oct-1 occupancy of 

the Oct-1 – binding sequence in its promoter region. 

 Elevated levels of ROS result in modifi cations to proteins, 

lipids, and DNA that are associated with aging (for review see 

 Finkel and Holbrook, 2000 ), a process that is also linked to de-

fects in nuclear envelope components. Alterations to the nuclear 

architecture are observed during the normal aging process 

( Wilson, 2005 ;  Scaffi di and Misteli, 2006 ), and an extended life-

span in  Caenorhabditis   elegans  has been associated with increased 

nuclear envelope integrity ( Haithcock et al., 2005 ). Furthermore, 

mutations in genes coding for nuclear structural components such 

as lamin A are associated with several diseases, including the pre-

mature aging disorder Hutchinson-Gilford progeria syndrome 

( Eriksson et al., 2003 ). Several of the abnormalities resulting from 

nuclear structure defects in both an animal model and cells in cul-

ture can be reversed by treatment with farnesyltransferase inhibi-

tors that act by normalizing the nuclear architecture ( Glynn and 

Glover, 2005 ;  Toth et al., 2005 ;  Yang et al., 2006 ). Thus, there is 

mounting evidence that nuclear architecture and aging are inter-

related and that compromised nuclear architecture might play a 

central role in the aging process ( Haithcock et al., 2005 ;  Wilson, 

2005 ), although the exact mechanisms have yet to be unraveled. 

The fi ndings we present in this study advance our understanding 

of this mechanism by demonstrating that disrupting the interac-

tions between lamin B1 and Oct-1 result in the overall down-

regulation of oxidative stress response genes and elevated ROS 

levels, both of which are hallmarks of the normal aging process. 

 Materials and methods 

 Cell culture, constructs, and sequential nuclear extraction 
 Lamin B1 WT and  Lmnb1  � / �    cells were obtained from S. Young (University 
of California Los Angeles, Los Angeles, CA) and M. Berg ö  (Sahlgrenska 
Center for Cardiovascular and Metabolic Research, G ö teborg, Sweden), 
whereas  Oct1  � / �    cells were provided by D. Tantin (University of Utah, Salt 
Lake City, UT). All mouse embryonic fi broblasts were cultured in DME sup-
plemented with 10% FCS,  L- glutamine, and nonessential amino acids. For 
cell survival assays, cells were seeded 24 h before treatment with 200  μ M or 
2 mM H 2 O 2  for 24 h. Viable cells were quantifi ed using the CellTiter-Blue cell 
viability assay (Promega) or manually using a Neubauer hemocytometer 
(Thermo Fisher Scientifi c). DNA transfections were performed using Lipo-
fectamine 2000 (Invitrogen), whereas siRNA transfections were performed 
using transfection reagent (HiPerFect; QIAGEN). All experiments were 
performed 48 h after transfection.  Oct1 ,  Lmnb1 , and control siRNA were 
purchased from Applied Biosystems. Full-length GFP-tagged lamin B1 used 
in this study has been described previously ( Maske et al., 2003 ). The Oct-1 –
 EGFP construct was provided by S. Murphy (University of Oxford, Oxford, 
England, UK). Differential nuclear extraction was adapted from the method 
described previously by  Otto et al. (2001) . In brief, purifi ed nuclei were re-
suspended in nuclear isolation buffer (10 mM Hepes, pH 7.4, 2 mM MgCl 2 , 
25 mM KCl, 250 mM sucrose, 1 mM DTT, and a protease inhibitor cocktail; 
Sigma-Aldrich) and sonicated for two 5-s bursts at a 10- μ m amplitude. 
Insoluble material was pelleted at 20,000  g  for 5 min, resuspended in nu-
clear extraction buffer (20 mM Hepes, pH 7.4, 1 M NaCl, and protease 
inhibitor cocktail), and incubated at room temperature with agitation for 
20 min. The extraction was repeated using nuclear extraction buffer with 
2% Triton X-100 and 4 and 8 M urea in sequential extractions. 

 IP 
 Cells were lysed using radio IP assay lysis buffer in the presence of com-
plete protease inhibitor cocktail (Roche). Lysates were precleared twice 
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bit anti – Oct-1 overnight at 4 ° C and with protein G agarose for 2 h at 4 ° C. 
Precipitated samples were washed once with low salt washing buffer (20 mM 
Tris, 50 mM NaCl, 2 mM EDTA, 0.1% SDS, and 1% Triton X-100, pH 8), 
once with high salt washing buffer (low salt buffer with 500 mM NaCl), 
twice with lithium chloride washing buffer (10 mM Tris, 250 mM lithium 
chloride, 1 mM EDTA, 0.5% NP-40, and 0.5% SDS, pH 8), and twice with 
Tris EDTA buffer (10 mM Tris, pH 7.5, and 1 mM EDTA). Protein – DNA 
complexes were eluted using 0.1 mM NaHCO 3  and 1% SDS (which was 
also added to the input samples), and cross-links were reversed by heating 
overnight at 65 ° C. Samples were treated with 40  μ g/ml proteinase K, and 
DNA was recovered by phenol/chloroform extraction and ethanol precipi-
tation. All immunoprecipitated DNA samples were resuspended in 50  μ l of 
10 mM Tris-HCl, pH 8.5. 

 qRT-PCR of immunoprecipitated DNA 
 qRT-PCR was performed using a Rotor-Gene 3000 (Corbett Research) and 
the MESA GREEN qPCR MasterMix Plus for SYBR Assay (Eurogentec). PCR 
mixtures contained 2  μ l immunoprecipitate or input samples and a fi nal 
primer concentration of 400 nM. Relative gene expression values were de-
termined using the 2  �  �  � Ct  method ( Livak and Schmittgen, 2001 ). The C t  
values from qRT-PCR were normalized using those of the input samples and 
were used to calculate the fold enrichment of Oct-1 binding in  Lmnb1   � / �   
cells compared with WT cells. 

 Primer and oligonucleotide design 
 Promoter sequences (1,000 bases) of  Rdm1 ,  Gpx3 ,  Mmp13 ,  Mgst1 , and 
 Serping1  were obtained using BioMart. MAPPER ( Marinescu et al., 2005 ) 
was used to identify potential Oct-1 – binding sites within these sequences, 
and appropriate primers for qRT-PCR were designed using Oligo Perfect 
Designer (Invitrogen). Primers for the detection of  Csnb  and  Actb  have 
been described previously ( Zhao et al., 2004 ;  Dong and Zhao, 2007 ). 
FAM-labeled oligonucleotides and complementary oligonucleotides cor-
responding to the potential Oct-1 – binding sites were synthesized by 
Invitrogen. The oligonucleotides were annealed in 20 mM Tris-HCl, pH 
8, 50 mM NaCl, and 1 mM EDTA by heating to 95 ° C for 5 min and 
gradually reducing the temperature (0.5 ° C/s) to 22 ° C. The Oct-1 
consensus oligonucleotide and the sequences of all other predicted 
Oct-1 – binding sites are provided in Table S1 (available at http://www.jcb
.org/cgi/content/full/jcb.200804155/DC1). 

 EMSA 
 Approximately 10 7  cells were allowed to swell in 10 mM Hepes, pH 7.9, 
1.5 mM MgCl 2 , 10 mM KCl, 1 mM DTT, and 0.5 mM PMSF and left on ice 
for 10 min. NP-40 was added to a fi nal concentration of 0.3%, and the ly-
sates were left on ice for a further 20 min. After centrifugation, the resulting 
pellet was resuspended in 20 mM Hepes, pH 7.9, 25% glycerol, 0.42 M 
NaCl, 1.5 mM MgCl 2 , 1 mM DTT, and 1 mM PMSF, incubated at 4 ° C with 
constant agitation, and centrifuged at 16,000  g  for 20 min, and the su-
pernatants (nuclear extracts) were used for the gel shift assays. Equal 
amounts of nuclear extracts (15  μ g) were incubated with FAM-labeled oli-
gonucleotides and excess, unlabeled Oct-1 consensus oligonucleotides in 
EMSA-binding buffer where applicable (fi nal concentrations of 10 mM 
Tris-HCl, pH 7.5, 10% glycerol, 50 mM KCl, 1 mM MgCl 2 , 0.5 mM DTT, 
and 0.5 mM PMSF) for 40 min at 22 ° C. Reaction mixtures were run on 
8% nondenaturing polyacrylamide gels in 0.5 ×  Tris-borate-EDTA, and the 
gels were photographed using an imaging system (VersaDoc MP3000; 
Bio-Rad Laboratories). 

 Online supplemental material 
 Fig. S1 shows lamin B1 – Oct-1 colocalization using antibodies, Fig. S2 
shows more extensive EMSA data, Fig. S3 shows calculated probability 
distribution for two microarray datasets having  n  genes in common, and 
Fig. S4 shows the Oct-1 – binding sequence patterns identifi ed by the MAP-
PER algorithm. In addition, Table S1 shows the oligonucleotide sequences 
used in the EMSA experiments, and Table S2 lists the genes that are dysreg-
ulated in both datasets. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200804155/DC1. 
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