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    The brain occupies a privileged compartment in the body. 

This was fi rst appreciated over a century ago by the demonstra-

tion that dyes injected into the blood did not extravasate into 

the brain. It is now apparent that this gatekeeping is a combi-

nation of highly selective active transport and, at the ultra-

structural level, a physical barrier localized to the tight junction 

complex between brain endothelial cell membranes ( Fig. 1 ; 

 Zlokovic, 2008 ). Many of the proteins comprising the tight 

junction, such as claudins (Cldns), occludin, and junctional 

adhesion molecules, have been identifi ed, but the mechanisms 

governing their expression and assembly into a complex dur-

ing neurovascular development remain incomplete. Liebner 

et al. (see p.  409  of this issue) surmised that the Wnt signaling 

pathway, which is already prominent in brain development, 

was a good place to start. 

 As an initial step, they took advantage of a transgenic re-

porter mouse that monitors Wnt signaling activity via the ex-

pression of galactosidase. Reporter activity was readily observed 

in brain endothelial cells throughout the developing vascular 

network but dropped off sharply in postnatal animals and was 

nearly absent in adults. For a functional correlate, the authors 

used mice expressing both loss and gain of function mutants of 

Capillaries in the brain are especially selective in deter-

mining which blood-borne components gain access to 

neurons. The structural elements of this blood – brain bar-

rier (BBB) reside at the tight junction, an intercellular pro-

tein complex that welds together adjacent endothelial cell 

membranes in the microvasculature. In this issue, Liebner 

et al. (Liebner, S., M. Corada, T. Bangsow, J. Babbage, 

A. Taddei, C.J. Czupalla, M. Reis, A. Felici, H. Wolburg, 

M. Fruttiger, et al. 2008.  J. Cell Biol.  183: 409 – 417) re-

port that Wnt signaling plays an active role in the devel-

opment of the BBB by regulating expression of key protein 

constituents of the tight junction. Such mechanistic insight 

has implications for a variety of neuropathological states 

in which the BBB is breached.
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 � -catenin, a key protein that is stabilized upon propagation of 

the Wnt signal. A marker of leaky brain vessels, plasmalemmal 

vesicle – associated protein-1, as well as Cldn3 and Cldn5 stain-

ing in their tight junctions responded appropriately to the gain 

or loss of  � -catenin activity in these mice. Enhanced staining of 

junctional Cldn3 was also observed in cultured primary mouse 

brain endothelial cells stimulated with Wnt3a ligand. In these 

cells, total Cldn3 protein and mRNA were increased in response 

to Wnt3a in a  � -catenin – dependent manner. Thus, manipulation 

of the Wnt pathway, at least at the level of  � -catenin stability, 

clearly impacted vessel integrity. 

 It is important to recognize that in addition to mediating 

the transcriptional output from Wnt signaling,  � -catenin also 

functions in cell – cell adhesion through its interaction with cad-

herins at the adherens junction ( Brembeck et al., 2006 ). There-

fore, any resulting alterations to the adherens junction complex 

could indirectly impact its close neighbor, the tight junction. 

Moreover, a previous study involving conditional ablation of 

endothelial  � -catenin ascribed increased paracellular permea-

bility to defi cient cell – cell contacts ( Cattelino et al., 2003 ). 

Fortunately, there are ways to distinguish the adhesion from the 

signaling activities imparted by  � -catenin. With this in mind, 

 Liebner et al. (2008)  showed that the junctional staining of Cldn3 

was greatly diminished in the presence of a dominant interfer-

ing mutant of TCF4, a transcription factor that  � -catenin as-

sociates with to launch gene activation. Conversely, a gain of 

function mutant transcription factor enhanced staining. Consis-

tent with gene activation, the levels of Cldn3 transcript were 

infl ected by the mutant transcription factors in the expected 

directions. Whether the Cldn3 gene is a direct target of Wnt 

signaling was not pursued, but  Liebner et al. (2008)  strongly 

implicate Wnt signaling in driving its expression. 

 This paper has implications for our understanding and 

treatment of disorders involving the BBB. The study was largely 

focused on the developing brain, and thus any relationship to ge-

netic vascular disorders, particularly those attributable to defec-

tive Wnt pathway genes, would garner attention. Among these, 

familial exudative vitreoretinopathy (FEVR) stands out promi-

nently. FEVR is characterized by incomplete vascularization of 

the retina and was independently linked to defective genes coding 
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have all surfaced as regulators of tight junction proteins, includ-

ing the Cldns ( Hawkins and Davis, 2005 ;  Persidsky et al., 2006 ). 

 Liebner et al. (2008)  now add a well-defi ned transcriptionally 

active signaling pathway to this understanding. Pathways mod-

ulating Cldns are particularly attractive candidates, as enhanced 

paracellular permeability of the BBB has been reported in 

Cldn5-defi cient mice ( Nitta et al., 2003 ). Notably, a selective loss 

of Cldn3 at the tight junction has been associated with experi-

mental autoimmune encephalomyelitis in mice, a model of mul-

tiple sclerosis ( Wolburg et al., 2003 ). It should now be of interest 

to reexamine the pathological models involving the BBB in the 

context of Wnt signaling and its manipulation therein. 

 The BBB is of particular interest in the development of 

new therapeutics for degenerative and infl ammatory diseases of 

the CNS ( Persidsky et al., 2006 ). Retarding the unwanted pas-

sage of leukocytes and water-soluble plasma components into 

the brain will likely require a multifaceted approach, including 

reparation or reinforcement of the tight junction fence. The new 

fi ndings by  Liebner et al. (2008)  suggest that this might be ac-

complished by therapeutic activation of Wnt signaling in the 

brain. Possible approaches could include activation of the Wnt 

coreceptors LRP5 and LRP6 by R-spondins or by agonistic mono-

clonal antibodies ( Kim et al., 2005 ). Activation of Wnt signal-

ing with small molecule therapeutics is currently approachable 

with inhibitors of glycogen synthase kinase 3 (GSK3). In the 

for Wnt ligand receptors Frizzled 4 (FZD4) and LRP5 ( Robitaille 

et al., 2002 ;  Jiao et al., 2004 ). Norrie disease, also characterized 

by abnormal retinal vasculature, was linked to mutations affect-

ing the secreted protein norrin, which was later identifi ed as a 

ligand for FZD4 ( Xu et al., 2004 ). Although Wnt signaling is 

clearly implicated in these disorders, the mechanism down-

stream of the ligand – receptor interaction is unknown. Consider-

ing the new fi ndings by  Liebner et al. (2008) , it is conceivable 

that the impairment in Wnt signaling linked to FVER and Norrie 

disease could lead to inadequate reinforcement of retinal en-

dothelial tight junctions. Interestingly, small hemorrhages were 

noted in the retina and cerebellum of FZD4  � / �   mice, which also 

exhibited high background staining with anti – mouse IgGs, 

indicative of leaky vasculature ( Xu et al., 2004 ). Accordingly, 

 Liebner et al. (2008)  noted a decrease in retinal vascular perme-

ability induced by ischemia when  � -catenin was conditionally 

activated in postnatal mice. 

 Breakdown of both the functional and physical properties 

of the BBB has been implicated in the initiation or exacerbation 

of a host of adult central nervous system (CNS) disorders, includ-

ing multiple sclerosis, Alzheimer ’ s disease, Parkinson ’ s disease, 

cancer, and stroke ( Zlokovic, 2008 ). The physical property of 

the BBB resides at the tight junction complex, but the mechanisms 

underlying its loss of integrity in disease are poorly understood. 

Calcium, G-protein signaling, RhoGTPases, and various kinases 

 Figure 1.    Wnt signaling and the BBB.  Depiction of the primary constituents of the tight junction (TJ) and the adherens junction (AJ) at the interface between 
endothelial cell plasma membranes. Activation of Wnt receptors FZD and LRP5/6 inhibits GSK3 to stabilize  � -catenin that in turn enters the nucleus to 
activate T cell factor (TCF) – dependent transcription. This drives Cldn3 gene activation either directly or indirectly (dashed line arrow), and the resulting Cldn 
protein reinforces the tight junction. JAM, junctional adhesion molecule.   
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Wnt pathway, GSK3 phosphorylates  � -catenin, thereby mark-

ing it for destruction in the proteosome. Coincidently, GSK3 is 

already a prime target for Alzheimer ’ s disease, where it hyper-

phosphorylates the Tau protein ( Bhat et al., 2004 ;  Hooper et al., 

2008 ). Strengthening of tight junctions via enhanced Wnt sig-

naling might provide an additional unanticipated benefi t with 

GSK3 inhibitors in neurodegenerative diseases. This mecha-

nism could in part account for the observed neuroprotective 

effect of a GSK3 inhibitor in a mouse model of hypoxiaischemia 

brain injury ( Cowper-Smith et al., 2008 ). Conversely, transient 

inhibition of Wnt signaling and the ensuing breakdown of the 

tight junction could enable access of therapeutics normally de-

nied by the BBB. Modulation of Cldns in particular might offer 

a unique opportunity because they play a special sieving role in 

gating the passage of blood-borne solutes on the basis of size 

( Nitta et al., 2003 ). 

 At one level, the proposal by  Liebner et al. (2008)  has 

substantial precedent. The literature is replete with studies pur-

porting a role for Wnt signaling in the development and mainte-

nance of the CNS ( De Ferrari and Moon, 2006 ). However, most 

of these studies relate to direct effects of Wnts and their recep-

tors on the genesis, survival, and morphology of neurons them-

selves and not so much to brain endothelium. Although Wnt 

signaling has also been generously appropriated into vascular 

biology ( Zerlin et al., 2008 ), there is a dearth of studies specifi -

cally linking it to brain vascularization. The fi ndings by  Liebner 

et al. (2008)  should now prompt us to consider an endothelial 

component, and in particular the integrity of the tight junction, 

when examining developmental, genetic, or pathological 

outcomes attributable to Wnt signaling in the CNS. FEVR is a 

pertinent example of this. Age-related macular degeneration, 

another vascular disorder of the eye, has also been linked to Wnt 

signaling through polymorphisms in the gene coding for LRP6 

( Haines et al., 2006 ). Alzheimer ’ s disease has been linked to 

both hypoactive alleles of LRP6 and to overexpression of the 

secreted Wnt inhibitor dkk1 ( De Ferrari et al., 2007 ;  Caraci 

et al., 2008 ). Moreover, amyloid- �  peptide, considered a culprit 

in Alzheimer ’ s disease, binds to FZD and blocks its activation 

by Wnt ( Magdesian et al., 2008 ). Nearly all of the associations 

of Wnt signaling with neurodegenerative disorders point to a 

defi ciency in signaling, as does its new association with the in-

tegrity of the tight junction. 
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