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Selective coupling of type 6 adenylyl cyclase with
type 2 IP3 receptors mediates direct sensitization of

IP; receptors by cAMP

Stephen C. Tovey, Skarlatos G. Dedos, Emily J.A. Taylor, Jarrod E. Church, and Colin W. Taylor

Department of Pharmacology, Univesrsity of Cambridge, Cambridge CB2 1PD, England, UK

nteractions between cyclic adenosine monophosphate

(cAMP) and Ca?* are widespread, and for both intra-

cellular messengers, their spatial organization is im-
portant. Parathyroid hormone (PTH) stimulates formation
of cAMP and sensitizes inositol 1,4,5-trisphosphate re-
ceptors (IPsR) to IP3. We show that PTH communicates
with IP3R via “cAMP junctions” that allow local delivery
of a supramaximal concentration of cAMP to IP3R, directly
increasing their sensitivity to IP;. These junctions are ro-
bust binary switches that are digitally recruited by increas-
ing concentrations of PTH. Human embryonic kidney

Introduction

Cells use a limited repertoire of diffusible intracellular messen-
gers, including cAMP and Ca*', to regulate most aspects of their
behavior, yet they succeed in responding appropriately to a bar-
rage of extracellular signals. The versatility of intracellular
messengers is increased by their precise spatial and temporal
organization. Local increases in Ca®* (Berridge, 1997) or cAMP
(Zaccolo and Pozzan, 2002; Mongillo et al., 2006; Smith et al.,
2006; Willoughby and Cooper, 2007) can selectively regulate
closely associated proteins, whereas more global changes regu-
late different processes. Both Ca*" and cAMP can also be deliv-
ered in precise temporal patterns (Berridge, 1997; Gorbunova
and Spitzer, 2002; Dyachok et al., 2006). The frequencies of
these messenger spikes are important in determining responses
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cells express several isoforms of adenylyl cyclase (AC)
and IP3R, but IP;R2 and AC6 are specifically associated,
and inhibition of AC6 or IP3R2 expression by small inter-
fering RNA selectively attenuates potentiation of Ca?*
signals by PTH. We define two modes of cAMP signaling:
binary, where cAMP passes directly from AC6 to IP;R2;
and analogue, where local gradients of cAMP concen-
tration regulate cAMP effectors more remote from AC.
Binary signaling requires localized delivery of cAMP,
whereas analogue signaling is more dependent on local-

ized cAMP degradation.

to Ca®* (Dupont et al., 2003) and are also likely also to be
important for cAMP spikes. The versatility of both messengers
is increased further by interactions between them (Bruce et al.,
2003; Werry et al., 2003; Screaton et al., 2004; Willoughby and
Cooper, 2007). Ca®*, for example, regulates cAMP formation
and degradation, and by regulating protein kinases and cal-
cineurin, it modulates many effects of protein kinase A (PKA).
Conversely, cCAMP regulates formation and phosphorylation of
inositol 1,4,5-trisphosphate (IP3), the activities of Ca?* channels
and pumps, and formation of other Ca**-mobilizing messen-
gers. Such interactions endow cells with computational ability
(Bray, 1995). Many proteins involved in cAMP and Ca** signal-
ing exist in multiple isoforms, which may differ in behavior and
expression. This diversity adds further to the complexity of the
signaling pathways, but its physiological significance is incom-
pletely understood.

Parathyroid hormone (PTH) plays a central role in the regu-
lation of plasma Ca** concentration, although its receptors are
also expressed in tissues unrelated to Ca®* homeostasis. Each of
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Figure 1. Potentiation of CCh-stimulated Ca?* A 5, | IBAPTA B
release by stimuli that evoke cAMP formation. I CCh e PTH
(A) After addition of 10 mM 1,2-bis(o-amino- 200+ PTH 10040 FK
phenoxylethane-N,N,N',N'tetraacetic acid < s m Isoproterenol
(BAPTA) to chelate extracellular Ca?*, 1 mM £ 150+ =
CCh stimulated transient release of Ca?* from 3~ 5
intracellular stores (black). 100 nM PTH in the 1007 S 501
continued presence of CCh then stimulated fur- ™~ 504 =
ther Ca?* release (red). (B) Effects of PTH, FK,
and isoproterenol on the peak [Ca?]; in the 0- o
continued presence of 1 mM CCh. (C and D) I . ; ; r ) T T T T T T T
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the related PTH receptors (types 1 and 2) belongs to the family
of G protein—coupled receptors that includes those for secretin,
calcitonin, and glucagon (Jiippner et al., 1991; Behar et al., 1996).
PTH receptors share with these an ability to both stimulate ade-
nylyl cyclase (AC) and increase cytosolic Ca®* concentration
([Ca**];), but it is unclear how PTH stimulates Ca** release from
intracellular stores. Some evidence suggests that PTH receptors
stimulate PLC-3 via Gq or Gi, and thus formation of IP; (Jiippner
et al., 1991; Mahon et al., 2006). PTH receptors might also, like
B-adrenoceptors, activate PLC-g via cAMP (Schmidt et al.,
2001). Other evidence suggests that Ca®* release occurs without
formation of IP; (Seuwen and Boddeke, 1995; Short and Taylor,
2000), and perhaps even in the presence of an antagonist of IP;
receptors (IP;R; Seuwen and Boddeke, 1995). We (Short and
Taylor, 2000; Tovey et al., 2003) and others (Buckley et al., 2001)
have suggested that PTH potentiates IP;-evoked Ca** release, but
the intracellular signals responsible have not been identified.

Here, we find that PTH, and other receptors that stimulate
cAMP formation, communicate with IP;R via intracellular
“cAMP junctions,” wherein cAMP passes directly from a specific
isoform of AC (AC6) to a specific subtype of IP;R (IP;R2) to in-
crease its IP; sensitivity. This identifies IP;R as a new target for
cAMP, an unexpected interaction between two ubiquitous signal-
ing pathways, and a novel binary mode of cAMP signaling that
allows robust digital recruitment of a response by graded concen-
trations of an extracellular stimulus.

JCB « VOLUME 183 « NUMBER 2 « 2008

Results

PTH potentiates IPs-evoked Ca® release
entirely via cAMP

Carbachol (CCh), via endogenous muscarinic receptors, stimu-
lates PLC and thereby IP; formation and Ca®* release from the
intracellular stores of human embryonic kidney (HEK) cells
(Fig. 1 A). In the absence of extracellular Ca**, stimulation of
HEK cells stably expressing human type 1 PTH receptors (HEK-
PRI cells) with a supramaximal concentration of CCh caused an
increase in [Ca”*]; that returned to basal levels within 60—70 s.
The addition of PTH, in the continued presence of CCh, evoked
a further release of Ca** (Fig. 1 A). This additional Ca** release
results from sensitization of IP;R to IP; (Fig. S1, A and B, avail-
able at http://www.jcb.org/cgi/content/full/jcb.200803172/DC1;
Short and Taylor, 2000; Tovey et al., 2003). Some analogues of
PTH recruit other signaling pathways without stimulating AC
(Takasu et al., 1999), but only the analogues that stimulate AC
potentiated Ca** release (Fig. 1, E and F). Prostaglandin E,
(PGE,; unpublished data) and isoproterenol, which stimulate
AC via their endogenous receptors, also potentiated CCh-evoked
Ca* signals. So too did forskolin (FK), which directly stimu-
lates AC (Fig. 1, B-D). However, 1,9-dideoxyforskolin (100 uM),
an FK analogue that does not stimulate AC but mimics the
AC-independent effects of FK (Zerr et al., 1996), had no effect
on [Ca®"); either alone or with CCh (unpublished data). None of
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Figure 2. Potentiation of CCh-stimulated Ca?

]  release by 8-Br-cAMP. (A and B) Ca?* signals

CCh I

evoked by 1 mM CCh alone (black) or after
prior freatment (red) with 8 BrcAMP (A; 10 mM
for 20 min) or PTH (B; 100 nM for 1 min).
Results (n > 3 from one experiment; means +
SEM) are typical of more than six experiments.
(C and D) Effects of 8-BrcAMP, 8-Br-2"-O-Me-
cAMP (C), and PTH (D) on peak [Ca?*]; evoked
by T mM CCh. (E) Effects of PTH (100 nM for
1 min) and 8-Br-cAMP (10 mM for 20 min) on
CCh-evoked Ca?* signals. (F) ECso values and
maximal responses (as a percentage of con-
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means + SEM from at least three experiments.
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these stimuli significantly increased [Ca®*]; in the absence of
CCh (Fig. S1, C and D; Willoughby et al., 2006). Single cell
analyses established that in most cells that responded to CCh
(98 + 1%), the Ca** signal was potentiated by PTH (99 = 1%),
isoproterenol (80 + 4%), and FK (95 + 3%).

PTH and a high concentration of the membrane-permeant
analogue of cAMP, 8-Br-cAMP (30 mM), similarly potentiated
CCh-evoked Ca?* signals (Fig. 2, A—F); 8-Br-cGMP (30 mM)
was ineffective (not depicted). Much lower (<100 uM) concen-
trations of 8-Br-cAMP activate PKA (He et al., 2003), but they
did not significantly potentiate Ca>* signals (Short and Taylor,
2000; Tovey et al., 2003). The low sensitivity to 8-Br-cAMP
(half-maximal effective concentration, ECsy = 0.87 + 0.37 mM;
Fig. 2 C) is important and is discussed further in later sections.

The extent to which the maximal Ca** release evoked by
CCh can be enhanced is limited by the finite size of the intra-
cellular Ca®* stores, but there is no such limit on the extent to which
the sensitivity to CCh can be increased. Two independently act-
ing stimuli should cause an additive increase in CCh sensitivity.
It is significant, therefore, that maximal concentrations of 8-Br-
cAMP and PTH had the same effects on both the sensitivity of
the Ca** signals to CCh and the maximal response (Fig. 2 E), and
it is also significant that their effects were not additive (Fig. 2 F).

The nonadditive effects of PTH and 8-Br-cAMP on the ECs, for
CCh-evoked Ca** signals establish the fact that cAMP is the only
signal linking PTH receptors to sensitization of IP;R (Fig. 2 G).
G protein 3y subunits have been reported to stimulate IP;R di-
rectly and so to cause release of Ca** (Zeng et al., 2003). PTH
cannot work via this pathway because PTH does not alone cause
Ca* release (Fig. S1), nor does somatostatin (1 uM), which acti-
vates Gi and thereby the release of By subunits (unpublished
data; Law et al., 1993; Willoughby et al., 2007). We conclude
that cAMP alone mediates the effects of PTH on IP;R (Fig. 2 G).
We provide additional evidence to support this key conclusion
later (see Fig. 6).

cAMP sensitizes IPzR independent of PKA
and exchange proteins activated by

cAMP (epacs)

All three subtypes of IP;R can be phosphorylated by PKA, al-
though at different sites and with different consequences (Bruce
et al., 2003; Soulsby and Wojcikiewicz, 2007). IP;R2 is the ma-
jor (46%) IP;R subtype in HEK cells (Table I), and in other cells
expressing mainly IP;R2, PKA potentiates IP;-evoked Ca’* re-
lease (Burgess et al., 1991; Bruce et al., 2003). In HEK-PR1
cells, PTH caused modest phosphorylation of IP;R (Figs. 3 A

cANMP REGULATION OF IPz RECEPTORS « Tovey et al.
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Table I.  Expression of subtypes of AC and IP;R in HEK-PR1 cells

Subtype Percentage
AC1 12+3
AC2 0
AC3 567
AC4 0
AC5 0
AC6 5=+1
AC7 17 +3
AC8 0
AC9 10+3
IP3R1 19+ 1
IP;R2 46 £ 3
IP3R3 35+1

QPCR was used to measure relative levels (percentage of total) of mRNA en-
coding isoforms of AC and IP3R in HEK-PRT cells. Results are means + SEM
from three experiments, each performed in duplicate. The absence of AC2,
AC4, and AC8 is consistent with a previous semiquantitative RT-PCR analysis,
although a low level of AC5 was detected (Ludwig and Seuwen, 2002). The
preponderance of IP;R2 and IP3R3 in HEK cells is consistent with results from
immunoblotting (Wojcikiewicz, 1995).

and S2 B, available at http://www.jcb.org/cgi/content/full/
jcb.200803172/DC1), and PKA very slightly (though not to a
statistically significant degree) increased the sensitivity of the
intracellular Ca®" stores to IP; (see Fig. 4 A).

PTH, FK, and 8-Br-cAMP stimulated phosphorylation of
many proteins in HEK-PR1 cells, and H89, an inhibitor of PKA,
prevented this (Fig. 3 B, and see Fig. 5 F). But neither H89 (Fig.
3, C and E) nor other inhibitors of PKA (Figs. 3 F and S2, C-F)
affected potentiation of the CCh-evoked Ca”* signals. A kinase—
anchoring proteins (AKAPs) contribute to PKA-mediated inhi-
bition of IP;R3 by cholecystokinin (Straub et al., 2002) and
to many other PKA-mediated events (Wong and Scott, 2004).
A membrane-permeant form of ht31 peptide (st-ht31), which un-
couples AKAPs from PKA (Willoughby et al., 2006), blocked
phosphorylation of many of the proteins phosphorylated in re-
sponse to PTH and FK without affecting the response to 8-Br-
cAMP (Fig. 3 B). But st-ht31 had no effect on the potentiation
of CCh-evoked Ca®" signals by FK (not depicted) or PTH
(Fig. 3 D). We conclude that phosphorylation of IP;R by PKA
slightly potentiates responses to IP;, and PTH stimulates mod-
est phosphorylation of IP;R, but the phosphorylation is not re-
quired for PTH to potentiate IP;-evoked Ca** release.

Other proteins are also regulated by cAMP (Dremier et al.,
2003), notably cyclic nucleotide-gated cation channels (CNGC;
Rich et al., 2000) and epacs (Bos, 2003). Indeed, a cAMP-
evoked increase in [Ca®*]; has been proposed to result from acti-
vation of epac, Rap 2, and PLC-¢ (Schmidt et al., 2001). By
Western blotting (WB), we detected expression of epac-1 (but
not epac-2) in HEK-PR1 cells (unpublished data), but no signifi-
cant effect of isoproterenol, PTH, or FK alone on [Ca®'];
(Fig. S1; Willoughby et al., 2006), although each potentiated re-
sponses to CCh (Figs. 1 B and S1). Nor did we detect formation
of IP; in response to PTH (Short and Taylor, 2000). Epacs are
less sensitive than PKA to cAMP (Bos, 2003), but 8-Br-2'-
O-methyladenosine-3',5'-cAMP selectively activates epacs
(Christensen et al., 2003). Even very high concentrations (30 mM)

JCB « VOLUME 183 « NUMBER 2 « 2008

of this analogue, which is more membrane-permeant than 8-Br-
cAMP, had no effect on CCh-evoked Ca** signals, whereas
8-Br-cAMP potentiated them (Fig. 2 C). These results establish
that potentiation of Ca?* release by PTH results from sensitiza-
tion of IP;R rather than production of IP;, and neither PKA nor
epac is required.

In permeabilized HEK cells, high concentrations of cAMP
(ECsp=2.7 £ 1.0 mM; Fig. 4, A and B) increased the sensitivity
of IPs-evoked Ca** release by ~4.5-fold. This is much greater
than the ~30% increase evoked by PKA (Fig. 4 A) but similar
to the three- to fourfold increase in the sensitivity to CCh evoked
by PTH or 8-Br-cAMP in intact cells (Fig. 2 E). The responses
of permeabilized cells to cAMP and of intact cells to 8-Br-
cAMP were unaffected by inhibition of PKA (by 10 uM HS89;
unpublished data). Potentiation of IP;-evoked Ca** release by
cAMP was mimicked by 8-Br-cAMP (ECs, = 324 + 45 uM; Fig. 4,
C and D) but not by 5'-AMP, ATP, ADP, or GTP (10 mM; not
depicted). This low-affinity interaction between cAMP and
IP;R is consistent with only high concentrations of 8-Br-cAMP
mimicking PTH in intact cells. Indeed, the sensitivities of intact
(Fig. 2 C) and permeabilized cells (Fig. 4 D) to 8-Br-cAMP are
similar. We conclude that cAMP binds directly to a low-affinity
site on the IP;R (or an associated protein) to increase its sensi-
tivity to IP;. The interaction is not mediated via changes in IP;
binding because cAMP has no effect on *H-IP; binding to IP;R2
(unpublished data). The affinity of this site for cAMP is ~600-
times lower than that of epacs (Bos, 2003) and ~20,000-times
lower than that of PKA or CNGC (Wong and Scott, 2004). It is
unsurprising, therefore, that there is no known consensus sequence
for cAMP binding within IP;R (Dremier et al., 2003). A novel
low-affinity site mediates the effects of cAMP on IP;R.

Regulation of IPzR by hyperactive
cAMP junctions
Despite the evidence that cAMP entirely mediates sensitization
of IP;R (Figs. 1-4, S1, and S2), there is a massive disparity in
the relationship between cAMP and Ca** for different stimuli
(Fig. 5, A and B). This is most clear from the comparison of the
amount of cAMP produced when each agonist causes [Ca?*]; to
increase by 30 nM (Fig. 5 C). The disparity is inconsistent with
global cAMP signals serving as a universal currency, which are
used similarly by each stimulus to regulate IP;R. We note also
that although HEK-PR1 cells express similar numbers of PTH
receptors and (-adrenoceptors (see Fig. 7 E), maximal activa-
tion with PTH causes a much greater stimulation of AC (Fig. 1,
C and D), which suggests that an active PTH receptor stimulates
AC more effectively than does an active (3-adrenoceptor.
Manipulation of cAMP levels by inhibiting either cAMP
formation or its degradation by cyclic nucleotide phospho-
diesterases (PDE) further highlights the inconsistent rela-
tionship between cAMP and potentiation of Ca®" signals.
3-isobutyl-1-methylxanthine (IBMX), which inhibits most iso-
forms of PDE that degrade cAMP (Fisher et al., 1998), failed
to enhance Ca?* signals. Instead, it caused a slight inhibition
(Fig. 5 E and S3 B, available at http://www.jcb.org/cgi/content/
full/jcb.200803172/DC1) that became more pronounced with
prolonged incubation (Short and Taylor, 2000). This probably
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B Figure 3. PKA is not required for pofentiation
8-Br-cAMP FK PTH of CCh-evoked CaZ* mobilization. (A) IPsR
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results from activation of PKA and loss of Ca*" from intra- More strikingly, massive inhibition of cAMP formation with a

cellular stores via IP;R made more sensitive to basal levels of combination of inhibitors of AC (9-(tetrahydro-29-furyl)adenine
IP; after their phosphorylation by PKA (Short and Taylor, 2000). [SQ 22536] and 2',5’-dideoxyadenosine [DDA], referred to

A 100
e Control

754 o cAMP 2004

o PKA Figure 4. Potentiation of IP;-evoked Ca?* re-

s lease by cAMP in permeabilized cells. (A) Ca?*
50 < release from permeabilized HEK-PRT cells
evoked by IP; alone, after treatment with the
catalytic subunit of PKA (100 units per milliliter
for 10 min) or 30 mM cAMP. Results are shown
as a percentage of the ionomycin-releasable
Ca?* store. (B) Concentration-dependent effect
5 ) . 4 - of cAMP on the ECsq for IP3-evoked Ca?*
log {[cAMP] M release from permeabilized HEK-PR1 cells.

‘o9 {[IP=] M) ol R (C) Concentration-dependent stimulation of
Ca?* release by IP; alone and with 3 mM
8-Br-cAMP. (D) Concentration-dependent effect
of 8-Br-cAMP on the ECs for IPs-evoked Ca?*
— 404 release. These results allow direct comparison
with the effects of 8-Br-cAMP in intact cells
(Fig. 2 C). The latter measurements were made
after a 20-min preincubation with 8-Br-cAMP,
and we have shown that although shorter pre-
incubations cause lesser potentiation of Ca?*
signals, by 20 min, the response has reached its
T T T T T T 0 T T T T maximum. We conclude that 8-Br-cAMP equili-
L 7 6 S 6 s “ 3 brates across the plasma membrane within

log {[IP;] M} log {[8-Br-cAMP] M} 20 min. Results are means + SEM, n > 3.

25

Ca? release (%)

m_
[
5
[
n
&
)
A
[
N
L

@)
O

e Control
| o 8-Br-cAMP

N
o

20

Ca?* release (%)
nN (4]
T <

o
1

'
A

cAMP REGULATION OF IPz RECEPTORS

9z0z Arenigad g0 uo 1senb Aq 4pd'z.1£08002 Al/Z¥81SSL/262/2/€8L/APd-aonie/qol/Bio"ssaidnu//:dny woly papeojumoq



Figure 5. Local cAMP signaling to IP;R via
hyperactive cAMP junctions. (A-C) The relo-
tionship between the increase (A) in cAMP
and [Ca?]; for each stimulus is shown (B is
an enlargement of A to show FK and isopro-
terenol). The changes in cAMP associated with
an increase in [Ca?*]; of 30 nM evoked by
each stimulus are shown in C. (D and E) The
effects of inhibitors of AC (SQ/DDA: T mM
SQ 22536; 200 yM DDA for 20 min) and
PDE (IBMX: 1 mM for 20 min) on responses
to PTH. Results are means + SEM from four
to five experiments. Similar results with FK
and isoproterenol are shown in Fig. S3 (avail-
able at http://www.jcb.org/cgi/content/full /
icb.200803172/DC1).
dependent phosphorylation of the 75-kD band
(Fig. 3 B, arrow) after a 30-s treatment with
PTH alone, and after pretreatment with SQ/
DDA or H89 (means + SEM, n = 11). (G) Tar-
gets of the inhibitors. (H) Sensitization of IPsR
in signaling complexes by receptors that gen-
erate supramaximal local concentrations of
cAMP. The concentration-dependent effects of
PTH (bottom) are proposed to arise from recruit-
ment of these all-or-nothing junctions. (I) Steps
preceding activation of AC might contribute to
the surplus cAMP that allows communication
between PTH and IPsR to survive massive inhi-
bition of AC, but for FK, only cAMP separates
it from IP3R. The AC—IPsR interaction thus de-
fines the minimal signaling complex, the “AC—
IP3R junction” (boxed).
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tion of FK, isoproterenol (Fig. S3, B and D), or PTH (Fig. 5 E).
The latter was the case even though SQ/DDA abolished PTH-
evoked protein phosphorylation (Fig. 5 F), and much lower con-

Our results seem paradoxical. The effects of PTH on IP;R are
mediated entirely by cAMP (Fig. 1-4), yet in intact cells, there is
no consistent relationship between cAMP and Ca”* (Fig. 5, A-E).

302

Table II.  Effects of PTH, FK, and isoproterenol on cAMP and potentiation of CCh-evoked Ca?* signals
A cAMP A [Ca®];
Maximal response ECso Maximal increase ECso
fmol/sample nM
PTH 6,662 £ 1232 29 + 7 nM 101 £ 14 31+ 10 nM
FK 236 £ 29 3.3+£04pM 55+5 8.7 £2.0pM
Isoproterenol 91 = 113 43 nM 30+ 6 90 + 24 nM

Results (means + SEM, n = 3-10) show increases in cAMP and potentiation of the CCh-evoked Ca?* signal evoked by each stimulus, with each response measured

under identical conditions after a 30-s stimulation.
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This first led us to think that the effect of PTH on Ca** signals was
not mediated by cAMP (Short and Taylor, 2000), but that conclu-
sion is now untenable. Maximally activated receptors often gener-
ate more intracellular messenger than needed to evoke a maximal
response. This allows downstream events to be more sensitive
(lower ECs) than earlier ones to the initial signal (Strickland and
Loeb, 1981). Such systems are said to have “spare receptors” be-
cause activation of only a fraction of the receptors can evoke a
maximal response. Responses to maximal stimulation may then
survive even substantial inhibition of downstream signaling. But in
our experiments, the ECs, values for cAMP formation and poten-
tiation of Ca®* signals, measured under identical conditions, are
similar for each stimulus (Table II). Furthermore, even when maxi-
mal stimulation generates surplus signal, a globally distributed
messenger cannot have a safety margin when it evokes a submaxi-
mal response: reducing the amount of messenger must reduce the
response. Yet in our experiments, the Ca** signals evoked by every
concentration of each stimulus were entirely insensitive to substan-
tial inhibition of AC (Figs. 5 E and S3, B and D). How can cAMP
mediate graded regulation of IP;R and yet operate with a substan-
tial safety margin at every level of stimulus intensity?

We suggest that cAMP sensitizes IP;R independent of PKA
and epac (Figs. 3 and S2). Signaling by cAMP must be local, and
within a signaling complex, a receptor must generate substantially
more cAMP than needed maximally to sensitize associated IP;R
(Fig. 5 H). Each complex, or cAMP junction, operates with a large
safety margin so that even substantial inhibition of AC fails
to compromise communication with IP;R. The concentration-
dependent effects of PTH (or FK) come from recruitment of in-
creasing numbers of these hyperactive junctions and not from
increased activity within each (Fig. 5 H). For receptors, the safety
margin might arise at various steps of the signaling pathway: a
single receptor might, for example, sustain the activity of more Gs
than needed to stimulate sufficient AC to cause maximal activation
of associated IP;R (Fig. 5 I). But for FK, only cAMP lies between
it and the IPsR, and yet the Ca®" signals evoked by any concentra-

log {[PTH] M}

tion of FK are also insensitive to substantial inhibition of AC
(Fig. S3, A and B). Activation of a single AC can, therefore, deliver
more cAMP than needed maximally to sensitize the IP;R associated
with it. This defines the minimal signaling complex: an AC-IP;R
junction (Fig. 5 I, box). The key point is that each active receptor
(or AC) saturates the local signaling machinery and so functions
as a local on—off switch. The very low affinity of the cAMP-binding
site of the IP;R (Fig. 4 B) effectively insulates each signaling
complex from its neighbors because diffusion will reduce the
cAMP concentration to below that needed to sensitize IP;R within
just a few nanometers of the complex (Rich et al., 2000). This
digital signaling to IP;R imposes no requirement for individual
PTH receptors (or AC) to differ in their sensitivities; PTH binding
to a uniform population of PTH receptors, governed by the law of
mass action, is sufficient to generate a graded increase in the num-
ber of active receptors as the PTH concentration increases.

Our scheme (Fig. 5, H and 1) predicts that AC and IP;R
are intimately associated, and that complete inhibition of
cAMP formation within some junctions should more effec-
tively attenuate Ca®* signaling than partial inhibition of all
junctions. Subsequent experiments confirm these predictions,
but first we provide additional evidence that cAMP mediates
the effects of PTH.

We established stable HEK-PR1 cell lines in which ex-
pression of Gas was reduced by >95% by means of siRNA
(Fig. 6 A). In these cells, CCh-evoked Ca** signals were nor-
mal (Fig. 6 B), FK potentiated them, and the response to FK
was unaffected by inhibitors of AC (Fig. 6 C). However,
whereas inhibition of PKA again had no effect on the Ca*
signals evoked by PTH, the sensitivity to PTH was reduced
by inhibition of AC in cells with reduced expression of Gas
(Fig. 6 D). These results show that when the safety margin
for signaling between PTH receptors and IP;R is eroded by
removal of Gas, the requirement for AC activity is unmasked.
This further confirms that cAMP mediates the effects of PTH
on IP;R (Fig. 2 G).

cAMP REGULATION OF IPz RECEPTORS ¢ Tovey et al.
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or AbIP;R3 from HEK-PR1 cells transiently
transfected with AC&-GFP or AC3-GFP (Fig. S4,
available at http://www.jcb.org/cgi/content/
full/jcb.200803172/DC1). The results show
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AC6 and IP3R2 is intimate enough to deny cAMP access to PDE as it passes between them, whereas local signaling between AC and the higher-affinity
cAMP sensors (PKA, epac, or CNGC) occurs over longer distances and remains accessible to PDE. Diffusion of cAMP is sufficient to terminate signaling to
IP;R, whereas PDE assembled into signaling complexes regulates local events mediated by the other cAMP sensors.

ACGB and IPzR2 are specifically associated

We used immunoprecipitation (IP) to determine whether any of
the many isoforms of AC and IP;R expressed in HEK cells are
specifically associated. AC6 accounts for only 5% of the AC ex-
pressed in HEK cells (Table I), but an antibody to it (AbACO6)
selectively precipitated 30% of IP;R2 and lesser amounts of
IP;R3 and IP;R1 (Fig. 7, A and B). An antibody that recognizes
all mammalian AC isoforms (AbACc) selectively precipitated
the same amount of IP;R2 as AbAC6 (Fig. 7 B); and after IP
with AbAC6, AbACc was unable to precipitate further IP;R2
(Fig. 7 C). AC3 comprises 56% of the AC expressed in HEK
cells (Table I), and an antibody to it (AbAC3) selectively pre-
cipitated some IP;R2, but much less effectively than AbAC6
(Fig. 7, A and B). AC9 is also relatively abundant (10%), but
IP;R were not precipitated by AbAC9 (Fig. 7 B and S4 D, avail-
able at http://www.jcb.org/cgi/content/full/jcb.200803172/DC1).
None of the AbAC precipitated the sarcoplasmic reticulum (SR)/
ER Ca**-ATPase (SERCA), and nor were IPsR precipitated by
ADbSERCA (Fig. 7, A and B). These results establish that the as-
sociation of IP;R with AC depends entirely on AC6. The lesser
association of IP;R with AC3 (Fig. 7 B) may result from hetero-

JCB « VOLUME 183 « NUMBER 2 « 2008

oligomerization of AC3 with AC6. Both isoforms appear to di-
merize (Fig. S4 B), and AC does form heterodimers (Willoughby
and Cooper, 2007; Baragli et al., 2008). We considered whether
PTH might itself regulate association of AC6 with IP;R2, but the
ability of AbAC6 to cause IP of IP;R2 was unaffected by PTH
(unpublished data).

Reciprocal IP from native cells using AbIP;R was im-
possible because available AC antibodies do not reliably de-
tect endogenous AC in WB (Willoughby and Cooper, 2007).
We therefore transiently expressed tagged human AC3 and
AC6 in HEK cells, and confirmed that each AbAC selectively
precipitated only the appropriate AC (Fig. S4, A—-C). In the
transiently transfected cells, AbIP;R2 but not AbIP;R3 selec-
tively precipitated AC6, but not AC3 (Fig. 7 D). We conclude
that AC6 and IP;R2 are specifically associated. The lesser as-
sociations with AC3 and IP;R3 probably result from interac-
tions between heterotetrameric IP;R (Fig. S2 A) and dimeric
AC (Fig. S4 B) that include the essential IP;R2 and AC6 sub-
units (Fig. 7 E).

Our analysis of AC and IP;R expression (Table I and Fig. 8)
suggest that a HEK cell expresses ~1,500 AC6 and ~13,300
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IP;R2 subunits (~3,300 homotetrameric IP;R2), and at least 30%
of IP;R2 (~1,000 IP;R) are associated with AC6 (Fig. 7 B). These
estimates cannot reliably define the stoichiometry of the IP;R2—
AC6 complex, but they are consistent with each AC6 associating
with a single tetrameric IP;R2 (Fig. 7 E).

AC-IPzR junctions are inaccessible to PDE

In HEK cells, phosphorylation by PKA of PDE4D anchored to
the plasma membrane by an AKAP (Willoughby et al., 2006)
or recruited by arrestin (Willoughby et al., 2007) massively
accelerates cAMP degradation. This rapidly attenuates the in-
crease in cAMP immediately beneath the plasma membrane,
whether evoked by PGE, (Willoughby et al., 2006) or isopro-
terenol (Willoughby et al., 2007). Our measurements (at 30 s)
precede maximal activation of this PDE, which occurs ~1 min
after stimulation with PGE; and ~3 min after stimulation of
,-adrenoceptors (Willoughby et al., 2006). However, when
the interval between PTH and CCh additions was extended
to 5 min to allow maximal activation of anchored PDE4D by
PKA, the potentiated Ca** signals remained insensitive to in-
hibition of AC or PKA at every concentration of PTH (Fig. 7 F).
These results demonstrate that even when PDE is massively
stimulated, inhibition of AC fails to attenuate cAMP-mediated
communication with IP;R. Nor is communication with IP;R
improved by inhibiting PDE either directly with IBMX (Figs. 5 E

and S3, B and D) or indirectly by preventing its recruitment
and activation by PKA-mediated phosphorylation (Fig. 3, A
and B; and Figs. 7 F and S2). We conclude that the interaction
between AC6 and IP;R2 is more intimate than that between
AC and PKA, epac, or CNGC (Willoughby et al., 2006), even
though the latter detect only cAMP immediately beneath the
plasma membrane. Only the IP;R allows cAMP to evade PDE
as it passes from AC to its target (Fig. 7 G). We conclude that
AC6 and IP;R2 are specifically associated, and their intimacy
is sufficient to allow cAMP to pass between them without en-
countering PDE. This reveals an important distinction between
two different modes of cAMP signaling: binary (to IP;R) and
analogue (to PKA and epac). Because epac and PKA bind
cAMP with high affinity, they can respond in a graded fashion
to cAMP diffusing to them from a distant AC, but they then
assemble with PDE to ensure effective local degradation of
the messenger (Dodge-Kafka et al., 2005; Willoughby et al.,
2006, 2007). In contrast, IP;R, with their low affinity for
cAMP, must be very close to AC, but diffusion alone is enough
to terminate the signaling. Both modes of cAMP signaling
generate spatially organized responses: the analogue mode
used by high-affinity cAMP sensors relies on local degrada-
tion of cAMP, whereas the binary mode requires local synthe-
sis of cAMP to deliver it at high concentration to a low-affinity
cAMP sensor (Fig. 7 G).

cANMP REGULATION OF IPz RECEPTORS « Tovey et al.
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Figure 9. IP;R2 and AC6 are specifically re- A
quired for PTH to pofentiate IP;-evoked Ca?*
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Potentiation of IPz-evoked Ca®* signals by
PTH specifically requires ACGE and IPzR2

We used siRNA to inhibit selectively the expression of IP;R2,
IP;R1, AC3, and AC6 (Fig. 9 A and Table III). Although siRNA
also reduced IP;R3 expression, these cells failed to attach to
the plates used for Ca®* and cAMP assays, preventing further
analysis. Loss of IP;R1 decreased the Ca** signals evoked by
CCh without affecting their potentiation by PTH. In contrast,
loss of IP;R2 had no affect on the Ca?* signals evoked by CCh
alone but attenuated their potentiation by PTH (Fig. 9, B
and C). These results suggest that the muscarinic receptors that
alone evoke Ca** release are distributed differently to those
that release Ca** in synergy with cAMP. IP;R1 mediates the
Ca’* release evoked by CCh alone, whereas IP;R2 mediates the
response to CCh with cAMP (Fig. 9 D). Loss of AC3, the ma-
jor AC isoform, reduced PTH-evoked cAMP formation, though
without affecting the ability of PTH to potentiate CCh-evoked

JCB « VOLUME 183 « NUMBER 2 « 2008
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Ca’* signals. Conversely, loss of AC6 had no detectable effect
on PTH-evoked cAMP formation but attenuated PTH-evoked
Ca’" signals (Fig. 9, E and F). The Ca** release evoked by CCh
alone was unaffected by loss of AC3 or AC6 (Fig. S4, E and F).
These results confirm that the specific association between
IP;R2 and AC6 revealed by IP (Fig. 7) underlies the ability of
PTH to potentiate CCh-evoked Ca* signals.

Focal inhibition of AC more effectively
inhibits Ca®* signaling than global inhibition
Because we propose that each cAMP junction operates with a
large safety margin (Fig. 5 H), complete inhibition of AC within
some junctions should more effectively inhibit sensitization of
IP;R than partial inhibition of AC within all junctions. SQ 22536
and DDA are low-affinity inhibitors of all AC (Reid et al., 1990)
that should rapidly and uniformly distribute their inhibition
across all AC. Such uniform inhibition of AC by ~70% does not
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inhibit Ca®* signaling (Fig. 5, D and E; and Fig. S3). In contrast,
inhibition of AC6 expression by siRNA is expected to cause
random loss of AC from individual signaling complexes, each
perhaps comprising only a dimeric AC associated with a single
IP;R (Fig. 5, H and I). A 62% loss of AC6 (~3% of total AC)
had no detectable effect on PTH-evoked cAMP formation but
inhibited PTH-mediated Ca** signaling by 30% without affect-
ing the sensitivity to PTH (ECsp = 63 = 3 nM and 54 = 5 nM,
before and after loss of AC6, respectively; Fig. 9 F). These re-
sults confirm our second prediction. When all AC (and thus all
AC6) is uniformly inhibited by 60-70% (by SQ/DDA), Ca>*
signaling is unaffected. In contrast, the same overall loss of AC6
activity, though distributed in an all-or-nothing fashion between
junctions (by reducing AC6 expression), reduces the magnitude
of the Ca®* signals without affecting the PTH sensitivity of the
remaining junctions (Fig. 9 G).

Direct cAMP-mediated signaling between
AC and IPzR

We can compare quantitatively the relationships between cAMP
and Ca’* because each was measured at the same time under
identical conditions, all cells responded similarly, and cAMP
alone mediates the effects of PTH (Fig. 1-4). The similar sen-
sitivity of intact and permeabilized cells to 8-Br-cAMP (Figs. 2
C and 4 D) confirms the fact that permeabilized cells retain
their sensitivity to cAMP. This allows comparisons of the cAMP
sensitivity of IP;R in permeabilized cells with the calculated
concentrations of cAMP evoked by PTH if cAMP were uni-
formly distributed through the cytosol. For PTH, which produces
more cAMP than other stimuli (Fig. 1, C and D), the calculated
cAMP concentrations are ~1,000-fold too low to modulate
IP;R. The disparity is even greater when AC is inhibited and
the AC-IP;R junctions operate with a reduced safety margin.
Therefore, the half-maximal Ca?* signal evoked by PTH is
associated with an estimated global cAMP concentration of
~500 nM (Fig. 10 A), whereas the half-maximal response in
permeabilized cells requires a 5,400-fold higher concentration
of cAMP (2.7 mM; Fig. 4 B).

Subplasma membrane microdomains of cAMP occur in
many cells, including HEK cells (Rich et al., 2000; Willoughby
et al., 2006, 2007). But the highest local concentrations of free
cAMP achieved, whether measured or estimated from the activity
of AC and cAMP diffusion (Rich et al., 2000), exceed the global
cytosolic cAMP concentration by no more than 10-fold, even
within a few nanometers of AC. Cytosolic cAMP concentrations,

even very close to AC, are far too low to affect IP;R directly, and
restricting the escape of cAMP with internal membranes like the
ER (Rich et al., 2000) might further increase the local cAMP
concentration by no more than approximately twofold (Olveczky
and Verkman, 1998). Cyclic AMP cannot reach IP;R via the cyto-
sol at concentrations sufficient to cause their sensitization to IPs.
We instead suggest that the intimate association between IP;R2
and AC6 (Fig. 7) allows cAMP to pass directly from AC to IP;R
in a manner analogous to substrate channeling in enzyme com-
plexes (Fig. 10 B; Huang et al., 2001).

Discussion

ACGB and IPzR2: the most intimate mode

of cAMP signaling

We have shown that receptors that stimulate cAMP formation
sensitize IP;R to IP; via a pathway that requires neither PKA
nor epac, but which is instead mediated by a novel low-affinity
cAMP-binding site on either the IP;R itself or an associated
protein. A complex of AC6 and IP;R2 is uniquely required for
PTH to potentiate IP;-evoked Ca** release. Within each AC—
IP;R junction, cAMP is delivered directly to the associated IP;R
at a supersaturating concentration, allowing the junction to
work as a robust on—off switch. Graded responses to changes in
the intensity of the extracellular stimulus arise from digital re-
cruitment of AC-IP;R junctions and not from graded activity of
individual junctions. The presence of AC6 in these junctions is
significant because AC6 is inhibited by Ca** (Willoughby and
Cooper, 2007). It is therefore likely that within the AC6-IP;R2
junction, there will be a reciprocal interplay between AC6 and
IP;R, with AC6 potentiating IP;R activity via cAMP, and active
IP;R inhibiting AC6 via Ca®* (Fig. 10 B). These feedback inter-
actions may generate highly localized oscillations in both Ca**
and cAMP similar to those observed in whole cells (Gorbunova
and Spitzer, 2002; Dyachok et al., 2006).

The AC-IP;R junction suggests an analogy with excitation—
contraction coupling in striated muscle, where voltage-sensing
dihydropyridine receptors (DHPR) in the plasma membrane reg-
ulate opening of ryanodine receptors in the SR across a narrow
(~10 nm) junctional complex (Fig. 10 D). Coupling of these pro-
teins has evolved from chemical coupling mediated by Ca** (car-
diac excitation—contraction coupling) to a physical coupling
between the two apposed proteins (vertebrate skeletal muscle;
Di Biase and Franzini-Armstrong, 2005). Junctional complexes
similar to those in striated muscle occur also in nonexcitable cells;

Table lll.  Selective inhibition of expression of AC and IPsR isoforms

siRNA AC3 AC6 IP;R1 IP;R2 IP;R3
AC3 40 £ 2° 123 + 35 103 £ 9 93+ 14 87 +7
AC6 101 = 27 38 + 8 916 101 +12 92+ 10
IP;R1 ND ND 36 = 6° 103 £ 9 1387
IP;R2 ND ND 96+ 18 <5¢ 77 £6

Quantification of levels of expression (percentage of control, means + SEM from three to five independent transfections) of the isoforms of AC and IP3R from HEK-PR1
cells treated with the indicated siRNA. Samples were taken from the same cells that were used for measurements of [Ca?*]; and cAMP (Fig. 9). WB was used to quantify
IP3R expression and QPCR for AC (available antibodies are incapable of detecting endogenous levels of AC). ND, not determined.

“Indicates the extent to which expression of the target protein was reduced.
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Figure 10. Binary and analogue signaling A

by cAMP. (A) Comparison of the effects of °
cAMP on IPyevoked Ca?* release from per- 100 4
meabilized cells with estimates of the global
cAMP concentration associated with agonist-
mediated potentiation of Ca?* signals in intact
cells. A typical HEK cell has a radius of 8.4
pm and thus a total volume of ~2.5 pl (Rich
et al., 2000). Each well used for cAMP assays
contained a mean of 4.8 x 10° cells, and our
results show cAMP levels determined in 20% 0+

PTH

PTH
+ SQ/DDA

m  perm cells
50

response (%)

inhibition
————

——

stimulation

C

of the sample taken from each well, equivalent I I
therefore to 96,000 cells and a total cytosolic -10 -8
volume of 0.24 pl. Maximal stimulation with
each agonist would generate a uniformly dis-
tributed cytosolic cAMP concentration of up to
~28 pM (PTH), ~1 pM (FK), and ~380 nM
(isoproterenol). Means + SEM, n = 3-6.
(B) AC6 and IP3R2 form an intimate junction
that allows cAMP to pass directly to IP;R2, en-
hancing its activity. Ca?* released by the IPsR
may then locally inhibit AC6. The inferplay

-6
log A {[Intracellular cAMP] M}

T T

-4 -2 0

GPCR

om0 R
G prote% :I

may allow local oscillations in both cAMP and D
Ca?* concentration. (C) AC, IPsR, Gs, and a
G-protein-coupled receptor (GPCR) are each
drawn to approximate scale, with the ER and
plasma membrane (PM) separated by 10-15 nm
(Treves et al., 2004; Luik et al., 2006). (D) The
IP;R-AC junction allows a low-affinity cAMP-
sensor (IP3R2) to respond robustly to saturating
concentrations of cAMP delivered directly to
it by AC. Higher offinity cAMP sensors [e.g.,
PKA) can be more remote from AC and re-
spond to local gradients of cAMP. Although
the binary coding requires local delivery of
cAMP, the analogue coding requires its local

skeletal

cardiac

degradation. The two modes of cAMP signal-
ing invite comparison with the evolution of
excitation-contraction coupling in striated mus-
cle, where coupling between the PM voltage-
sensor (DHPR) and ryanodine receptor (RyR)
in the SR of striated muscle probably evolved
from chemical coupling mediated by Ca?*
(cardiac muscle) to conformational coupling
(skeletal muscle; Di Biase and Franzini-

Armstrong, 2005).

AC6

IP,R2

analog coding binary coding

they are implicated in Ca** signaling (Treves et al., 2004; Varnai
et al., 2007), and their width (10-15 nm) would allow IP;R and
AC to abut (Fig. 10 C). We speculate that the AC6-IP;R2 com-
plex may occur within such junctions, and that its evolution from
the looser relationship between AC and PKA mediated by soluble
cAMP may be similar to the evolution of conformational cou-
pling in skeletal muscle from Ca**-mediated coupling in cardiac
muscle (Di Biase and Franzini-Armstrong, 2005). The difference
is that AC6-IP;R2 communication requires not only direct con-
tact but also passage of a constrained messenger, cCAMP, between
them (Fig. 10 B).

The IP;R is a new and important target of cAMP. The AC6—
IP;R2 complex allows cAMP to pass directly to IP;R and increase
its sensitivity to IP;. These cAMP junctions (Fig. 10 B) allow ro-
bust signaling to IP;R because they are hyperactive on—off
switches (Fig. 5 H). Increasing stimulus intensities recruit addi-
tional junctions, rather than increasing the activity within indi-
vidual junctions. Signaling by cAMP to IP;R is binary, requires
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direct contact between AC6 and IP;R2, and relies on diffusion of
cAMP to terminate the response of each junction. Other sensors
with greater affinity for cAMP, like PKA and epac, respond to
graded changes in local cAMP concentration (analogue signaling)
and rely on PDE activity to shape local signaling events (Figs. 7 G
and 10 D). These different modes of signaling considerably in-
crease the versatility of cCAMP as an intracellular messenger.

Materials and methods

Materials

DDA, cAMP, 8-Br-cAMP, 8-Br-cGMP, H89 dihydrochloride, ionomycin,
KT5720, adenosine 3’,5'cyclic phosphorothioate-Rp  (RpcAMPS), SQ
22536, and 1,2-bis(c-aminophenoxy)ethane-N,N,N’,N'-tetraacetic acid
(BAPTA) were obtained from EMD. 8-Br-2-O-methyladenosine-3’,5'-cAMP
was obtained from Biolog. IP; was obtained from American Radiolabeled
Chemicals. Thapsigargin was obtained from Alomone Laboratories. Human
PTH fragments were obtained from Bachem; unless specifically stated,
“PTH" denotes human PTH(1-34). Cell culture media, G-418, Fluo-4AM,
Fura-2AM, Magfluo-4AM, and Pluronic F-127 were obtained from Invitrogen.
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Acetic anyhydride, CCh, carbonyl cyanide-prifluoromethoxyphenylhydrazone,
FK, 1,9-dideoxyforskolin, IBMX, (x}-isoproterenol hydrochloride, the porcine
catalytic subunit of PKA, and triethylamine were obtained from Sigma-Aldrich.
Stht31 was obtained from Promega.

Cells, vectors, and siRNA

HEK-PR1 cells were cultured as described previously (Short and Taylor,
2000). For sikRNA-mediated inhibition of AC or IP;R expression, HEK-PR1
cells were seeded into 6-well plates (2.5 x 10° cells per well). After 24 h,
the medium was replaced (2.5 ml) and Stealth siRNA duplex (30 pmol;
Invitrogen) was added in Opti-MEM 1 + Glutamax (0.5 ml) containing 1%
lipofectamine RNAimax (Invitrogen). The siRNA sequences (5'-3') were:
IPsR1 (GGCCUGAGAGUUACGUGGCAGAAAU), IP;R2 (GAGAAGG-
CUCGAUGCUGAGACUUGA), AC3 (CCUCUGAAGAUGAGCACGAG-
CUCAA), and AC6 (CCAGCAUCUUCCUGCUGCUGCUAAU). After 24 h,
cells were reseeded into 96-well (2,500 cells per well) or 6-well plates (10°
cells per well), and after a further 48 h, the transfection with siRNA was
repeated. Cells were incubated for a further 72 h before use. A modified
pSUPER vector (Brummelkamp et al., 2002) was used to generate short
hairpin RNA-mediated knockdown of Gas in HEK-PR1 cells. Transfected
cells were selected using 10 pg/ml blasticidin and 800 pg/ml G418, and
clonally isolated cells were used to establish the seven cell lines used for
analyses of cAMP and Ca?* signaling.

Transient expression of tagged AC3 and AC6

The open reading frames for human AC3 (AK122926) in pME18SFL3 (Na-
tional Institute of Technology and Evaluation Biological Resource Center) and
AC6 (BC064923) in pCMV-Sport 6 (GeneService) were cloned as EcoRI—
Xhol fragments into pENTRTa (Invitrogen). A Flag (AC3) or Myc (ACé) tag
was introduced at the N terminal by PCR. Tagged and untagged AC con-
structs were subcloned into the pEGFP-C2 vector (Clontech Laboratories,
Inc.) to generate AC constructs N-terminally tagged with EGFP (Fig. S4 A).
HEK-PR1 cells were transfected using lipofectamine and used affer 2 d.
Measurements of [Ca?*];

Near confluent cultures of HEK-PR1 cells grown in 96-well plates and
loaded with Fluo-4 were used for measurements of [Ca?*]; in cell popula-
tions using a FlexStation 96-well fluorescence spectrometer (MDS Analyti-
cal Technologies; Tovey et al., 2006). The results reported herein span >4 yr,
but all direct comparisons between stimuli or between cAMP and Ca?*
were made in parallel experiments. Single cell imaging of [Ca?*]; was per-
formed as described previously (Tovey et al., 2003), and after correction
for autofluorescence, fluorescence ratios were calibrated to [Ca?*] using
Ca?* standard solutions (Invitrogen). CCh stimulation was always in Ca?*-
free Hepes-buffered saline (HBS; except in Fig. S1, C and D). A low-affinity
luminal Ca?* indicator was used to measure IPs-evoked Ca?* release from
permeabilized cells (Tovey et al., 2006).

Measurements of cAMP

HEK-PR1 cells in 24-well plates were cultured for 2-3 d (as described in
a preceding section). They were washed twice in HBS (135 mM NaCl,
5.9 mM KCI, 1.2 mM MgCl,, 1.5 mM CaCl,, 11.6 mM Hepes, and
11.5 mM glucose, pH 7.3) and then incubated under identical conditions
(including addition of CCh) to those used for measurements of [Ca?*];; the
only difference was the omission of Fluo-4-AM and Pluronic F-127 from
the 1-h incubation. After stimulation, the medium was aspirated, and the
cells were lysed by the addition of acidified ice-cold ethanol (10 mM HCI
in absolute ethanol). Dried extracts in 500 pl of medium (50 mM sodium
acetate, 1 mM theophylline, and 1 mg/ml BSA, pH 5.0) were acetylated
by rapid sequential addition of 10 pl triethylamine and 5 pl acetic anhy-
dride. Acetylated cAMP content was determined by RIA using acetylated
standards prepared from a cAMP stock calibrated by its UV absorption
(258 = 14,100). For RIA (Brooker et al., 1979), rabbit antiserum to acety-
lated cAMP (P.D. Marley, University of Melbourne, Melbourne, Australia;
Marley et al., 1991) was used at a final concentration of 1:9,000, and
8.4 TBq/mmol adenosine 3’,5'-cyclic phosphoric acid, 2'-O-succinyl['?°]
iodotyrosine methyl ester (PerkinElmer) was used as tracer. Assays (300 pl)
included 100 pl of sample. After incubation for 48 h at 4°C, 2 mg/ml
BSA and 2 mg/ml Norit A charcoal were added in 50 mM sodium phos-
phate buffer at pH 7.4, and the free and antibody-bound tracer were
separated (1,000 g for 10 min).

IP and Western blotting

All procedures were performed at 4°C. A confluent 175-cm? flask of HEK-
PR1 cells was washed in 50 ml PBS supplemented with protease inhibitors
(one tablet of Roche complete protease inhibitor per 50 ml). Cells were

scraped into 1.5 ml solubilization medium, sonicated (three times for 10 s),
and incubated with rotation for 1 h. Solubilization medium had the follow-
ing composition: 140 mM NaCl, 5 mM NaF, 10 mM Tris, 1T mM Na4P,0y,
0.4 mM Na3VOy, 1% Triton X-100, pH 7.4, and one minitablet of Roche
protease cocktail inhibitor per 10 ml. Cell debris was removed by cen-
trifugation (5,000 g for 10 min) and the supernatant was cleared by in-
cubation (1 h) with 5 pl of preimmune rabbit serum. Protein agarose Ig
A/G beads (10 pl; Autogen Bioclear) were added, and after 2 h, immuno-
precipitated material was removed by centrifugation (1,000 g for 1 min).
An aliquot (300 pl) of the cleared lysate was incubated with the primary
antiserum (Table S1, available at http://www.jcb.org/cgi/content/full/
icb.200803172/DC1) for 1 h before addition of protein A/G-agarose
beads (50 pl) and incubation for 12 h. After centrifugation (1,000 g for
1 min), the supernatant and pellet (washed three times) were used for WB.
WB used 3-8% Tris acetate NuPAGE gels (Invitrogen), and blots were
quantified using a GeneGnome (SynGene) with gel loadings adjusted to
ensure that intensities scaled linearly with protein loading. Antibodies are
listed in Table S1.

Quantitative PCR (QPCR)

cDNA was synthesized in a final volume of 20 pl directly from cell lysate us-
ing Fastlane cell cDNA kit (QIAGEN) according to the manufacturer’s in-
structions. For QPCR, each reaction included primers specific for AC
(Ludwig and Seuwen, 2002) or IPsR subtypes (Quantitect Primer Assay;
QIAGEN), and for calibration, primers for a house-keeping gene (GAPDH;
Ogunwobi et al., 2006). Each reaction (25 pl) contained 1 pl of the HEK-
PR1 reverse-ranscription product, 0.5 pM of the AC- or IPsR-specific prim-
ers, and Quantace Sensimix according to the manufacturer’s instructions
(Bioline). For PCR (Rotor-Gene 6000; Corbett Life Sciences), an initial dena-
turation at 93°C for 10 min was followed by 40 cycles of amplification
(93°C for 10's, 50-65°C for 15 s, and 72°C for 20 s). Expression levels
were calculated as described previously (Moneer et al., 2005).

Quantification of signaling proteins

HEK-PR1 cells were washed in HBS supplemented with a complete pro-
tease inhibitor cocktail (Roche) and resuspended (~4 x 10° cells per
milliliter) in TM (50 mM Tris and 1 mM EDTA, pH 8.3) for 3H-IP; binding,
in DM (75 mM Tris, 1 mM EDTA, 12.5 mM MgCl,, and 0.2% BSA, pH
7 .4) for *H-dihydroalprenolol (DHA) binding, and in FM (50 mM Tris and
10 mM MgCly, pH 7.4) for *H-FK binding. Cells were lysed (Polytron,
Inc.), and the lysates were used for equilibrium competition binding as-
says. Incubations, in a final volume of 500 pl, included *H-IP; (1.5 nM,
21 Ci/mmol; PerkinElmer), *H-DHA (0.165 nM, 97 Ci/mmol; GE Health-
care), or *HFK (10 nM, 27 Ci/mmol; PerkinElmer; with 100 pM p[NH]ppG,
10 pM isoproterenol, and 40 pM cytochalasin; Emala et al., 2000); each
with appropriate concentrations of unlabeled competing ligand. After
equilibrium had been attained (5 min on ice for *H-IP;, 90 min at 25°C
with shaking for *H-DHA, and 10 min at 25°C for *H-FK), incubations
were terminated by centrifugation (20,000 g for 5 min at 4°C) and the
pellet was washed with cold buffer, then resuspended in 200 pl of buffer
for liquid scintillation counting. For '2l-PTH binding, cells in 24-well
plates (2-5 x 10° cells per well) were incubated in PM (Dulbecco’s modi-
fied Eagles medium with 20 mM Hepes and 0.1% BSA) with '2°|.PTH (44
pM, 1559 Ci/mmol; Bachem) for 5 h at 4°C (Chauvin et al., 2002). Cells
were washed twice with ice-cold PBS and lysed with 0.8 M NaOH, then
their radioactivity was determined. Equilibrium competition binding
curves were fitted to four parameter logistic equations (GraphPad Prism;
GraphPad Software) from which ICso (and thence Kp) and B, values
were calculated. Expression of Gas was quantified by WB, calibrated
using recombinant Gas (EMD).

Analysis

Concentration-effect relationships were individually fitted to four-parameter
logistic equations by nonlinear curvefitting (Prism 4; GraphPad Software),
and the results from each experiment (ECso, Hill coefficient h, and maximal
response) were pooled for analyses. For simplicity, ECso values are given
as means + SEM, although log ECs, values were used for statistical analysis.
Student's t test, or a one-way analysis of variance test followed by a post
hoc Bonferroni's test were used as was appropriate.

Online supplemental material

Fig. S1 shows that PTH potentiates Ca?* signals by sensitizing IPsR. Fig. S2
shows that potentiation of Ca?* responses by isoproterenol and FK does
not require PKA. Fig. S3 shows that inhibition of cAMP formation or degra-
dation does not directly effect potentiation of Ca?* responses by isoproter-
enol or FK. Fig. S4 shows the selectivity of the AC antibodies and the lack of
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effect of AC3 or AC6 siRNA on CCh-evoked Ca?* release. Table S1 lists
the antibodies used. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200803172/DC1.
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