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    Introduction 
 An evolutionarily conserved protein complex called cohesin is 

responsible for the accurate separation of sister chromatids into 

two daughter cells. The cohesin complex comprises four core 

protein subunits that are conserved from yeast to vertebrates 

( Guacci et al., 1997 ;  Michaelis et al., 1997 ;  Darwiche et al., 1999 ). 

In  Saccharomyces cerevisiae  mitotic cells, the cohesin complex 

consists of Scc1/Mcd1 (Rad21 in humans), Smc1, Smc3, and 

Scc3 ( Guacci et al., 1997 ;  Michaelis et al., 1997 ). In human 

mitotic cells, the cohesin complex is composed of Rad21, Smc1 � , 

Smc3, and two Scc3 orthologues, SA1 and SA2 ( Losada et al., 

2000 ;  Sumara et al., 2000 ). 

 Smc1 and Smc3 are ABC-like ATPases. The amino termi-

nus (NT) and carboxyl terminus (CT) of the Smc molecules fold 

back on themselves, forming antiparallel intramolecular coiled 

coils ( Haering et al., 2002 ). The NT and CT sequences form 

an ABC-type ATPase domain at one end, whereas the central re-

gion becomes the hinge domain of the other end of the coiled 

coil. Smc1 and Smc3 form a V-shaped heterodimer via the hinge 

domain. The data from budding yeast show that the CT and NT 

of Scc1/Mcd1/Rad21 bind to the ATPase heads of the Smc1 and 

Smc3 heterodimer, respectively, to form a triangular ring, and 

Scc3 binds to Scc1/Mcd1/Rad21 to reinforce the ring ( Gruber 

et al., 2003 ). The binding of ATP to the ATPase head of Smc1 is 

required for Scc1/Mcd1/Rad21 association with the Smc1 and 

Smc3 heterodimer ( Arumugam et al., 2003 ). 

 Various models for sister chromatid cohesion have been 

proposed ( Anderson et al., 2002 ;  Campbell and Cohen-Fix, 

2002 ;  Haering and Nasmyth, 2003 ;  Milutinovich and Koshland, 

2003 ;  Stead et al., 2003 ;  Huang et al., 2005 ;  Ivanov and Nasmyth, 

2005 ;  Losada and Hirano, 2005 ;  Nasmyth, 2005 ;  Skibbens, 2005 ; 

 Guacci, 2007 ;  Skibbens et al., 2007 ). Those models can be clas-

sifi ed into three categories: one ring, two ring, and bracelet. 

The most frequently cited one-ring embrace model predicts 

that Smc1, Smc3, and Scc1/Mcd1/Rad21 form a triangular ring. 

Sister chromatid cohesion is established when the replication 

fork passes through cohesin rings ( Gruber et al., 2003 ;  Haering 

and Nasmyth, 2003 ;  Nasmyth, 2005 ). The two-ring model pro-

poses that each Smc heterodimer embraces one of the sister 

chromatids; cohesion is established when Scc1/Mcd1/Rad21 teth-

ers the two Smc heterodimers so that two cohesin rings become 

paired during DNA replication ( Campbell and Cohen-Fix, 2002 ; 

 Stead et al., 2003 ;  Huang et al., 2005 ;  Nasmyth, 2005 ;  Skibbens, 

2005 ;  Guacci, 2007 ;  Skibbens et al., 2007 ). The bracelet model 

suggests that Scc1/Mcd1/Rad21 molecules connect Smc hetero-

dimers, forming multimeric fi laments that entrap sister chro-

matids ( Huang et al., 2005 ;  Nasmyth, 2005 ). Support for the 

two-ring model comes indirectly from the studies in budding yeast. 

 Chang et al. (2005)  suggest that each cohesin ring only em-

braces one instead of two sister chromatids in the heterochromatin 

regions ( Huang and Moazed, 2006 ). A recent study shows that 

T
he cohesin complex is responsible for the accurate 

separation of sister chromatids into two daughter 

cells. Several models for the cohesin complex have 

been proposed, but the one-ring embrace model currently 

predominates the fi eld. However, the static confi guration 

of the embrace model is not fl exible enough for cohesins 

to perform their functions during DNA replication, tran-

scription, and DNA repair. We used coimmunoprecipita-

tion, a protein fragment complement assay, and a yeast 

two-hybrid assay to analyze the protein – protein inter-

actions among cohesin subunits. The results show that three 

of the four human cohesin core subunits (Smc1, Smc3, 

and Rad21) interact with themselves in an Scc3 (SA1/

SA2)-dependent manner. These data support a two-ring 

handcuff model for the cohesin complex, which is fl exible 

enough to establish and maintain sister chromatid cohe-

sion as well as ensure the fi delity of chromosome segrega-

tion in higher eukaryotes.
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amounts of Myc-Rad21 and Flag-Rad21/endogenous Rad21 is 

coimmunoprecipitated ( Fig. 1 A , right). It is possible that Myc-

Rad21 forms a dimer with Flag-Rad21/endogenous Rad21 when 

Myc-Rad21 is underexpressed compared with Flag-Rad21/

endogenous Rad21 (see next paragraph). 

 In addition to the co-IP of differentially tagged Rad21, we 

investigated whether ectopically expressed Rad21 could co-

immunoprecipitate equal amounts of endogenous Rad21. We 

transfected HeLa cells with a 6 × Myc-tagged Rad21 (Myc-Rad21) 

construct. In the Myc-Rad21 input control, the level of exogenous 

Myc-Rad21 was only 1/40 of the endogenous Rad21 ( Fig. 1 B , 

left), but the same amount of endogenous Rad21 was co immuno-

precipitated by Myc-Rad21 ( Fig. 1 B , right). This result suggests 

that approximately every molecule of Myc-Rad21 is incorpora-

ted into a protein complex with an endogenous Rad21 molecule 

and that each Myc-Rad21 coimmunoprecipitates one additional 

Rad21 molecule. 

 To determine whether Rad21 – Rad21 interaction observed 

in the cohesin complexes also happens on the chromosome, we 

isolated chromatin and digested the DNA with micrococcal nu-

clease before co-IP experiments were performed. Similar to the 

previous experiments with whole cell lysates, co-IP experiments 

using either anti-Flag or Myc antibody agarose conjugates indi-

cated that Myc-Rad21 can coimmunoprecipitate Flag-Rad21 

and vice versa (Fig. S2 A, available at http://www.jcb.org/cgi/

content/full/jcb.200801157/DC1), a fi nding that is consistent 

with the intermolecular association of Rad21 in whole cell ly-

sate. Myc-Rad21 was also able to precipitate SA2 (Fig. S2 A), 

confi rming that the ectopically expressed Rad21 protein is also 

associated with endogenous cohesin components. 

 To rule out any genomic DNA contamination in the cell 

lysates used in the IP experiments, cell lysates were prepared 

with and without nuclease (DNase I and/or RNase) treatment. 

The nucleic acid in the samples was isolated using phenol/

chloroform extraction and amplifi ed using random primer PCR. 

The results indicated that nucleic acid (DNA and RNA) could 

be amplifi ed from the cell lysates in the absence of DNase I/

RNase A ( Fig. 1 C , lane 1). However, the amplifi ed signal was 

reduced signifi cantly when the lysates were treated with DNase I 

( Fig. 1 C , lane 2) or RNase A ( Fig. 1 C , lane 3) and was com-

pletely eliminated by the treatment of both DNase I and RNase 

A ( Fig. 1 C , lane 4). Compared with the signal from the positive 

control, which had 0.25 ng DNA as a template ( Fig. 1 C , lane 

10), the amount of DNA in the nuclease untreated cell lysate 

(125  μ g of protein) was about the same ( Fig. 1 C , lane 3), i.e., 

1 ng DNA in 500  μ g of protein. If the Rad21 – Rad21 interaction 

shown in the co-IP experiments occurred via genomic DNA, we 

should have seen PCR-amplifi ed DNA from the immunoprecip-

itated samples in the absence of nuclease treatment. How-

ever, random primer PCR results indicated that there was no 

DNA in the IP elutes, regardless of whether the cell lysates were 

treated with nuclease ( Fig. 1 C , lanes 5 and 7) or not treated 

( Fig. 1 C , lanes 6 and 8). The co-IP results also showed that 

Flag-Rad21 and Myc-Rad21 can immunoprecipitate each other 

from either nuclease-treated or untreated samples ( Fig. 1 D ). 

 To further exclude the potential self-aggregation of Rad21 

proteins, if any, Flag-Rad21 and Myc-Rad21 were expressed 

a pericentric chromatin organizes into a cruciform during mito-

sis such that the centromere-fl anking DNA adopts an intra-

molecular loop, whereas sister chromatid arms are paired 

intermolecularly, suggesting a two-ring cohesin complex ( Yeh 

et al., 2008 ). Although the aforementioned fi ndings may suggest 

a loci- and silencing-specifi c mechanism that may not refl ect 

cohesion along the length of the chromosome, they nonetheless 

challenge the current single-ring model, providing further indi-

cation that chromosomal cohesion is more complex than origi-

nally thought and requires additional investigation. 

 To understand how sister chromatids are held by cohesin 

complexes in higher eukaryotes, we have investigated the protein –

 protein interactions among the cohesin subunits in human cell 

lines using various biochemical and functional analyses. Our 

results indicate that three of the four core cohesin subunits 

(Rad21, Smc1, and Smc3) can coimmunoprecipitate themselves 

and each other, whereas the two Scc3 orthologues, SA1 and 

SA2, cannot. These fi ndings suggest that a cohesin complex is 

not one ring. Based on the molecular associations of cohesin 

subunits, the results of a fl uorescence protein complement assay 

(PCA), protein – protein interaction from a yeast two-hybrid 

assay, and the inhibition of SA1 and SA2 using siRNA, we pro-

vide evidence for a handcuff model of the cohesin complex, 

which consists of two rings. Each ring has one set of Rad21, 

Smc1, and Smc3 molecules. The handcuff is established when 

two Rad21 molecules move into antiparallel orientation that is 

enforced by either SA1 or SA2. Sister chromatids are held to-

gether by one of the two rings. Inhibition of SA1/SA2 leads to 

dissociation and opening of the rings. 

 Results 
 To determine whether more than one set of cohesin subunits are 

in the cohesin holocomplex, we cloned the cDNA of cohesin 

subunits in frame into plasmids containing Flag, HA, or Myc 

epitope (Table S1, available at http://www.jcb.org/cgi/content/

full/jcb.200801157/DC1) either at the NT or CT of the protein, 

coexpressed each cohesin subunit with two different epitopes, 

and used coimmunoprecipitation (IP) and Western blot (WB) 

analysis to delineate the inter- and intramolecular associations. 

The rationale was that the same cohesin subunit with different 

tagged epitopes should be able to immunoprecipitate each other 

if two copies of each cohesin subunit are in the cohesin holo-

complex. Before performing the co-IP experiments, we exten-

sively tested the transiently expressed cohesin proteins for their 

cellular localization (Fig. S1 A) and incorporation into the co-

hesin complex (Fig. S1 B) and validated the specifi city of the IP 

studies (Fig. S1, C – D). 

 Each cohesin complex contains two 
Rad21 molecules 
 To investigate whether more than one Rad21 protein is in the 

cohesin complex, we coexpressed two Rad21 constructs with 

different epitopes in 293T cells, coimmunoprecipitated the pro-

tein, and analyzed the results using WB. The results indicate that 

Flag-Rad21 coimmunoprecipitates Myc-Rad21 and vice versa 

( Fig. 1 A ). Moreover, WB with Rad21 pAb indicates that equal 
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distinct higher molecular weight band caused by 6 × Myc epitope 

distinct from that of Flag-Rad21, but also coimmunoprecipitates 

other cohesin subunits, Smc1, Smc3, SA1, and SA2 (Fig. S2 B). 

Our mass spectrometry analysis of the immunoprecipitate from 

the DNase- and RNase-treated cell lysates verifi ed that Flag-

Rad21 indeed copurifi ed Myc-Rad21 and the other core cohesin 

subunits (Fig. S2 C). Based on the aforementioned data (Fig. S2 

and see preceding paragraph), we conclude that co-IP of Rad21 

protein – protein interaction is specifi c and not caused by indirect 

association with genomic DNA or simple self-aggregation and 

multimerization, and there are two Rad21 molecules in each co-

hesin complex. These results provide the fi rst indication that the 

cohesin complex in humans may not be a single ring but instead 

may be a dimeric or two-ring structure. 

separately, and the cell lysates were mixed together before 

co-IP. The Flag-Rad21 and Myc-Rad21 mixture cannot be co-

immunoprecipitated ( Fig. 1 E , lanes 6 and 13), but coexpressed 

Flag- and Myc-Rad21 can be ( Fig. 1 E , lanes 7 and 14). This re-

sult implies that co-IP of Flag-Rad21 and Myc-Rad21 is not 

caused by a simple aggregation, and, in intact cells, additional 

components may be required to form an intermolecular associa-

tion of two Rad21 molecules. 

 Another approach to distinguishing specifi c association 

from nonspecifi c aggregation of ectopic Rad21 is to determine 

whether ectopic Rad21 can be effi ciently incorporated into the 

cohesin holocomplex. SDS-PAGE with silver staining (Fig. S2 B, 

left) and WB (Fig. S2 B, right) indicate that Flag-Rad21 not 

only coimmunoprecipitates Myc-Rad21, which is shown as a 

 Figure 1.    Co-IP and WB analysis of cohesin Rad21 –
 Rad21 interaction.  Logarithmically growing 293T 
or HeLa cells were transfected with appropriate 
Rad21 plasmids or empty vector (EV). Input 
(10% of IP) and IP samples were resolved by 7% 
SDS-PAGE and blotted with the indicated anti-
bodies. (A) Flag-Rad21 and Myc-Rad21 coimmuno-
precipitated. (B) Myc-Rad21 coimmunoprecipitated 
endogenous Rad21. Bar graphs show the relative 
level of Myc-Rad21 and endogenous Rad21 in 
input (left) and co-IP samples (right). Error bars in-
dicate SEM from three observations. (C) Radom 
primer PCR amplifi cation of DNA from 293T cell 
lysates and the elutes of immunoprecipitated sam-
ples. The template DNA used for PCR was purifi ed 
from cell lysates after nuclease treatment as shown 
in lanes 1 – 4. The cell lysates for IP with Flag mAb 
(lanes 5 and 6) or Myc pAb (lanes 7 and 8) 
agarose-conjugated beads were digested with 
DNase I and RNase A in lanes 5 and 7 but were not 
digested in lanes 6 and 8. The amounts of DNA 
template used for PCR were from 125  μ g of pro-
tein of cell lysates (lanes 1 – 4) or 1 mg of protein 
of cell lysates in IP samples (lanes 5 – 8). There is 
no DNA in the negative control (lane 9) and 0.25 
ng DNA in the positive control (lane 10). (D) Cell 
lysates were treated with or without DNase I and 
RNase A before co-IP. (E) Co-IP of Flag-Rad21 
and Myc-Rad21 from cells in which Flag-Rad21 
and Myc-Rad21 were expressed separately, and 
lysates were mixed together before IP was per-
formed (**, lanes 6 and 13) or from cells cotrans-
fected with Flag-Rad21 and Myc-Rad21 (lanes 7 
and 14). Black lines indicate that intervening lanes 
have been spliced out.   
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Smc3 and that they form a heterodimer via their hinge domain 

( Haering et al., 2002 ). In the cohesin complex, Smc1 and Smc3 

heads are also tethered by Rad21 CT and NT, respectively 

( Gruber et al., 2003 ,  2006 ). In either case, Smc1 and Smc3 pro-

teins should coimmunoprecipitate, and this is confi rmed by our 

data ( Fig. 2 A ). Our co-IP studies indicated that Myc-Smc1 and 

Myc-Smc3 also coimmunoprecipitate endogenous Smc1 and 

Smc3, respectively, which are shown as faint bands under Myc-

Smc1 and Myc-Smc3 bands ( Fig. 2 A ). 

 To further verify whether Smc1 and Smc3 can coimmuno-

precipitate themselves, Smc1 and Smc3 were tagged with Flag 

and Myc epitopes. After cotransfection of cells with Flag-Smc1 

and Myc-Smc1 plasmids, reciprocal co-IP was performed. 

WB results showed that Flag-Smc1 reciprocally coimmuno-

precipitated Myc-Smc1. Similar results were obtained for Flag-

Smc3 and Myc-Smc3 (unpublished data). As previously shown 

for Rad21, to exclude the possibility that Myc- and Flag-tagged 

Smc1 and Smc3 coimmunoprecipitate themselves via genomic 

DNA that might present as contaminants in protein lysates, we 

treated cell lysates with DNase I and RNase A before co-IP. The 

results from DNase I –  and RNase A – treated samples were very 

similar to those from samples without DNase I and RNase A 

treatment (unpublished data); i.e., Flag-Smc1 and Myc-Smc1 re-

ciprocally coimmunoprecipitate ( Fig. 2 B ), as do Flag-Smc3 

and Myc-Smc3 ( Fig. 2 C ). Co-IP of Myc- and Flag-Smc1 as 

well as Myc- and Flag-Smc3 is therefore not caused by non-

specifi c association with the genomic DNA. These fi ndings suggest 

that there is more than one copy of Smc1 and Smc3 molecules 

in the cohesin complex. 

 Each cohesin complex contains one 
molecule of SA1 or SA2 
 In budding yeast, Scc3 is a core subunit of the cohesin complex. 

In humans, there are two orthologues of Scc3, SA1 and SA2, 

and SA2 is more abundant than SA1 ( Losada et al., 2000 ). 

Because three of the four cohesin core subunits, Rad21, Smc1, 

 It has been reported that CT-tagged Scc1 with 18 × Myc or 

6 × HA could not coimmunoprecipitate in yeast ( Haering et al., 

2002 ;  Ivanov and Nasmyth, 2005 ), and Rad21-9 × Myc could 

not coimmunoprecipitate endogenous Rad21 in stably transfected 

HeLa cells ( Hauf et al., 2005 ). This fi nding is inconsistent with 

the results otained in this study using NT-tagged Rad21. Because 

an antibody against the last 14 aa residues of Rad21 only immuno-

precipitates the free form of Rad21 and fails to immunoprecipitate 

Rad21 that has associated with Smc1 – Smc3 (Fig. S3 A, available 

at http://www.jcb.org/cgi/content/full/jcb.200801157/DC1), the 

CT of Rad21 may be masked when Rad21 is incorporated into 

the cohesin complex. We hypothesize that tagging the Myc epi-

tope to the CT of the Rad21 molecule might hinder the Rad21 –

 Rad21 interaction. Using a bacterial artifi cial chromosome 

engineering system to tag 6 × Myc epitopes at the NT of Rad21 

(6 × Myc-Rad21) or at the CT of Rad21 (Rad21-6 × Myc), we made 

stable transfect 293 cell lines. We used Myc pAb – conjugated 

agarose beads to immunoprecipitate Myc-tagged Rad21. The re-

sult showed that only the NT Myc – tagged Rad21 can coimmuno-

precipitate endogenous Rad21 (Fig. S3 B, lanes 7 and 8) but not 

the CT Myc – tagged Rad21 (Fig. S3 B, lanes 9 and 10). How-

ever, it is interesting to note that either NT- or CT-tagged Rad21 

can coimmunoprecipitate the other cohesin components, such 

as Smc3 and SA2, indicating the presence of a different pop-

ulation and intermediates of the cohesin rings. This fi nding sug-

gests that tagging epitopes to the CT of Rad21 molecules does not 

prevent single cohesin ring formation. These studies confi rm 

that tagging the CT but not the NT of Rad21 with Myc epitopes 

affects the Rad21 – Rad21 interaction. 

 Smc1 and Smc3 coimmunoprecipitate 
themselves 
 Next, we tested whether more than one copy of Smc1 and Smc3 

proteins is in the cohesin complex by using a strategy similar to 

the one used in studying Rad21 – Rad21 interaction. It has been 

previously shown that the cohesin complex contains Smc1 and 

 Figure 2.    Smc1 and Smc3 coimmunoprecipi-
tate each other as well as themselves.  293T 
cells were transfected with the appropriate 
plasmids. After 48 h, cell lysates were prepared 
and used for IP. The loaded input samples were 
equivalent to 10% of IP samples. (A) Myc-Smc1 
and Myc-Smc3 coimmunoprecipitated endog-
enous Smc3 and Smc1 as well as endogenous 
Smc1 and Smc3, respectively. (B and C) Cell 
lysates were treated with or without DNase I 
and RNase A before co-IP of Smc1 – Smc1 
(B) and Smc3 – Smc3 (C) was performed. EV, 
empty vector.   
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out the possibility that either NT- or CT-tagged SA could hinder 

SA – SA self-interaction. Alternatively, the SA – SA interaction 

does exist in vivo, but it is so weak that we fail to detect the in-

teraction using co-IP. 

 We further investigated the possible interactions between 

SA1 and SA2 ( Fig. 3 A , lanes 6 and 11), and our data are con-

sistent with the results that SA1 and SA2 do not coexist in the 

same cohesin complex as reported previously ( Losada et al., 

2000 ;  Sumara et al., 2000 ). In co-IP experiments using synchro-

nized HeLa cells, we confi rmed that association of one mole-

cule of SA1 or SA2 to the cohesin complex is not affected by 

the stages of the cell cycle (unpublished data). This set of exper-

iments suggests that, unlike other cohesin units (Rad21, Smc1, 

and Smc3), there is only one molecule of SA1 or SA2 in each 

cohesin complex. 

 Rad21 – Rad21 oriented in an antiparallel 
manner in cohesin holocomplex 
 To investigate how Rad21 proteins interact with each other, we 

used a fl uorescence PCA, a technique that has been widely used 

to study the dynamics of protein – protein interactions ( Michnick, 

2003 ;  Remy and Michnick, 2003 ). Enhanced YFP was used in this 

study. YFP is split into two pieces, YFP(NT) (157 aa) and YFP(CT) 

(81 aa). Wild-type Rad21 was cloned into the PCA vectors, 

resulting in four different fusion proteins, i.e., YFP(NT)-Rad21, 

YFP(CT)-Rad21, Rad21-YFP(NT), and Rad21-YFP(CT). 

and Smc3, can immunoprecipitate themselves, the cohesin 

complex might contain more than one copy of the fourth core 

subunit, SA1/SA2. To investigate whether SA1 can immunopreci-

pitate itself, we cotransfected 293T cells with Flag-SA1 and 

HA-SA1 constructs. An IP experiment using asynchronous 

293T cells demonstrates that Flag-SA1 and HA-SA1 cannot co-

immunoprecipitate ( Fig. 3 A , lanes 5 and 11). The inability to 

detect an interaction between Flag-SA1 and HA-SA1 was not 

caused by failure of the IP, as Flag and HA antisera effi ciently 

detected the bands of Flag-SA1 and HA-SA1, respectively 

( Fig. 3 A ). We also obtained similar results when Flag-SA1 and 

Myc-SA1 were used in co-IP experiments (unpublished data). 

Similar to SA1, neither Flag-SA2 or HA-SA2 ( Fig. 3 A , lanes 

6 and 12) nor Myc-SA2 or Flag-SA2 (not depicted) can immuno-

precipitate each other. 

 As shown above (see preceding paragraphs), in the case of 

Rad21, tagging an epitope to the different ends of a protein may 

affect the protein – protein interaction. To rule out the lack of a 

self-interaction in SA proteins caused by the NT tagging, we 

generated a set of SA constructs with HA and Flag tagged to the 

CT of the molecule and used co-IP to investigate the interaction 

of SA1 – SA1 as well as SA2 – SA2. Similar to the NT-tagged SA 

proteins, both CT-tagged SA1-HA and SA1-Myc ( Fig. 3 B , 

lanes 6 and 12) and SA2-HA and SA2-Myc failed to coimmuno-

precipitate ( Fig. 3 C , lanes 6 and 12), suggesting a lack of a de-

tectable SA – SA self-interaction. However, we cannot rule 

 Figure 3.    Each cohesin complex contains only 
one copy of SA1 or SA2.  293T cells were co-
transfected with the respective constructs. 48 h 
after transfection, IP was performed. SA1 and 
SA2 were detected using the corresponding 
antibodies shown on the blots. (A) HA and Flag 
epitopes were tagged to the NT of SA1 and 
SA2. (B and C) HA and Myc epitopes were 
tagged to the CT of SA1 and SA2. EV, empty 
vector; *, splicing SA1-Myc or SA2-Myc; **, 
nonspecifi c band. Black lines indicate that in-
tervening lanes have been spliced out.   
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tions ( Fig. 4 B ). Out of the four combinations, we observed only 

YFP fl uorescence in the cells transfected with plasmids contain-

ing YFP(NT)-Rad21 and Rad21-YFP(CT) cDNAs ( Fig. 4, 

B and C ). The YFP fl uorescence is not likely to be caused by 

nonspecifi c aggregation of YFP(NT)-Rad21 and Rad21-YFP(CT) 

because the other three cotransfection combinations also have 

both YFP(NT) and YFP(CT) fragments, but no YFP fl uorescent 

signal was observed in any of these ( Fig. 4 B ). The absence of 

YFP fl uorescence in the combination of YFP(NT)-Rad21 and 

YFP(CT)-Rad21 as well as Rad21-YFP(NT) and YFP(CT)-Rad21 

should not be caused by relatively low expression of YFP(CT)-

Rad21 ( Fig. 4 A , lane 4) because the amount of YFP(CT)-Rad21 

incorporated into the cohesin complex ( Fig. 4 A , lane 10) is 

similar to that of the other three YFP-fused Rad21 ( Fig. 4 A , 

lanes 9, 11, and 12) when they were coimmunoprecipitated 

by Smc3 pAb. Moreover, we did not observe a YFP signal in 

the combination of Rad21-YFP(NT) and Rad21-YFP(CT) 

despite the good expression of Rad21-YFP(CT) ( Fig. 4 A , 

lane 6). These results provide two important clues that indi-

cate how Rad21 proteins orient in the cohesin complex ( Fig. 4 D ). 

First, the two Rad21 molecules are next to each other be-

cause the YFP(NT) and YFP(CT) fused to Rad21 proteins 

have to be brought close enough to fold into a functional 

 Using Smc3 pAb, we tested the expression of the YFP 

fragment – fused Rad21 molecules in 293T cells and their incor-

poration into the cohesin complex by immunoprecipitating en-

dogenous Smc3 ( Fig. 4 A ). All YFP-fused Rad21 are expressed 

( Fig. 4 A ). YFP(CT)-Rad21 could not be detected as effi ciently 

by the GFP pAb as the other three YFP-fused Rad21. However, 

the level of YFP(CT)-Rad21 is found to be equivalent to endog-

enous Rad21 when the blot was probed with Rad21 mAb ( Fig. 4 

A , lane 4). IP of endogenous Smc3 using Smc3 pAb not only effi -

ciently coimmunoprecipitated all four YFP-fused Rad21 proteins 

but also coimmunoprecipitated endogenous Rad21 ( Fig. 4 A , 

lanes 9 – 12) along with the other cohesin subunits Smc1, SA1, 

and SA2 ( Fig. 4 A ). The four YFP-tagged Rad21 and the other 

three cohesin core subunits, Smc1, Smc3, and SA1/2, can 

also be immunoprecipitated by GFP pAb (Fig. S4, available 

at http://www.jcb.org/cgi/content/full/jcb.200801157/DC1). These 

data suggest that exogenously YFP-fused Rad21 can be incor-

porated into the cohesin complex as endogenous Rad21. 

 To investigate whether Rad21-fused YFP(NT) and YFP(CT) 

can fold into a state that emits yellow fl uorescence as full-length 

YFP, we cotransfected 293T and HeLa cells with one of the 

two YFP(NT)-fused Rad21 constructs and one of the two 

YFP(CT)-fused Rad21 constructs, which yielded four combina-

 Figure 4.    Fluorescent protein fragment complementation assay showing the Rad21 – Rad21 interaction and the antiparallel orientation.  (A) YFP(NT) or 
YFP(CT) were fused to either the NT or CT end of Rad21. YFP-fused Rad21 constructs were expressed in 293T cells (lanes 3 – 6), and their interaction with 
the cohesin complex was examined by IP of the endogenous Smc3 using rabbit anti-Smc3 antisera (lanes 9 – 12). *, nonspecifi c band. (B) 293T cells were 
cotransfected with YFP(NT)- and YFP(CT)-fused Rad21 plasmids (a total of four combinations). YFP fl uorescence was examined under a fl uorescent micro-
scope 40 h after transfection. (C) YFP fl uorescence – positive 293T and HeLa cells transfected with the combination of YFP(NT)-Rad21 and Rad21-YFP(CT) 
at 400 ×  magnifi cation. (D) Possible antiparallel orientation of Rad21 – Rad21 interactions. Only the combination of plasmids in the top panel results in the 
fl uorescence. Bars, 25  μ m.   
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hypothesis using SA1 and SA2 siRNA. SA1 and SA2 proteins 

are reduced by 65% and 75%, respectively, with siRNA treat-

ment ( Fig. 6, A  [lanes 3 and 4]  and B  [lanes 2 and 3]). In multi-

ple experiments, co-IP of endogenous Rad21 by Myc-Rad21 was 

signifi cantly reduced by SA2 inhibition, whereas SA1 siRNA 

treatment had a lesser effect ( Fig. 6 A ). We performed an addi-

tional experiment by cotransfecting Flag-Rad21 and Myc-Rad21 

and coimmunoprecipitating the epitope-tagged Rad21 ( Fig. 6 B ). 

Similar to the results shown in  Fig. 6 A , in this cotransfection 

experiment, the knockdown of SA2 by siRNA blocked the 

co-IP of Flag-Rad21 and Myc-Rad21 ( Fig. 6 B , lanes 7, 8, 11, and 

12). These results suggest that SA2 may play a role in locking 

the two associated Rad21 molecules, and they are also consis-

tent with the data that SA2 is the dominant form of Scc3 in 

human somatic cells ( Losada et al., 2000 ). It is interesting to note 

that although the interaction between the two rings is lost, the 

fl uorescence-emitting confi guration ( Fig. 4 D , top). Second, 

the two Rad21 proteins align in an antiparallel manner be-

cause, to assemble a functional YFP molecule, YFP(NT)-

Rad21 and Rad21-YFP(CT) have to be brought together; i.e., 

the CT of one Rad21 protein is close to the NT of another Rad21 

protein ( Fig. 4 D , top). The fragments of YFP in Rad21-YFP(NT) 

and YFP(CT)-Rad21 can also be brought together ( Fig. 4 D , 

bottom), but fl uorescence was not observed ( Fig. 4 B ). It is pos-

sible that the reverse polarity of YFP(NT) and YFP(CT) fused to 

Rad21 may hinder the appropriate folding of YFP and Rad21 –

 Rad21 interaction ( Fig. 4 D , bottom). These fi ndings suggest that 

two cohesin rings are dimerized via the two Rad21 subunits that 

exist in an antiparallel orientation in the cohesin holocomplex. 

 The percentage of cells with YFP fl uorescence was low, 

only  � 3 – 5% ( Fig. 4 B ), whereas the transfection effi ciency was 

 � 80% when the cells were cotransfected with pDsRed2-C1 

plasmid, which expresses RFP. The discrepancy between the 

high transfection rate in cells transfected with control plasmid 

and the observed YFP-positive cells transfected with YFP(NT)-

Rad21 and Rad21-YFP(CT) is possibly a result of the structural 

hindrance caused by the CT tag of Rad21-YFP(CT) that fails to 

dimerize with YFP(NT)-Rad21, which is similar to that seen in 

the earlier IP experiments (Fig. S3 B). Another possibility is that 

endogenous Rad21 competes with the YFP(NT)- or YPF(CT)-

tagged Rad21 to form Rad21 – Rad21 dimers. It is less likely that 

the YFP fl uorescence resulted from two proximate cohesin 

complexes with YFP(NT)-Rad21 and Rad21-YFP(CT) because 

the two adjacent YFP(NT)-Rad21 and Rad21-YFP(CT) have 

the same reverse polarity dilemma as discussed in the pre-

ceding paragraphs. 

 In our previous yeast two-hybrid assay using Rad21 NT long 

(NT-L; 1 – 283 aa) and CT long (CT-L; 254 – 631 aa) as bait, we 

isolated full-length Rad21 as an interactor (unpublished data). To 

further verify the interaction of Rad21 – Rad21 shown in the afore-

mentioned co-IP and PCA studies, we extended our yeast two-

hybrid assay as additional evidence. The cDNAs of full-length 

Rad21, Rad21 NT-L, Rad21 CT-L, and Rad21 CT (450 – 631 aa) 

were cloned into  GAL4  DNA – binding (pC97) and  GAL4  DNA 

activation (pC86) domain plasmids. WB results show that the 

constructs are well expressed in the two-hybrid yeast stain 

MV103 ( Fig. 5 A ). A yeast two-hybrid assay demonstrates that 

full-length Rad21, Rad21 NT-L, and Rad21 CT-L interact with 

themselves and with each other ( Fig. 5 B ). However, NT-truncated 

Rad21 (Rad21 CT) failed to interact with itself or with other 

Rad21 constructs ( Fig. 5 B ), which is consistent with the IP re-

sults (not depicted). Based on the fi ndings in PCA and yeast two-

hybrid assay, we conclude that Rad21 interacts with Rad21 and 

aligns in an antiparallel manner in the cohesin complex. 

 Inhibition of SA1 and SA2 prevents 
Rad21 – Rad21 interaction and causes loss 
of sister chromatid cohesion 
 Our IP data indicate that the interaction of Rad21 with Rad21 

(Figs. S2 and S3) or full-length Rad21 with some truncated 

Rad21 products (not depicted) is always associated with SA1/

SA2. We hypothesized that SA1 or SA2 is one of the linkers of 

the two Rad21 molecules of the cohesin rings and tested this 

 Figure 5.    Rad21 – Rad21 interaction determined by yeast two-hybrid assay.  
(A) Expression of Rad21 wild type (1 – 631 aa), CT-L (254 – 631 aa), and 
CT (451 – 631 aa) in yeast was analyzed with WBs using Rad21 CT – 
specifi c pAb. (B) A  LacZ  reporter assay was used to probe the Rad21 – Rad21 
interaction. Yeast cells cotransfected with pC97 and pC86 empty vector 
is shown as the negative control. (C) pC97  GAL4 BD and pC86  GAL4 AD 
were used as the positive control. Positive protein – protein interaction is 
shown in blue in th  LacZ  reporter assay.   
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 To further characterize the role of SA2 in the cohesin com-

plex, we used sucrose gradient centrifugation to investigate the 

different forms of cohesin. The rationale was that a cohesin com-

plex with fewer subunits (e.g., single ring) will sediment more 

slowly than one with more subunits (e.g., double ring). There-

fore, different populations of cohesins can be separated with su-

crose gradient centrifugation. We knocked down SA2 before the 

cells were transfected with Myc-Rad21 and Flag-Rad21. After 

the cell lysate was ultracentrifuged, the sample was fractionated, 

and cohesin subunits in each fraction were analyzed using WBs. 

three core subunits, Rad21, Smc1, and Smc3, remained associ-

ated, as Myc-Rad21 could still coimmunoprecipitate Smc1 and 

Smc3 ( Fig. 6, A  [lanes 9 and 10]  and B  [lanes 7, 8, 11, and 12]), 

suggesting an intact one-ring cohesin complex. The immuno-

fl uorescence microscopy also demonstrates that Rad21 and Smc3 

colocalize in SA1 and SA2 knockdown cells (Fig. S5, available 

at http://www.jcb.org/cgi/content/full/jcb.200801157/DC1), fur-

ther supporting the association of Rad21, Smc1, and Smc3 and 

suggesting that both one-ring and two-ring cohesin com-

plexes can exist in the same cells. 

 Figure 6.    Knockdown of SA1/SA2 disrupts the Rad21 – Rad21 interaction and the formation of the two-ring cohesins.  (A and B) SA1 and SA2 are 
knocked down by respective siRNA 24 h after transfection with tagged Rad21 into 293T cells. (A) Myc-Rad21 cannot coimmunoprecipitate endogenous 
Rad21 when SA2 is knocked down. (B) Myc-Rad21 and Flag-Rad21 cannot reciprocally coimmunoprecipitate each other when SA2 is down-regulated. 
(C) Sucrose gradient centrifugation to study cohesin – cohesin interaction after SA2 knockdown. 293T cells were transfected with SA2 siRNA or control 
siRNA, and, 24 h later, the cells were cotransfected with Myc-Rad21 and Flag-Rad21 for 40 h. Cell lysates were prepared and used in sucrose gradient 
centrifugation. Rad21, Smc3, and SA2 were analyzed using WB. Sedimentation coeffi cient is shown on the top of the blot. Input, sample before sucrose 
gradient centrifugation. (D) Dissociation of cohesin from sister chromatids in SA2 knockdown cells. HeLa cells in the mitosis phase were cytospun onto 
slides, and immunofl uorescent microscopy was performed. Rad21 mAb and human CREST antibodies were used to probe Rad21 (red) and centromere 
(green), respectively. The nuclear material is visualized by DAPI staining (blue). The centromeres of one chromosome shown in the boxes of merge panels 
are enlarged on the right. (A and C) Black lines indicate that intervening lanes have been spliced out. Bar, 10  μ m.   
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is dissolved when cohesin subunit Scc1/Mcd1/Rad21 is cleaved 

by separase at the onset of the metaphase to anaphase transition 

( Gruber et al., 2003 ;  Haering and Nasmyth, 2003 ;  Uhlmann, 

2004 ). With the accumulation of data from recent studies using 

budding yeast and other organisms ( Stead et al., 2003 ;  Chang et al., 

2005 ;  Guacci, 2007 ;  Surcel et al., 2008 ;  Yeh et al., 2008 ), 

the one-ring model faces increasing challenges from alternative 

models. The one-ring model has several caveats, including the 

static confi guration of the cohesin ring, which cannot properly 

explain how sister chromatid cohesion is established during 

DNA replication in the S phase, how genome-wide cohesion is gen-

erated once a double-strand DNA break happens in the G2/M 

phase, and how transcription is regulated. On the contrary, a 

two-ring model in which cohesin complexes associate with each 

sister chromatid that becomes paired during DNA replication is 

a valid alternative because it can accommodate the drawbacks 

of the one-ring embrace model. 

 Handcuff model for cohesin 
 Our data show that there is a population of cohesin subunits 

that immunoprecipitate themselves in an Scc3 (SA1/SA2)-

dependent manner. Three of the four core subunits, Rad21, 

Smc1, and Smc3, not only immunoprecipitate each other but 

also immunoprecipitate themselves. The ratio of Myc-Rad21 

pulling down Flag-Rad21 and/or endogenous Rad21 is 1:1. 

Fur thermore, Rad21 – Rad21 interaction is also observed in a yeast 

two-hybrid assay. These results provide the fi rst indication that 

the cohesin complex in humans may exist as a dimeric or a 

two-ring structure. 

 Although several dimeric ring models ( Fig. 7, A – C ) have 

been proposed ( Campbell and Cohen-Fix, 2002 ;  Stead et al., 

2003 ;  Huang et al., 2005 ;  Nasmyth, 2005 ;  Skibbens, 2005 ; 

 Guacci, 2007 ;  Skibbens et al., 2007 ), until now there has been 

no direct experimental evidence supporting these models. PCA 

experiments have provided two valuable clues about how Rad21 

proteins interact. First, the two Rad21 molecules must have 

close proximity to each other in the cohesin complex. Otherwise, 

the YFP(NT) and YFP(CT) fragments would be unable to fold 

into a confi guration to emit fl uorescence. This close proximity 

prompted us to challenge the two dimeric models in which two 

Smc1 – Smc3 heterodimers are connected by two Rad21 mole-

cules that are on opposite sides of the ring ( Fig. 7 A ), or Rad21 

tethers the Smc1 and Smc3 heads that belong to two different 

Smc1 – Smc3 heterodimers ( Fig. 7 B ). The second clue is that 

the two Rad21 proteins align in an antiparallel fashion such that 

the YFP(NT) in YFP(NT)-Rad21 and the YFP(CT) in Rad21-

YFP(CT) can be close enough to form a fl uorescence-emitting 

confi guration. These fi ndings collectively suggest that two co-

hesin rings are either directly or indirectly dimerized via Rad21 

subunits ( Fig. 7 C ). 

 The possible dimerization of cohesin rings in yeast and hu-

mans has been studied in the past using co-IP approaches similar 

to ours and most recently using fl uorescence resonance energy 

transfer (FRET;  Mc Intyre et al., 2007 ). The earlier co-IP studies 

might have missed this important interaction because of their use 

of the C-terminally tagged Scc1/Mcd1/Rad21 constructs ( Haering 

et al., 2002 ;  Hauf et al., 2005 ). As we have shown, the CT 

As shown in  Fig. 6 C  (input lane), SA2 in SA2 siRNA – treated 

cells is reduced by  � 90% compared with the control. Both con-

trol and SA2 knockdown samples have fractions containing only 

Rad21, Rad21 – Smc3, and Rad21 – Smc3 – SA2, suggesting mixed 

populations of cohesin complexes/subunits. In both the control 

and SA2 knockdown samples, most Rad21 molecules were de-

tected in the same fraction as Smc3. However, the migration of 

Rad21 – Smc3 in the SA2 siRNA – treated sample (11 – 12 s) was 

slower than that of the control (14 – 15 s;  Fig. 6 C ), which is likely 

caused by the absence of the SA2 protein in the SA2 siRNA –

 treated sample. We also found a minor cohesin population around 

19 s in the control sample, which does not exist in the SA2 

knockdown sample ( Fig. 6 C , bottom). Because SA2 knockdown 

leads to the failure of Rad21 – Rad21 interaction ( Fig. 6, A and B ), 

the cohesin population in the fractions around 19 s in the control 

sample may represent the dimeric cohesin complex, whereas the 

cohesin population in the fractions around 14 s represents the 

single-ring cohesin ( Fig. 6 C , top), and the cohesin population in 

the fractions around 11 s in the SA2 knockdown sample repre-

sents the single-ring cohesin without SA2 ( Fig. 6 C , bottom). 

Because sucrose gradient centrifugation alone cannot determine 

the molecular weight of an asymmetrical protein like cohesin, 

the fraction that contains the dimeric cohesin complex remains 

to be determined. 

 To determine whether the rings consisting of Rad21, Smc1, 

and Smc3 are on the sister chromatids after SA2 knockdown, we 

performed immunostaining to visualize any cohesin signals on 

chromosomes by using Rad21 and SA2 antisera. In prometa-

phase and metaphase cells treated with control siRNA, Rad21 

signals ( Fig. 6 D , red) were found on the centromeres, which 

were colocalized with CREST centromere antigen ( Fig. 6 D , 

green). However, the Rad21 signal on the centromere was signif-

icantly reduced or completely absent in SA2 siRNA – treated cells 

( Fig. 6 D ). Similar to Rad21, SA2 signals were found on centro-

meres in the control but were completely absent in SA2 siRNA –

 treated cells (unpublished data). These results suggest that 

cohesin rings are opened and disassociated from sister chroma-

tids once SA2 is knocked down. In summary, based on our 

biochemical and cytogenetic analyses, we conclude that SA1 

and SA2 may serve as the locking device that holds the two co-

hesin rings together. Inhibition of these locking molecules not 

only dissociates the two rings but also opens them up. 

 Discussion 
 The Rad21 – Rad21 interaction is the cornerstone of our hand-

cuff model. Our analysis of the cohesin ring arose from two un-

expected observations: (1) the isolation of Rad21 as an interactor 

in a two-hybrid assay using several different Rad21 baits (NT-L, 

CT-L, and full length) and (2) co-IP of endogenous or differen-

tially tagged Rad21. These results lead us to hypothesize that 

Rad21 interacts with itself, and this interaction forms a basis for 

a higher order cohesin complex. 

 The one-ring embrace model proposes that cohesin com-

plexes are loaded to the chromosome before the S phase, sister 

chromatid cohesion is established after the replication fork passes 

through the cohesin ring during DNA replication, and cohesion 
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of the full-length and truncated Rad21 proteins themselves (un-

published data) along with SA1 and SA2 indicate that the inter-

action between two Rad21 molecules is stabilized by SA1 or 

SA2. Inhibition of the Rad21 – Rad21 co-IP and premature sepa-

ration of sister chromatids caused by SA1 and SA2 knockdown 

(unpublished data) further strengthen the notion that SA1 and 

SA2 are indeed one of the molecules that link the two cohesin 

rings. Disruption of the linkers (SA1/SA2) between the two 

rings abolishes cohesion by disrupting the Rad21 – Rad21 inter-

action, resulting in the dissociation of the two rings. However, 

we do not exclude the possibility that other cohesin-associating 

proteins along with SA1 and SA2 may play a role in the dimer-

ization of the two cohesin rings. For instance, Pds5 is found to 

bind to both Scc1/Mcd1/Rad21 and the hinge of Smc1 – Smc3 

in budding yeast ( Mc Intyre et al., 2007 ). It has been shown to 

maintain sister chromatid cohesion and is implicated in helping 

to form a dimeric cohesin ring ( Stead et al., 2003 ;  Guacci, 2007 ; 

 Skibbens et al., 2007 ). We also found that Pds5 was coimmuno-

precipitated when Rad21 copurifi ed itself (unpublished data). 

Therefore, Pds5 might be one of the proteins that help SA1 and 

SA2 to maintain the dimeric rings. 

 Our results and data from other laboratories ( Losada et al., 

2000 ;  Sumara et al., 2000 ) indicate that SA1 and SA2 do not 

exist in the same cohesin complex and that each cohesin complex 

contains only one molecule of SA1 or SA2. These data support 

domain is masked once Rad21 is incorporated into the cohesin 

complex. Including a tag in this domain can still form a single-

ring cohesin complex but may signifi cantly inhibit the formation 

of a two-ring cohesin complex or signifi cantly weaken the asso-

ciation affi nity of the two rings such that the components of the 

two cohesin rings cannot be coimmunoprecipitated. It may also 

account for the low positive rate in our PCA experiment. The 

possible weak association of two cohesin rings with a CT tag in 

vivo may also explain why earlier studies ( Haering et al., 2002 ; 

 Hauf et al., 2005 ) failed to see the interaction between Scc1/

Mcd1/Rad21 and why in these experiments budding yeast cells 

were viable when they contained only CT-tagged Mcd1 – Scc1 –

 Rad21. In their FRET assay ( Mc Intyre et al., 2007 ), CFP and 

YFP were conjugated to the two Smc1/Smc3 heads or hinge 

domains, respectively. The authors excluded the possibility of 

dimerization of two cohesins via the hinge domain ( Mc Intyre 

et al., 2007 ), which is consistent with our data. Although the 

head-to-head interaction of two Smc1 – Smc3 heterodimers has 

not been found via FRET, the result is not conclusive because the 

two heterodimers might be separated by other proteins, such as 

Rad21, Scc3, etc., and may be too far apart to produce FRET. 

Surprisingly, the possible Rad21 – Rad21 dimerization was not 

tested with FRET in their study ( Mc Intyre et al., 2007 ). 

 What leads to the dimerization of two cohesin rings? The 

Rad21 – Rad21 interaction in yeast two-hybrid assay and co-IP 

 Figure 7.    Handcuff model of cohesin complex.  (A – C) Different confi gurations of two-ring models. (D) Handcuff model consists of two rings. (E) Establish-
ment of sister chromatid cohesion. For simplicity, only cohesin complexes are shown on the model. Single-ring cohesin complexes are loaded onto the 
chromosomes at any stage of the cell cycle. During DNA replication at S phase, each of the rings entraps one chromatin. The handcuff is established when 
the two Rad21 molecules are paired and tethered either by SA1 or SA2 via interaction with the two Rad21 molecules.   
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tric chromatin is organized into a cruciform in mitosis; i.e., 

centromere-fl anking DNA adopts an intramolecular loop, whereas 

sister chromatid arms are still paired intermolecularly ( Yeh et al., 

2008 ). Fluorescence microscopy data suggest that the cohesins 

on the intramolecular centromeric chromatin loop are from 

intermolecular sister chromatid arms. It is diffi cult to explain 

this fi nding if sister chromatid is circled by a one-ring cohesin 

complex. However, it can be explained through our handcuff 

cohesin model. If each of the sister chromatids are held by one 

cohesin ring and the two cohesins are dimerized by Scc3 during 

anaphase, the paired cohesin complexes on sister chromatids 

are dissociated from each other via postmodifi cation of Scc3. 

The one-ring cohesin fl anking the centromere becomes paired 

during the formation of the intramolecular loop. 

 Most other eukaryotes, including mammals, are different 

from budding yeast in cohesin removal during the mitosis 

( Waizenegger et al., 2000 ). The bulk of the cohesin complexes 

along the chromosome arms dissociates during prophase 

( Sumara et al., 2000 ;  Gimenez-Abian et al., 2004 ). This step is 

dependent on the activity of PLK1 and aurora B and indepen-

dent of separase activation ( Sumara et al., 2002 ;  Gimenez-Abian 

et al., 2004 ;  Hauf et al., 2005 ). PLK1 and aurora B destabilize 

cohesin complexes via the phosphorylation of SA2. Cohesin with 

SA2 phosphorylation mutant subunit cannot be removed from 

the chromosome arm during prophase ( Hauf et al., 2005 ). The 

removal of cohesin from the chromosomal arm during prophase 

via the phosphorylation of SA2 fi ts well in our handcuff model 

because this model predicts that SA1 and SA2 are the linking 

proteins that pair the two one-ring cohesins. However, it seems 

unnecessary for cohesin rings to dissociate from the chromo some 

arms during prophase if each of the sisters is held by one of the 

cohesin rings. It is possible that phosphorylation of SA2 not 

only unlocks the two cohesin rings but also destabilizes the en-

tire ring, causing the cohesin components to be removed from 

the chromosome. The advantage of this mechanism is to prevent 

arm chromatid from becoming cohesed again before the onset 

of anaphase when separase cleaves the centromeric and any 

leftover cohesins along the chromosome arms ( Hauf et al., 

2001 ;  Haering and Nasmyth, 2003 ;  Nakajima et al., 2007 ). 

 In summary, a two-ring handcuff model for the cohesin 

complex is not only fl exible enough to establish and maintain 

sister chromatid cohesion but can also ensure the fi delity of 

chromosome segregation in higher eukaryotes. How the cohe-

sion of sister chromatids is established by the two-ring hand-

cuff model during DNA replication and DNA double-strand 

break repair remains to be elucidated and will be the focus of a 

future investigation. 

 Materials and methods 
 Antibodies 
 The sources of pAbs used are as follows: Flag (Sigma-Aldrich), Rad21 ( Pati 
et al., 2002 ), Smc3 (Bethyl Laboratories, Inc.), Smc1 �  (Santa Cruz Bio-
technology, Inc.), and SA1 and SA2 (Novus Biologicals). mAbs were ob-
tained from the following sources: Flag (Sigma-Aldrich), Myc (EMD), HA 
(Sigma-Aldrich), Rad21 ( Pati et al., 2002 ), and human CREST (provided by 
J. Craft, Yale University, New Haven, CT). All secondary antibodies for WBs 
were obtained from Rockland Immunochemicals. The following are sources 
of secondary antibodies for immunofl uorescence: rhodamine-conjugated 

the model that cells have two types of cohesin complexes, 

cohesin (SA1)  and cohesin (SA2) , containing either SA1 or SA2, 

respectively. SA1 and SA2 are the possible locking/bridging 

molecules that bring the two rings together by tethering the two 

Rad21 molecules aligned in an antiparallel manner via inter-

actions with Rad21 molecules. 

 Based on these analyses, we are outlining a handcuff 

model of cohesin complexes ( Fig. 7 D ). The handcuff model 

consists of two rings; each of the rings contains one set of 

Rad21, Smc1, and Smc3 molecules. Smc1 and Smc3 form a 

heterodimer, and Rad21 CT and NT bind to the heads of Smc1 

and Smc3, respectively. SA1 or SA2 links the two rings via in-

teraction with Rad21. In addition to the cohesin core subunits, 

other cohesin associate proteins, such as Pds5, may also help in 

the formation of the two-ring cohesin structure. 

 How is sister chromatid cohesion 
established? 
 The association of the cohesin complex with chromosome re-

quires the cohesin-loading complex Scc2 – Scc4 ( Ciosk et al., 

2000 ;  Gillespie and Hirano, 2004 ;  Strom et al., 2004 ;  Takahashi 

et al., 2004 ;  Watrin et al., 2006 ;  Gause et al., 2008 ;  Misulovin 

et al., 2008 ), and EcoI/Ctf7 is essential for the establishment of 

sister chromatid cohesion ( Skibbens, 2005 ;  Skibbens et al., 

2007 ;  Unal et al., 2007 ). The two-ring model proponents argue 

that cohesin rings are loaded to chromosome before DNA repli-

cation can be distributed to sister chromatids and paired by 

EcoI/Ctf7 to establish cohesion. It was believed that sister chro-

matid cohesion is established by entrapping the ring after DNA 

replication via the opening of the Smc3 head and the Rad21 NT 

( Uhlmann, 2004 ), but a recent study indicates that the DNA is 

loaded via the opening of Smc1 and Smc3 hinges ( Gruber et al., 

2006 ). We propose that cohesin rings are loaded onto the chro-

mosomes by the Scc2 – Scc4 loading complex via the opening of 

the Smc1 – Smc3 hinge. Each ring passes through the replication 

fork by opening the Smc3 head and the NT of Rad21 and is lo-

cated to one of the two sister chromatids. The cohesin rings can 

also be recruited to the newly replicated sisters from a cellular 

cohesin pool if the amount of preexisting cohesin on the chro-

mosomes is not suffi cient. When a double-strand DNA break 

occurs, cohesin rings are loaded onto the damaged chromosome 

as well as to the undamaged chromosome. The cohesion of 

sister chromatids is established with the help of EcoI/Ctf7 when 

the two rings are locked by pairing the two Rad21 molecules in 

an antiparallel manner, tethered by SA1 or SA2, and possibly 

assisted by other cohesion-maintaining proteins ( Fig. 7 E ). 

 How does cohesin dissociate from 
chromosomes? 
 In the normal cell cycle, the removal of cohesin from sister 

chromatids in budding yeast is different from that in metazoa. 

In  S. cerevisiae , cohesin complexes embrace both sister chro-

matids together until metaphase to anaphase transition ( Haering 

and Nasmyth, 2003 ). All cohesin complexes are removed from 

chromosomes simultaneously when separase cleaves the cohe-

sin subunit Scc1/Mcd1 ( Cohen-Fix et al., 1996 ;  Ciosk et al., 1998 ). 

However, a recent study showed that the budding yeast pericen-
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The transfection effi ciency of siRNA was monitored using fl uorescently 
labeled siGLO RISC-free siRNA (Thermo Fisher Scientifi c). 

 Immunofl uorescence microscopy 
 Immunofl uoresence microscopy was performed as described previously 
( Waizenegger et al., 2000 ). The samples were mounted using mounting 
medium (Vectashield; Vector Laboratories). Images were obtained with a 
microscope (E800; Nikon) equipped with Quips imaging software 
(Applied Imaging) and a 100 × /1.4 objective lens (Nikon) at RT. 

 Yeast two hybrid 
 Rad21 wild-type (1 – 631 aa), NT-L (1 – 283 aa), CT-L (254 – 631 aa), and 
CT (451 – 631 aa)-truncated Rad21 cDNA were cloned in frame to fuse 
with Gal4-binding and -activating domains in pC97 and pC86 vectors, re-
spectively. The yeast two-hybrid assay was performed as described previ-
ously ( Pati et al., 1999 ). 

 Sucrose gradient centrifugation 
 Using Gradient Master (BioComp Instruments, Inc.), 5 – 30% of sucrose gra-
dient was prepared. Cell lysate was overlaid to the top of sucrose gradient 
and centrifuged at 36,000 rpm for 16 h in an ultracentrifuge (L8-M; Beckman 
Coulter) with an SW-40 rotor. Using a Piston Gradient Fractionator (Bio-
Comp Instruments, Inc.), 0.25-ml fractions were taken. The protein in each 
fraction was precipitated using trichloroacetic acid. Cohesin proteins were 
detected with WBs and probed with the respective antibodies. 

 Online supplemental material 
 Table S1 shows all of the mammalian expression constructs used in this 
study and the strategy used for cloning the cohesin proteins. Fig. S1 shows 
the validation of epitope-tagged cohesin proteins using immunofl uores-
cence microscopy, sucrose gradient centrifugation, and co-IP. Fig. S2 shows 
the co-IP of Flag-Rad21 and Myc-Rad21 in protein solution released from 
chromatin or whole cell lysate. Fig. S3 shows that Myc epitope tagging to 
the C-terminal but not the N-terminal Rad21 hinders Rad21 – Rad21 inter-
action. Fig. S4 shows IP of YFP(NT)- and YFP(CT)-tagged Rad21. Fig. S5 
shows immunofl uorescence microscopy of Rad21 and Smc3 in SA1 and 
SA2 knockdown HeLa cells. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200801157/DC1. 
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