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    The acidic pH of endosomes is one of their simplest distinguish-

ing characteristics. Most viruses that pass through these compart-

ments en route to productive infection have evolved to  “ sense ”  

the local proton concentration as part of their mechanism for 

crossing into the cytosol. For enveloped viruses, fusion of their 

lipid bilayer with the membrane of an endosome is generally the 

pH-dependent molecular step, catalyzed by a  “ fusion protein ”  on 

the viral surface ( Harrison, 2008 ;  White et al., 2008 ). Although 

these proteins have been studied in great detail for over 30 yr, it 

has not been easy in any of the well characterized examples 

to pin down the molecular identity of the pH sensor. Histidine 

residues are plausible candidates, as they titrate in the relevant 

range, but suitably poised carboxylate pairs can have a similar 

pK. The long history of working out the origins of the hemoglo-

bin Bohr effect show how tricky such a search can be (e.g., see 

 Riggs, 1988 ). Moreover, charge interactions, even those with 

conserved physiological functions, can move around on a protein 

relatively easily in the course of evolution. For example, a redun-

dant charge pair can appear by mutation, with a similar pK as that 

of an existing one, allowing the initial charges to disappear in 

some subsequent evolutionary step, without drastic change in ti-

tration properties. Exquisite stereochemistry is often not required. 

  Fritz et al. (2008)  (see p.  353  in this issue) have taken on 

the challenge of determining the pH sensor for fl avivirus fusion 

Viruses that infect cells by uptake through endosomes 

have generally evolved to  “ sense ”  the local pH as part of 

the mechanism by which they penetrate into the cytosol. 

Even for the very well studied fusion proteins of enveloped 

viruses, identifi cation of the specifi c pH sensor has been a 

challenge, one that has now been met successfully, for 

flaviviruses, by Fritz et al. (Fritz, R., K. Stiasny, and 

F.X. Heinz. 2008.  J. Cell Biol.  183: 353–361 ) in this issue. 

Thorough mutational analysis of conserved histidine resi-

dues in the envelope protein of tick-borne encephalitis vi-

rus led  Fritz et al. (2008)  to identify a histidine at a key 

domain interface as the critical pH sensor; its protonation 

triggers the large-scale conformational rearrangement that 

induces fusion of viral and endosomal membranes.
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by meticulous and exhaustive mutational analysis of conserved 

histidine residues in the fusion protein of tick-borne encephali-

tis virus (TBEV). Their work builds upon elegant analyses of 

TBEV fusion by Heinz and co-workers over many years, in-

cluding their essential contributions to structure determinations 

of the protein, both at neutral pH and after acidifi cation ( Rey 

et al., 1995 ;  Bressanelli et al., 2004 ). Flaviviruses are particu-

larly compact structures, only  � 500  Å  in diameter, tiled on their 

surface by 180 envelope protein (E) subunits in an icosahedral 

array ( Zhang et al., 2003 ), as illustrated in  Fig. 1 a . Within this 

outer layer is the viral membrane, a roughly spherical bilayer 

 � 410  Å  in outer diameter. The viral positive-strand RNA genome 

encodes three structural proteins — an internal, RNA packaging 

 “ core ”  protein (C) and two membrane-anchored proteins, prM 

and E ( Lindenbach et al., 2007 ). A C protein – RNA complex 

buds into the endoplasmic reticulum, acquiring a membrane with 

180 prM-E heterodimers in the process. The prM protein is a 

specifi c chaperone for E ( Fig. 1 b ). In the trans-Golgi network 

(TGN), furin cleavage of prM to a membrane-anchored residual 

fragment (called M) allows E to settle into the regular array 

illustrated in  Fig. 1 a  and also allows it to undergo (when subse-

quently acidifi ed) the low pH – induced, dimer-to-trimer reorgani-

zation shown in  Fig. 2 . Thus, when the mature virus particle 

secreted by one cell arrives in the acidic environment of an early 

endosome in a target cell, the large-scale molecular rearrange-

ment of E facilitates fusion, fi rst by exposing a hydrophobic 

 “ fusion loop, ”  which inserts into the endosomal membrane, and 

then by drawing together the viral and target membranes as the 

conformational change proceeds. 

 In the 1990 ’ s, Heinz and co-workers ( Allison et al., 1995 ; 

 Schalich et al.,1996 ) showed that recombinant expression of 

TBEV prM and E in mammalian cells leads to secretion of re-

combinant subviral particles (RSPs), smaller than virions but 

still with an intact lipid bilayer. Later analysis showed that they 

contain just 60 copies of E (and, after passage through the TGN, 

the same number of copies of M), icosahedrally arrayed, and 

that the bilayer is only  � 210  Å  in outer diameter ( Ferlenghi 

et al., 2001 ). These particles nonetheless fuse with liposomes or 

other target membranes, at lowered pH, in a reaction that has 

precisely the same characteristics as virion fusion ( Corver et al., 

2000 ). For example, as described by  Fritz et al. (2008) , the 

reactivity of E with a panel of 22 monoclonal antibodies, with 
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protein undergoes its fusion-inducing change from dimer to trimer 

( Fig. 2 ), and protonation might indeed be expected to destabilize 

the dimer conformation. Two of the other conserved histidines 

(H248 and H287) are on the protein surface; the fi fth (H438) is in 

the so-called stem that links domain III to the transmembrane 

anchor.  Fritz et al. (2008)  show that any of these last three can 

be mutated individually, without effect on the fusion properties of 

the corresponding RSPs, whereas mutation of H323 to alanine 

eliminates fusion, even at pH 5.0. Mutation of H146 to any of the 

other 19 naturally occurring amino acid residues prevents stable 

expression of E and hence prevents any formation of RSPs. H323 

is not only buried at a key domain interface, it is also part of the 

pocket that protects the fusion loop of the dimer partner.  Fritz et al. 

(2008)  convincingly conclude that H323 is the critical pH sensor, 

with a possible additional contribution from H146. 

  Fritz et al. (2008)  also examine a series of double and tri-

ple mutations. One of the double mutants, H248A-H287A, gives 

quite differently positioned epitopes, changes in just the same 

way during viral fusion and RSP fusion. The pH dependence 

and the kinetics of the process are likewise the same. As RSPs 

can be produced by transient transfection, mutagenesis is far 

more straightforward than it would be with virions.  Fritz et al. 

(2008)  could therefore pursue their hypothesis that histidines in 

E conserved among all fl aviviruses are the likely pH sensors by 

an essentially complete analysis of the fi ve such residues in TBEV. 

They monitored fusion by labeling the RSP membranes with 

1-pyrenehexadecanoic acid, which has substantially altered fl uo-

rescence properties when diluted into the target membrane after 

merger of the bilayers. 

 Two of the fi ve conserved histidines (H146 and H323) are at 

a particularly  “ interesting ”  interface between domains I and 

III of the E protein (see  Fig. 1 b ), and several previous papers 

( Bressanelli et al., 2004 ;  Kampmann et al., 2006 ) had called at-

tention to them. This interface rearranges completely when the 

 Figure 1.    Flavivirus structure.  (a) Diagram of the packing of 180 E subunits in the surface of a virion. The proteins are clustered as dimers. Each is repre-
sented by a symbol, colored to correspond to the domain representation in b. (b) The ectodomain of the E dimer, viewed as if looking toward the surface 
of the virion. Domains I, II, and III are labeled and colored in red, yellow, and blue, respectively. An arrow points to the fusion loop on one subunit. The 
locations of two histidines at the domain I – domain III interface are shown by orange triangles. His 146 is on domain I; His 323, close to the fusion peptide 
of the partner subunit, is on domain III. Black triangles mark a potential receptor-binding loop.   

 Figure 2.    Sequence of events during low pH – triggered, fusion-inducing conformational rearrangement of fl avivirus E proteins.  (a) E ectodomain dimer, 
viewed as in  Fig. 1 b . (b) Side view of the E dimer, illustrating how it is anchored in the viral membrane. A segment known as the stem connects the 
C terminus of domain III to the transmembrane anchor (a helical hairpin that traverses the bilayer once in each direction). (c) Low pH induces dissociation of 
the dimer interface and rotation outward of domains I and II, exposing the fusion loop (black arrows), which interacts with the endosomal target membrane. 
(d) The extended intermediate trimerizes and starts to collapse (curved arrows), so that domain III rotates back to dock against domains I and II and the stem 
zips up alongside the trimer-clustered domain II. (e) When the transition is complete, the two membranes have been brought together and induced to fuse. 
Several trimers probably participate cooperatively in this process, but only one is shown here. (This fi gure has been modifi ed from  Harrison, 2008 .)   
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rise to stable RSPs but prevents fusion. In earlier work,  Stiasny 

et al. (2007)  found, by using a monoclonal antibody directed 

against the fusion loop, that its epitope, buried in the prefusion 

E dimer, is transiently exposed during the fusion process and 

becomes again protected in the postfusion trimer. As might be 

expected from its location, the H323A mutation prevents even 

the process (presumably dissociation of the dimer interface) 

that makes this epitope transiently accessible after acidifi cation. 

The same is not the case for the H248A-H287A double mutant, 

however; lowered pH allows binding of the fusion loop mono-

clonal, just as to wild-type RSPs. The likely interpretation is 

that the double mutation impairs a later step in the fusion reac-

tion. A good candidate would be the transition from the ex-

tended, intermediate structure ( Fig. 2 c ) to the folded back 

trimer ( Fig. 2 e ). The trapped intermediate is probably still mo-

nomeric, as suggested by sedimentation analysis of solubilized 

E protein from the various RSPs. Both H248 and H287 are in 

locations compatible with a contribution to trimer stability. The 

double mutant also binds liposomes at lowered pH, confi rming 

exposure of its hydrophobic fusion loops. 

 Animating molecular structures and probing the processes 

in which they participate is still an arduous business. Directed 

mutagenesis, however well informed by structural information, 

is often a relatively blunt instrument. By building on nearly two 

decades of careful work on TBEV and its surface proteins,  Fritz 

et al. (2008)  have done more than simply identify the pH sensor 

that triggers E protein rearrangement, challenging as even that 

task has been. Together with the work of  Liao and Kielian (2005)  

on the related alphavirus fusion proteins (and on dengue, an-

other fl avivirus), the experiments described in their paper fi ll in 

steps of the mechanism, illustrated in  Fig. 2 , for which we have 

had until now mainly the logical deductions from structures of 

the two end states. Methods to track the fusion of individual 

virus particles, by extension of the type of fl uorescence assay 

used by  Fritz et al. (2008) , are likely soon to add further details 

and a proper time dimension. One should also recall that moti-

vation to understand the details of this process goes beyond its 

considerable inherent cell biological interest. Blockade of fu-

sion is among the mechanisms by which neutralizing antibodies 

prevent infection, and inhibiting viral fusion is a validated anti-

viral strategy, with at least one fusion inhibitor (the HIV entry 

inhibitor, enfuvirtide) now a licensed drug. 
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