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    Introduction 
 Cardiomyocytes actively divide during embryonic development 

but exit the cell cycle and stop proliferating shortly after birth 

( Winick and Noble, 1965 ;  Li et al., 1996 ;  Burton et al., 1999 ). 

The incapacity of adult cardiomyocytes to divide underlies the 

inability of the heart muscle to regenerate after an injury, such 

as a myocardial infarction, that frequently leads to overload and 

heart failure. Notch signaling is normally active in the embry-

onic heart of multiple species, where it infl uences cell fate and 

morphogenesis, including within the early myocardial fi eld, 

atrioventricular canal myocardium and cushions, and in the ven-

tricular wall ( Rones et al., 2000 ;  Loomes et al., 2002 ;  Rutenberg 

et al., 2006 ;  Watanabe et al., 2006 ;  Grego-Bessa et al., 2007 ; 

 Niessen and Karsan, 2007 ). In addition to controlling cell fate, 

several studies indicate that Notch infl uences tissue formation 

and morphogenesis during development by regulating the bal-

ance between a progenitor or precursor pool and differentiating 

progeny ( Dallas et al., 2005 ;  Fre et al., 2005 ;  Mammucari et al., 

2005 ;  van Es et al., 2005 ). In principal, a similar process could 

contribute to tissue regeneration ( Kohler et al., 2004 ;  Raya et al., 

2004 ;  Su et al., 2006 ;  Nakamura and Chiba, 2007 ;  Poss, 2007 ). 

Because the signals that control fetal and early neonatal cardio-

myocyte replication and the subsequent postnatal withdrawal 

from cell cycle are unclear, we explored whether Notch reacti-

vation might trigger and sustain the cell cycle of neonatal divid-

ing and quiescent cardiomyocytes. 

 Binding to the transmembrane Delta or Jagged ligands on 

a signaling cell triggers a  � -secretase – dependent proteolytic 

cleavage of transmembrane Notch receptors on the responding 

cell ( Schweisguth, 2004 ). Cleavage releases the Notch intracel-

lular domain (ICD) that complexes with the transcription factor 

recombination signal-binding protein 1 for J �  (RBP-J � ; also 

known as CSL [CBF1, Su(H), LAG-1]) to activate transcription 

of downstream targets. In addition to this canonical cascade, 

RBP-J �  – independent signaling has recently been demonstrated 

T
he inability of heart muscle to regenerate by repli-

cation of existing cardiomyocytes has engendered 

considerable interest in identifying developmental 

or other stimuli capable of sustaining the proliferative 

capacity of immature cardiomyocytes or stimulating 

division of postmitotic cardiomyocytes. Here, we demon-

strate that reactivation of Notch signaling causes embryonic 

stem cell – derived and neonatal ventricular cardiomyocytes 

to enter the cell cycle. The proliferative response of neo-

natal ventricular cardiomyocytes declines as they ma-

ture, such that late activation of Notch triggers the DNA 

damage checkpoint and G2/M interphase arrest. Notch 

induces recombination signal-binding protein 1 for J �  

(RBP-J � )-dependent expression of cyclin D1 but, unlike 

other inducers, also shifts its subcellular distribution 

from the cytosol to the nucleus. Nuclear localization of 

cyclin D1 is independent of RBP-J � . Thus, the infl uence of 

Notch on nucleocytoplasmic localization of cyclin D1 is 

an unanticipated property of the Notch intracellular domain 

that is likely to regulate the cell cycle in multiple con-

texts, including tumorigenesis as well as cardiogenesis.
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 Figure 1.    Activated Notch induces cell cycle reentry in quiescent cardiomyocytes.  (A – D) NRVCs were either uninfected (A and E) or infected with Ad- � Gal 
(B and F) or Ad-N2 ICD  (C and G). 48 h after infection, cells were stained with mouse anti-MF20 (green, Alexa 488) and propidium iodide (PI; A – C). The 
number of MF20 +  cells (green, Alexa 488) was  > 90% in all cases. DNA content was analyzed for the MF20 +  population (insets) and the percentage in 
S/G 2 /M phase for each condition was calculated (D). The examples shown are representative of more than fi ve experiments with similar outcomes. (E – H) 
Examples of NRVCs as in A – D stained with MF20 (red, Alexa 594) and Ki67 (green, Alexa 488; E – G) 48 h after infection, and the percentage of Ki67 +  
cells within the MF20 +  population was measured (H). The examples shown are representative of more than fi ve experiments with similar outcomes. (I) 12 h 
after infection, NRVCs were transfected with 0.6  μ g of the pHes1-Luc or p � Hes1-Luc plasmids and 0.2  μ g pGL3- Renilla- Luc. Luciferase activities and protein 
expression of Notch2 and V5 epitope (inset) were determined 12 h later. Firefl y activity was normalized using  Renilla  luciferase activity. (J) Examples of 
NRVCs as in A – D stained with V5 (red, Alexa 594), Notch2, (green, Alexa 488), and DAPI (blue) 48 h after infection. (K) Confocal images showing the 
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131 NOTCH SUSTAINS CARDIOMYOCYTE CELL CYCLE  • Campa et al. 

persistence of Ki67 +  (green, Alexa 488) and MF20 +  (red, Alexa 594) cardiomyocytes in differentiating mESCs expressing N2 ICD  from the MLC2V promoter 
compared with typically quiescent cardiomyocytes in cultures harboring only the REX promoter – Bla r  gene. Error bars indicate  ± SD across experimental 
replicates. Bars: (E – G and K) 10  μ m; and (J) 50  μ m.   

 

to occur through various intermediaries, including the Dishev-

elled (Dsh) protein required for Wnt signaling ( Bush et al., 

2001 ;  Ramain et al., 2001 ). Despite its involvement in tumori-

genesis and tissue morphogenesis, details of the mechanisms 

that might link Notch signaling to cell cycle control are unclear, 

although the complex containing the Notch ICD and RBP-J �  

directly activates transcription of the cyclin D1 gene promoter 

( Ronchini and Capobianco, 2001 ). 

 We found that activation of the Notch pathway in mouse 

embryonic stem cell (mESC)-derived and early neonatal cardio-

myocytes induced cyclin D expression and stimulated cell cycle 

entry, mitosis, and cell division. Cell cycle progression involved 

the RBP-J �  – dependent induction of cyclin D1, which led to its 

cytosolic accumulation. Translocation to the nucleus, retino-

blastoma protein (Rb) phosphorylation, and cell cycle entry, 

however, specifi cally required the Notch ICD. This constitutes a 

novel function for the ICD that might account for aspects of 

RBP-J �  – independent signaling that have been implicated re-

cently in tumorigenesis (for reviews see  Leong and Karsan, 

2006 ;  Miele et al., 2006 ). Interestingly, N2 ICD  induced older car-

diomyocytes to enter cell cycle; however, DNA damage check-

point activation and G 2 /M interphase arrest followed, most 

likely refl ecting an intrinsic barrier to replication of mature car-

diomyocytes that might serve a benefi cial role in the mature 

heart by preventing mitotic catastrophe and apoptosis in re-

sponse to mitogenic stimuli. Together, these results point to a 

role for Notch in the expansion of cardiomyocyte progenitor or 

precursor pools needed for heart growth during development 

and potentially during regeneration after injury in the adult. 

 Results 
 Notch induces quiescent cardiomyocytes 
to reenter the cell cycle 
 Neonatal rat ventricular cardiomyocytes (NRVCs) normally exit 

the cell cycle and enter G 0  ( Burton et al., 1999 ), but infection with 

a recombinant adenovirus encoding the N2 ICD  (Ad-N2 ICD ) dramat-

ically changed the cell cycle profi le of cardiomyocytes, increasing 

the percentage of NRVCs in S/G 2 /M phase 2.4-fold 48 h after in-

fection (which corresponds to postnatal day 5 [P5];  Fig. 1, A, 

C, and D ). In contrast, control NRVCs infected with an adenovirus 

encoding  � -galactosidase (Ad- � Gal) had no effect over back-

ground ( Fig. 1, B and D ). Ad-N2 ICD  also increased the incidence of 

Ki67 +  NRVCs nearly 10-fold ( Fig. 1, E, G, and H ), whereas Ad-

 � Gal had no signifi cant effect ( Fig. 1 F ). Notch signaling was con-

fi rmed by the induction of hairy and enhancer of split 1 (Hes1) 

promoter – dependent luciferase activity in Ad-N2 ICD  – infected cells 

( Fig. 1 I ) and the expression of high levels of recombinant N2 ICD  

(V5-tagged) protein in the nuclei of Ad-N2 ICD  – infected cardio-

myocytes ( Fig. 1 I , inset; and  Fig. 1 J ). Endogenous Notch2 in 

cardiomyocytes declined postnatally (not depicted) such that it 

was no longer detectable by P5 ( Fig. 1 J ), which indicates that 

exogenous reactivation of Notch2 can direct cell cycle entry. 

 Similarly, mESC lines were created with a dual-cassette 

vector that produced N2 ICD  under control of the ventricular car-

diomyocyte-specifi c myosin light chain 2V (MLC2V) promoter 

and the blastocidin r  gene for drug selection from the stem cell 

promoter Rex. N2 ICD  showed extended replicative capacity of 

cardiomyocytes to at least day 21 after initiation of differentia-

tion, yielding overgrowths in the cultures ( Fig. 1 K ), whereas 

control mESCs harboring only Rex-Bla r  showed the normal 

cessation of cell division by day 12 – 16. 

 Notch2 ICD  induces expression and nuclear 
translocation of cyclin D1 
 Neonatal mouse ventricular cardiomyocytes (NMVCs) were 

prepared from RBP-J �  Flox/Flox  mice to probe whether cell cycle 

reentry required RBP-J � . Excision of exons 6 and 7 of RBP-J �  

by Cre recombinase eliminates function ( Tanigaki et al., 2002 ), 

and introduction of a Cre-EGFP fusion protein blocked the abil-

ity of N2 ICD  to stimulate cell cycle reentry, demonstrating the 

dependence on RBP-J �  ( Fig. 2 ). 

 A potential transcriptional target of RBP-J �  is cyclin D1. 

Cyclin D1 and other D-type cyclins (D2 and D3) translocate to 

the nucleus, where they function with Cdk4 and 6 to phosphory-

late Rb and cause progression through the cell division cycle 

( DeGregori, 2004 ). A time-dependant up-regulation of cyclin 

D1 was apparent beginning  � 6 – 9 h after Ad-N2 ICD  infection 

( Fig. 3 B ). Cyclin D1 induction precedes cell cycle entry ( Fig. 3 A ) 

by  � 24 h, which correlates well with the duration of G 1  phase 

observed for rat cells (i.e., 24 h in primary cultures of endothe-

lial cells;  Solodushko and Fouty, 2007 ). Also, the level of the 

G 1 /S-phase cyclin, cyclin E, increased at 36 h ( Fig. 3 C ), which 

correlates with the observed cell cycle profi le ( Fig. 3 A ) and 

confi rms the S-phase entry of NRVCs. 

 Although low serum was included in the preceding exper-

iments to enhance cell survival, its absence did not prevent cell 

cycle reentry by N2 ICD  (18.3% S+G 2 +M phase cells in unin-

fected cells vs. 44.4% in infected cells), which indicates that 

Notch-induced cell cycle reentry is independent of serum fac-

tors, consistent with induction of cyclin D1 by RBP-J � . More-

over, even high (10%) serum was insuffi cient to stimulate cell 

cycle entry, see the following paragraph. 

 Cyclin D1 levels were elevated within the nuclei of Ad-

N2 ICD  – infected NRVCs, visualized by coimmunofl uorescent stain-

ing with the V5 epitope on N2 ICD , but were absent in nuclei of 

control Ad- � Gal – infected NRVCs (arrows indicate examples in 

 Fig. 3 D ). Nuclear localization of cyclin D1 was accompanied 

by phosphorylation of Rb at Ser807/811, Ser795, and Ser 780 in 

extracts prepared with 10 mM EDTA to inhibit kinase activity 

after lysis ( Fig. 3 E , right). Although phenylephrine (PHE) and 10% 

FCS induced cyclin D1 ( Fig. 3, E and G ), both failed to stimulate 

its characteristic nuclear localization ( Fig. 3 G , inset, arrowhead 

in the N2 ICD  panel indicates a characteristic nuclear pattern), Rb 

phosphorylation ( Fig. 3, E – G ) or DNA synthesis (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200806104/DC1). 
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the characteristic cytoplasmic and perinuclear localization of cy-

clin D1 ( Fig. 5 B ), whereas Ad-N2ICD ( Fig. 5 B ) and the sequen-

tial treatment with Ad-Cre-EGFP and Ad-N2ICD ( Fig. 5, 

C and D ) both induced nuclear localization. Closed arrows ( Fig. 

5 D ) indicate examples of Cre-EGFP + , N2 ICD  +  cells with nuclear 

localization of cyclin D1. Prominent nuclear expression of cyclin 

D1 was seen in the rare cells that expressed N2 ICD  but had not re-

ceived Cre-EGFP (indicated by open arrows). In contrast, cyclin 

D1 was cytoplasmic and perinuclear in cells that had Cre-EGFP 

but did not express N2 ICD  ( Fig. 5 D , indicated by asterisks). Col-

lectively, RBP-J �  is required for Notch to induce cyclin D1 tran-

scription but not for nuclear localization. 

 Notch-regulated nuclear export versus 
import of cyclin D1 
 Nuclear localization of cyclin D1 is controlled by a fi ne balance 

between import, through an unknown mechanism, and export 

through the chromosome region maintenance 1 (CRM1)/export-

in-1 transporter. Cyclin D1 phosphorylation by glycogen synthase 

kinase-3 �  (GSK3 � ) at Thr 286  is thought to trigger export to the 

cytosol and degradation by the proteasome ( Diehl et al., 1998 ). 

 To test if N2 ICD  regulates export, we fi rst compared its ac-

tion to 6-bromoindirubin-3 � -oxime (BIO), a small molecule 

inhibitor of GSK3 � . BIO induced cell cycle reentry in a dose-

dependent manner, albeit less dramatically than what is seen with 

N2 ICD  ( Fig. 6 A ), as previously described ( Tseng et al., 2006 ). 

The inactive control compound MetBIO failed to promote cell 

cycle reentry of NRVCs. BIO, but not MetBIO, also caused 

nuclear accumulation of cyclin D1 ( Fig. 6, B – D ) and phosphory-

lation of nuclear Rb ( Fig. 6, E – G ), which is suggestive that 

retention of cyclin D1 in the nucleus contributes to cell cycle 

entry by BIO. 

 Unlike BIO, N2 ICD  did not inhibit GSK3 � , which was de-

termined by monitoring luciferase activity from the T cell factor –

 dependent luciferase activity from the pTOPfl ash reporter 

Lysates prepared in the absence of EDTA to preserve kinase 

activity after dissolution of the cell membranes showed that 

PHE or FCS can stimulate Cdk activity ( Fig. 3 E , left). Because 

Rb phosphorylation occurred under these conditions but not in 

the presence of EDTA, we concluded that PHE and FCS alone 

cannot stimulate Rb phosphorylation because the components 

are not colocalized in the nucleus. This raises the possibility 

that the N2 ICD  might have a unique role in localizing the cyclin 

D1 – Cdk complex to the nucleus. 

 Cyclin D1 nuclear localization requires 
notch ICD 
 To distinguish induction of cyclin D1 gene expression from 

nuclear localization, we transfected NRVCs to express a consti-

tutively active form of RBP-J �  made by fusion to the VP16 

transactivation domain and a MYC epitope tag (pRBP-J � -

VP16). RBP-J � -VP16 activates transcription of Notch-dependent 

genes, including pHes1-luciferase in cardiomyocytes ( Fig. 

4 F ). RBP-J � -VP16 induced the accumulation of cyclin D1 in 

the cytosol but not in the nucleus, as had been seen with N2 ICD  

( Fig. 4, A – C ), and did not stimulate cell cycle entry ( Fig. 4 E ), 

which confi rms that elevated cyclin D1 expression is insuffi -

cient to promote cell cycle entry. As a control, a DNA-binding 

mutant (DBM) control of RBP-J �  (pRBP-J � -DBM) that does 

not activate pHes1-luciferase ( Fig. 3 F ) did not induce cyclin 

D1 ( Fig. 4 D ). PHE or 10% FCS also induced only cytosolic 

accumulation of cyclin D1 ( Fig. 3 G ). The failure of activated 

RBP-J � , PHE, or 10% FCS to localize cyclin D1 to the nucleus 

indicated a specifi c requirement for N2 ICD . 

 N2 ICD  also stimulated nuclear localization of cyclin D1 in 

RBP-J �  Flox/Flox  NMVCs after Cre excision ( Fig. 5 ). Ad-Cre-EGFP 

on P1 effectively excised RBP-J �  1 d later ( Fig. 5, A and E ). As 

shown in  Fig. 2 , N2 ICD  cannot induce cyclin D1 in the absence of 

RBP-J � , therefore 10% FCS was added 1 d before harvesting the 

cells to induce cyclin D1 ( Fig. 5 A ). Ad- � gal – treated cells showed 

 Figure 2.    Cell cycle reentry requires RBP-J � .  (A) Examples of RBP-J �  Flox/Flox  NMVCs infected with Ad-Cre-EGFP to remove RBP-J � , then reinfected 12 h 
later with Ad-N2 ICD , as indicated, cultured 48 h, and stained with MF20 (red, Alexa 594), Ki67 (far red, Cy5, shown as green), and DAPI (blue). Arrows 
indicate Ki67 +  cells. Bar, 10  μ m. (B) The percentage of Ki67 +  cardiomyocytes (MF20 + ) in each condition. Only Cre-expressing cells (GFP + , green) were 
counted in cultures infected with Ad-Cre-EGFP. N2 ICD  induced KI67 (P = 0.05) but the N2 ICD  effect following Cre was not signifi cantly different from that of 
Cre alone (ns). Error bars indicate  ± SD across experimental replicates.   
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tion of CRM1/exportin-1 inhibition prevents cell cycle progres-

sion ( Yoshida et al., 1990 ). The results with LMB, together with 

the lack of an inhibitory effect of N2 ICD  on GSK3 �  or the phos-

phorylation of cyclin D1, suggest that N2 ICD  does not control 

export or degradation but might stimulate nuclear import. 

 Activation of the DNA damage checkpoint 
in older NRVCs 
 Activated Notch effectively stimulated P2 NRVCs to enter 

mitosis, as revealed by phosphorylation of histone 3 (His3) on 

Ser 10  (62.1% phospho-Ser 10 -His3 +  in AdN2 ICD -infected P2 

NRVCs vs. 44.5% for uninfected; P  <  0.001, two-tailed Stu-

dent ’ s  t  test). The presence of phospho-Ser 10  is a hallmark for 

entry into mitosis and is required for chromatin condensation 

(e.g.,  Adams et al., 2001 ;  Crosio et al., 2002 ). In striking con-

trast, older P5 NRVCs completely failed to phosphorylate His3 

(0.57% phospho-Ser 10 -His3 + ;  Fig. 7, H and I ), which revealed a 

postnatal decline in the ability to traverse the G 2 /M interphase. 

plasmid that senses stabilized  � -catenin, a direct target of 

GSK3 �  ( Fig. 6 H ). Moreover, the levels of phospho – Thr 286  –

 cyclin D1 levels were not inhibited in Ad-N2 ICD –  infected NRVCs 

but were in fact up-regulated compared with controls and, more 

importantly, with PHE- or 10% FCS-treated NRVCs, which also 

expressed high levels of Cyclin D1 ( Fig. 6 I ). The increase in 

phospho – Thr 286  – cyclin D1 correlated with increased levels 

of nuclear cyclin D1 available for phosphorylation by GSK3 � . 

 As an independent test for regulated export, cells were 

treated with leptomycin B (LMB) to specifi cally inhibit CRM1/

exportin-1. LMB enhanced nuclear localization of cyclin D1 

beyond that achieved by N2 ICD  alone ( Fig. 6 J ). Furthermore, 

LMB stimulated nuclear cyclin D1 only in cells that expressed 

N2 ICD  and not in control, uninfected cells (compare N2 ICD  +  cells 

[ Fig. 6 J , indicated by arrows] to uninfected cells [ Fig. 6 J , indi-

cated by circles]). These data are consistent with the idea that 

N2 ICD  acts upstream of CRM1/exportin-1. LMB did not increase 

the number of S/G 2 /M cells (unpublished data) because inhibi-

 Figure 3.    Notch induces expression and nuclear localization of cyclin D1 and phosphorylation of Rb before cell cycle reentry.  (A) The DNA content of the 
cardiac cells analyzed by fl ow cytometry (as in  Fig. 1 ) at the indicated times after infection. One of two experiments with similar outcomes is shown. 
(B) Cyclin D1 and V5 epitope (N2 ICD ) expression in NRVCs infected with Ad-N2 ICD  at the indicated times after infection. (C) Time course of cyclin E expres-
sion after Ad-N2 ICD  infection of NRVCs. (D) Examples of nuclear localization of cyclin D1 (arrows) in NRVCs infected with Ad-N2 ICD  as compared with 
Ad- � Gal – infected control cultures 48 h after infection. Immunostaining is shown for cyclin D1 (green, Alexa 488), MF20 (red, Alexa 594), V5 epitope 
tag on N2 ICD  (far red, Cy5, shown as green), and DAPI (blue). Confocal microscopic images (insets) confi rmed nuclear localization. (E) Phosphorylation 
status of Rb in NRVCs 30 h after infection with Ad-N2 ICD  or 24 h after treatment with 10% FCS or 20  μ M PHE. 5 mM EDTA in the lysis buffer prevents 
phosphorylation from occurring in the lysates. N2 ICD  (V5 epitope), cyclin D1, phospho-Rb (Ser807/811, Ser795, and Ser780), Cdk4, Cdk6, and 
phospho-Cdc6 expression are shown. (F) Incidence of phospho-Rb (Ser807/811) in NRVC cardiomyocytes (MF20 +  cells). Note that only N2 ICD  induced 
signifi cant levels of phospho-Rb. Error bars indicate  ± SD. (G) Immunostaining with MF20 (red, Alexa 594) and for phospho-Rb (Ser807/811; green, 
Alexa 488) or cyclin D1 (green, Alexa 488). Note that cyclin D1 and phospho-Rb are present in the nuclei of N2 ICD -expressing cells (arrow) but not in 
the nuclei of cells cultured with high serum or PHE. Higher-magnifi cation images are shown in insets with DAPI staining (blue). Bars: (D) 10  μ m; (G, top) 
50  μ m; (G, bottom) 10  μ m.   
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percentage of cardiomyocytes in S/G 2 /M phase ( Fig. 7 A ), which 

is suggestive of the fact that cells were already arrested at this 

point. To test this idea, the nocodazole was washed out during 

the last 12 h of culture. Normally, cycling cells resume progres-

sion after removal of nocodazole; however, this had no effect on 

the P5 NRVCs, which indicates that they were likely arrested at 

or before G 2 /M. In contrast, the residual noncardiomyocytes 

(MF20  �   cells) in the preparations arrested at G 2 /M upon no-

codazole treatment and were released by its removal ( Fig. 7 B ), 

which demonstrates that the Notch-induced block was specifi c 

to the cardiomyocytes in the cell preparation. 

 AuroraB directly phosphorylates Ser 10  of His3. As shown 

in  Fig. 7 (C – I) , Ad-N2 ICD  dramatically increased AuroraB 

A similar postnatal decline in cell division was noted by  Collesi 

et al. (see p.  117  of this issue)  in response to stimulation by ex-

ogenous Jagged. 

 To understand the nature of the block, we probed the cell 

cycle status of treated cells using the DNA polymerase inhibitor 

aphidicolin or the mitotic spindle assembly inhibitor nocodazole 

for various times to block the cell cycle (see  Fig. 7 A , inset, for 

experimental design). As expected, aphidicolin, which blocks 

cells at the G 1 /S interphase, reduced the percentage of Ad-N2 ICD  –

 expressing NRVCs that had progressed into S, G 2 , or M phases 

of the cell cycle ( Fig. 7 A ), confi rming entry into S phase. 

Nocodazole interferes with microtubules and causes cells to arrest 

at the G 2 /M interphase. Importantly, nocodazole did not alter the 

 Figure 4.    RBP-J �  is insuffi cient to promote 
nuclear localization of cyclin D1.  (A and B) 
Examples of NRVCs were transfected with 
0.8  μ g of plasmids encoding a myc epitope-
tagged, constitutively active version of RBP-J �  
in pCDNA3 (pRBP-J � -VP16; A) or infected 
with Ad-N2 ICD  (B) and stained 48 h later for 
cyclin D1 (green, Alexa 488), c-myc epitope 
(red, Alexa 594), MF20 (red, Alexa 594), and 
DAPI (blue). Note the absence of nuclear local-
ized cyclin D1 in c-myc +  (RBP-J � -VP16 + ) cells. 
Circles indicate nuclear regions and arrows 
indicate nuclear localized cyclin D1. (C) Per-
centage of cardiomyocytes treated as in A and 
B showing nuclear versus cytosolic localiza-
tion of cyclin D1. Error bars indicate  ± SD. 
(D) NRVCs transfected to express a control 
DNA-binding mutant of RBP-J �  (pRBP-J � -DBM) 
and stained as in A. Only a basal level of 
cyclin D1 was detected. Circles indicate nuclear 
regions. (E) Percentage of c-myc + /Ki67 +  (trans-
fected) and c-myc  �  /Ki67 +  (untransfected) cells 
for pRBP-J � -VP16 ( n  = 69 and 107, respectively) 
and pRBP-J � -DBM ( n  = 57 and 106, respec-
tively) as compared with Ad-N2 ICD  infected 
( n  = 100); results are representative of four 
trials. (F) RBP-J �  and N2 ICD  (0.5  μ g of plasmid 
per transfection), as in A – E, showed expected 
activities on the pHes1-luciferase reporter 
(0.25  μ g of plasmid per transfection); results 
are representative of two trials. Bars, 5  μ m.   
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mitosis and resulted in cell death, visualized by an 87-fold increase 

in the number of TUNEL-positive cardiomyocytes ( Fig. 8, I and J ), 

which is consistent with induction of programmed cell death when 

the checkpoint is overridden in cells with DNA replication defects 

( Belka, 2006 ). The mitosis-inducing kinase Cdc2 is a key compo-

nent of the DNA damage checkpoint pathway downstream of 

ATM/ATR and Chk1, and it shows inhibitory Tyr 15  phosphory-

lation with checkpoint activation.  Fig. 8 K  shows an increase in 

phospho-Tyr 15 -Cdc2 in N2 ICD -stimulated NRVCs, as well as a 

possible increase in the total Cdc2 protein levels, providing further 

evidence of DNA damage checkpoint activation after the N2 ICD -

induced cell cycle. As expected, phospho-Tyr 15 -Cdc2 returned to 

basal levels after caffeine treatment of N2 ICD -stimulated P5 cardio-

myocytes. We conclude that activation of DNA damage check-

point causes the G 2 /M arrest and is triggered as a consequence of 

improper or incomplete DNA synthesis during S phase. 

expression in the nuclei of P5 NRVCs but completely failed to 

induce His3 Ser 10  phosphorylation in control uninfected or Ad-

 � Gal – infected NRVCs. A blockade at the level of AuroraB con-

fi rmed the G 2 /M arrest and suggested activation of the DNA 

damage checkpoint. 

 Caffeine effectively overrides DNA damage G 2 /M check-

point activation and can permit entry of arrested cells into M phase 

by inhibiting the ataxia telangiectasia mutated (ATM) and ATM 

and Rad-3 related (ATR) kinases, and most likely other DNA 

checkpoint components (e.g.,  Kastan et al., 1991 ;  Sarkaria et al., 

1999 ). Entry into M phase in the presence of caffeine is therefore 

diagnostic of checkpoint activation. Caffeine treatment alone did 

not increase the level of phospho-Ser 10 -His3 in uninfected P5 

NRVCs and in fact caused a minor reduction ( Fig. 8, A – E ). 

In contrast, N2 ICD  increased the number of phospho-His3+ NRVCs 

by 3.5-fold. Overriding checkpoint activation pushed cells into 

 Figure 5.    Nuclear localization of cyclin D1 is RBP-
J �  independent.  (A) NMVCs were isolated from RBP-
J �  Flox/Flox  pups on the day of birth (P1) and treated as 
indicated until processing for immunostaining (the 
equivalent of P6). 10% FCS was added to induce 
cyclin D1 in the absence of RBP-Jk. (B – D) Confocal 
images of NMVCs showing nuclear localization of 
cyclin D1 (green, Alexa 568;  “ a ”  and  “ b ”  panels) 
overlapping with DAPI (blue;  “ a ”  panels).  � -actinin cy-
tosolic immunostaining identifi ed cardiomyocytes, and 
nuclear V5 epitope immunostaining identifi ed cells ex-
pressing transduced N2 ICD  (both visualized with a far 
red [Alexa 680] secondary antibody and shown as 
red in  “ c ”  panels). EGFP (D, d) shows Cre-EGFP fusion 
protein expression. Closed arrows indicate examples 
of Cre-EGFP + , N2 ICD  

+  cells with nuclear localization of 
cyclin D1. Open arrows indicate the rare cells that ex-
pressed N2 ICD  but did not express Cre-EGFP; note the 
prominent nuclear presence of cyclin D1. The asterisks 
indicate a cell that expressed Cre-EGFP but not N2 ICD ; 
note that cyclin D1 was cytoplasmic and perinuclear. 
(E) RBP-J �  protein expression 1 and 3 d after Ad-Cre-
EGFP treatment (corresponding to P3 and P5), show-
ing effi cient depletion by Cre.   
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ing early postnatal development could explain the results of 

 Tamamori-Adachi et al. (2003) , who showed that although ec-

topically expressed cyclin D1 accumulates in the nucleus of 

still-proliferating fetal cardiomyocytes, it is sequestered in the 

cytoplasm of normally quiescent NRVCs. Moreover, fusion to a 

nuclear localization sequence that targeted cyclin D1 to the nu-

cleus was suffi cient to induce Rb phosphorylation and cell cycle 

reentry of quiescent NRVCs. 

 The localization of cyclin D1 to the nucleus probably occurs 

as a balance between import, for which the mechanism is poorly 

understood, and regulated export of phospho – Thr 286  – cyclin D1 

through the transporter CRM1 into the cytosol, where it is degraded 

by the proteosome ( Diehl et al., 1998 ). Two lines of evidence indi-

cate that N2 ICD  acts upstream of export: fi rst, we noted a super-

accumulation of cyclin D1 in the presence of N2 ICD  and LMB, 

which inhibits CRM1-mediated export, indicating that N2 ICD  acts 

upstream of CRM1. Second, N2 ICD  did not modulate GSK3 �  activ-

ity nor reduce the levels of phospho – Thr 286  – cyclin D1, as did BIO. 

Thus, inhibition of export seems unlikely to be responsible for 

N2 ICD -directed nuclear accumulation of cyclin D1, and we favor 

the model in which N2 ICD  regulates import. In contrast, BIO itself 

is suffi cient to promote cardiomyocyte cell cycle entry ( Tseng 

et al., 2006 ), and we propose that inhibition of cyclin D1 Thr 286  

 Discussion 
 We found that cell cycle entry of mESC-derived and quiescent 

cardiomyocytes could be profoundly enhanced by Notch activa-

tion, which controlled expression and nuclear localization of 

cyclin D1. Transcriptional induction of the cyclin D1 gene re-

quired canonical Notch signaling through RBP-J � . Nuclear lo-

calization however was a distinct property of the Notch ICD 

that is essential for cell cycle entry ( Fig. 9 ). The implications of 

these fi ndings for regulating expansion of cardiomyogenic pro-

genitor or precursor cells and in the control of other normal and 

pathological processes, such as tumorigenesis, are discussed in 

the following paragraphs. 

 Notch and cardiomyocyte cell cycle reentry 
 Our fi nding that RBP-J �  – dependent Notch signaling induced 

expression of cyclin D1 in quiescent cardiomyocytes is consis-

tent with the presence of a functional RBP-J �  – binding site in 

the cyclin D1 promoter ( Ronchini and Capobianco, 2001 ). FCS 

and PHE also induced cyclin D1 and, like activated RBP-J � , 

were insuffi cient to promote nuclear translocation and cell cycle 

reentry. Nuclear localization of cyclin D1 by Notch ICD cou-

pled with the developmental decline in endogenous Notch dur-

 Figure 6.    Notch-induced nuclear accumulation of cyclin D1 in NRVCs is not caused by inhibition of export.  (A) NRVCs were treated for 36 h with the 
GSK3 �  inhibitor BIO or control MetBIO before staining with MF20 and analysis of DNA content of cardiomyocytes (MF20 +  population) by fl ow cytometry, 
as for  Fig. 1 . One of two experiments with identical outcomes is shown. (B – G) NRVCs were treated for 24 h with the indicated concentrations of BIO 
(B, C, E, and F) or MetBIO (D and G) before staining with MF20 (red, Alexa 594) and for cyclin D1 (green, Alexa 488; B – D) or phospho-Rb (Ser807/811; 
green, Alexa 488; E – G). BIO induced both nuclear accumulation of cyclin D1 and phosphorylation of Rb. (H) Ad-N2 ICD  – infected or control NRVCs were 
transfected with 0.6  μ g pTopFlash-tk-Luc or pGL3-tk-Luc, as indicated, and 0.2  μ g of pGL3- Renilla- Luc before exposure with BIO (0.25  μ M, 0.5  μ M, or 
1  μ M) for an additional 36 h before luciferase activities were determined. Firefl y luciferase activity was normalized using  Renilla  luciferase activity. N2 ICD  
did not modulate the  � -catenin/T cell factor – dependent transcription. Error bars indicate  ± SD. (I) Total and phospho – Thr 286  – cyclin D1 in NRVCs infected 
with Ad-N2 ICD  or treated with 10% FCS or PHE (20  μ M). N2 ICD  did not prevent Thr 286  phosphorylation of cyclin D1. (J) LMB enhanced nuclear localization of 
cyclin D1 (green, Alexa 488) by N2 ICD  (red, Alexa 594; arrows) but did not act on uninfected cells (circled nuclei), which is consistent with N2 ICD  regulating 
nuclear localization upstream of export by the CRM1 – exportin-1 complex. Bars: (B – D) 10  μ m; (E – G) 25  μ m; (J) 10  μ m.   
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cells, but activated Notch is seen in several tumors, such as breast, 

colon, and pancreas ( Miyamoto et al., 2003 ;  van Es et al., 2005 ; 

 Stylianou et al., 2006 ), and it will be interesting to evaluate 

whether it controls cyclin D1 traffi cking in cancers. 

 Progression through the cell cycle: 
implications of the neonatal decline in 
mitotic response to Notch 
 Between days 4 and 7 after birth, NRVCs lose most of their abil-

ity to respond to exogenous Notch, fi rst because of the decline in 

Notch 1 and Notch 2 receptors (unpublished data;  Collesi et al., 

2008 ) but also because of a pronounced activation of DNA dam-

age checkpoint in response to activated Notch ( Fig. 8 ). As ex-

pected, overriding the checkpoint pushed the cardiomyocytes into 

mitosis, resulting in mitotic catastrophe and apoptosis. 

phosphorylation, leading to protein stabilization and nuclear local-

ization, is the likely mechanism. 

 How might the Notch ICD promote nuclear translocation? 

We did not detect a physical interaction between N2 ICD  and cy-

clin D1, Cdk4, or Cdk6 by coimmunoprecipitation from NRVCs 

(unpublished data). Moreover, the spatially localized immuno-

staining pattern of cyclin D1 within the nucleus differed from the 

diffuse pattern seen for N2 ICD  or its V5 epitope tag; thus, Notch 

might not participate directly in a cyclin D complex. In termi-

nally differentiated neurons, cyclin D1 becomes cytoplasmic, 

and forced expression of p21 WAF1  (Cip1) induces nuclear accu-

mulation ( Sumrejkanchanakij et al., 2003 ), so one possibility is 

that Notch modulates the interaction of cyclin D1 with proteins 

such as p21. Little is known about the mechanism that keeps 

cyclin D1 from entering the nuclei of terminally differentiated 

 Figure 7.    Ad-N2 ICD  – infected NRVCs arrest at the G 2 /M interphase.  (A and B) 3 d after birth, NRVCs were infected with Ad-N2 ICD  or Ad- � -gal, or not 
infected, and, 12 h later, treated with aphidicolin or nocodazole for an additional 36, 48, or 60 h. For nocodazole+ release, nocodazole was removed 
during the last 12 h of culture (see schematic in A, top). The percentages of cells in S/G 2 /M phase in MF20 +  (cardiomyocytes; A) and MF20  �   (noncar-
diomyocytes; B) populations were determined from fl ow cytometry. Nocodazole did not increase the incidence of G 2 /M cells among the N2 ICD -treated 
cardiomyocyte population, which is indicative of a block at the onset of M phase. The example shown is representative of four experiments with similar 
outcomes. (C – I) NRVCs were either left uninfected (C and F) or infected with Ad- � Gal (D and G) or Ad-N2 ICD  (E and H), cultured for 48 h, then stained 
with MF20 (red, Alexa 594) and for AuroraB (green, Alexa 488; C – E) or for phospho-His3 (Ser10; green, Alexa 488; F – H). The percentages of positive 
cells within the MF20 +  population was then determined (I). Nuclear-localized AuroraB but not phospho-His3 was detected in response to N2 ICD . Error bars 
indicate  ± SD. Bar, 25  μ m.   
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 Although most cardiomyocytes after P3 – 5 arrested at 

the G 2 /M interphase, a minor fraction of Ad-N2 ICD  – infected 

NRVCs could be found at all mitotic phases, including cytoki-

nesis (Fig. S2, available at http://www.jcb.org/cgi/content/full/

jcb.200806104/DC1); however, the incidence was the same as 

in uninfected NRVCs. The complex structure of sarcomeric ap-

paratus has been proposed to block chromosomal segregation 

and cytokinesis should mature cardiomyocytes be stimulated 

to reenter in the cell cycle ( Li et al., 1997 ;  Ahuja et al., 2004 ). 

The normally striated staining of MF20 in nondividing cardio-

myocytes (see G 0  and G 1  in Fig. S2 A) was diffuse in the divid-

ing cells, and the distinction of whether dividing cells underwent 

some degree of disassembly or refl ected a less mature subpopu-

lation should be investigated. The dividing cardiomyocytes showed 

normal hallmarks of M phase. For instance, AuroraB was asso-

ciated with chromosomes during anaphase and localized at the 

midbody during cytokinesis (Fig. S2, B and C), as expected for 

dividing cells. Regulation of p21 WAF1/Cip1  and p57 Kip2  also ap-

peared normal. p21 WAF1/Cip1  was expressed normally in the nuclei 

of both Ki67 +  and Ki67  �   cells and disappeared during mitosis, 

and the normal expression of p57 Kip2  also disappeared during 

mitosis (Fig. S2, D – F). Interestingly, once the nuclear membrane 

 Several studies have shown that manipulation of cell cycle 

proteins can induce NRVCs to reenter the cell cycle (e.g.,  Agah 

et al., 1997 ;  Huh et al., 2001 ;  Datwyler et al., 2003 ;  Tamamori-

Adachi et al., 2003 ;  Engel et al., 2005 ;  Jung et al., 2005 ;  Tseng 

et al., 2006 ). These studies used reagents (e.g., BrdU incorpora-

tion or Ki67 immunostaining) that refl ect entry into the cell 

cycle or S phase but not entry into mitosis or cell division. 

Based on our results that DNA damage checkpoint activation 

limits cell division of late-stage quiescent cardiomyocytes, it 

is important to quantitatively evaluate whether treatment with 

these or other reagents can indeed direct cells to enter mitosis 

and divide. 

 Checkpoint activation is not solely a consequence of Notch 

activation. The majority of BIO-treated P5 NRVCs also arrested 

at G 2 /M and showed DNA damage checkpoint activation, as 

demonstrated by caffeine sensitivity and Cdc2 phosphorylation 

(unpublished data). In the context of the adult heart, a benefi cial 

function of DNA damage checkpoint activation might be to pro-

tect mature cardiomyocytes from apoptosis and cell death after 

exposure to stimuli that support replication of nonmyocytes 

during normal heart function or pathologically as a response to 

injury or remodeling. 

 Figure 8.    DNA damage checkpoint activa-
tion implicated in G 2 /M arrest.  (A – E) NRVCs 
were either infected with Ad-N2 ICD  or left un-
infected. 24 h later, 10 mM caffeine (C, D, 
H, and I) or control (A, B, F, and G) media 
were added. Cells were then cultured for an 
additional 24 h, by which time they were 
at P5, and stained with MF20 (red, Alexa 
594) and for phospho-His3 (Ser10; green, 
Alexa488; A – D). The incidence of phospho-
His3 + , MF20 + cardiomyocytes is shown (E). (F – J) 
Alternatively, a TUNEL assay (green, fl uores-
cein) was performed before immunostaining 
with MF20 (red, Alexa594). Note that caffeine 
permitted the induction of phospho-His3 but 
triggered TUNEL reactivity. (K) N2 ICD  (anti-V5 
epitope) and cyclin D1 expression, and the 
corresponding levels of phosphorylated Cdc2 
are shown for NRVCs prepared as in A – E. 
Elevated phospho-Cdc2 was observed with 
activated N2 ICD  and reduced by caffeine to 
basal levels, which together is indicative that 
N2 ICD  treatment activates the DNA damage 
checkpoint.  � -actinin and nonspecifi c proteins 
are shown as loading controls. Error bars indi-
cate  ± SD. Bars, 25  μ m.   
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eration of a committed precursor or progenitor pool, although 

the origin and prevalence of such cells remains unclear (e.g., 

 Hsieh et al., 2007 ) and a direct role for Notch remains to be 

tested. Regeneration of the adult zebrafi sh heart is preceded by 

Notch reactivation ( Raya et al., 2003 ). The zebrafi sh Notch iso-

form characterized as being involved, Notch1b, is expressed by 

endothelial cells of the endocardium rather than by the myocar-

dium, and, therefore, would be expected to infl uence cardiomyo-

cyte regeneration only indirectly. Thus, whether Notch signaling 

exerts a cell-autonomous effect in regenerating cardiomyocytes 

needs to be resolved using appropriate transgenic models and 

development of specifi c agonists to stimulate such cells in situ. 

 Materials and methods 
 Cell culture 
 Ventricular cardiomyocytes were isolated with a neonatal rat/mouse cardio-
myocyte isolation kit (Cellutron) and cultured at 37 ° C in humidifi ed air with 
5% CO 2 . In brief, ventricles were dissected from 1 – 2-d-old Hsd:SD rats 
(Sprage Dawley) or mice, then digested fi ve times for 15 min each with the 
enzyme cocktail at 37 ° C. Cells were pooled, preplated for 90 min on an 
uncoated dish to remove fi broblasts, and plated on 1% gelatin-coated cell 
culture plastic dishes in high-serum media (DME/F12 [1:1], 0.2% BSA, 
3 mM sodium-pyruvate, 0.1 mM ascorbic acid, 4 mg/liter transferrin, 2 mM  
L- glutamine, and 5 mg/liter ciprofl oxacin supplemented with 10% horse se-
rum and 5% FCS) at 1.25  ×  10 5  cells/cm 2 . After 24 h, media was changed 
to low-serum medium (same but with 0.25% FCS) and cultured until use. 
Nearly all cardiomyocytes were quiescent by P3. The purity of cultures was 
routinely determined by immunofl uorescence staining with an anti-muscle 
myosins antibody (MF20; Developmental Biology Hybridoma Bank) and 
Alexa 594 – conjugated anti – mouse immunoglobulin secondary antibodies 
(Invitrogen), and only preps with  > 90% of cardiomyocytes were used for 
analyses. CGR8 mESCs were created by stable HIV lentiviral transduction to 
express Bla r  from the Rex promoter and N2 ICD  from the MLC2V promoter 
( Barcova et al., 2007 ), and embryoid bodies were prepared by removal of 
leukemia inhibitory factor and aggregation in serum-containing medium. 

 Adenoviral infection 
 Ad-N2 ICD  (provided by T. Maciag, Maine Medical Institute, Scarborough, 
ME;  Small et al., 2003 ), Ad- � Gal (Clontech Laboratories, Inc.), and Ad-Cre-
EGFP (a gift from S.V. Kozlov, National Cancer Institute, National Institutes 
of Health, Bethesda, MD) are replication-defi cient, serotype 5 adenoviruses. 
Viruses were propagated and concentrated using an Adenopure kit (Pure-
syn, Inc.), and viral titers were determined by using the Adeno-X Rapid Titer 
kit (Clontech Laboratories, Inc.). Cardiomyocytes were infected overnight in 
low-serum media at a multiplicity of infection of four to fi ve viruses per cell. 
The media was replaced 12 – 14 h after infection with fresh low-serum media. 
Optimal titers for infection were determined empirically for each batch of 
virus based on cyclin D1 expression and cell cycle entry. 

 Transfection and luciferase assay 
 Cardiomyocytes were transfected for 6 – 8 h in serum-free media with 0.8  μ g 
of DNA using Lipofectamine 2000 (Invitrogen) with pHes1-Luc and p � Hes1-
Luc (provided by J. Griffi n, Dana-Farber Cancer Institute, Boston, MA); 
TOPFlash-tk-Luc ( Luckow and Schutz, 1987 ) and pGL3-tk-Luc (Promega); 
pRS2-RBP-J � -VP16, pRS2-RBP-J � -DBM, pCDN3-RBP-J � -VP16, and pCDN3-
RBP-J � -DBM ( Rutenberg et al., 2006 ); and pRL-tk (Promega) to normalize for 
transfection effi ciency. The media was replaced after transfection with fresh 
low-serum media and cultured for 36 h before staining or determination of 
luciferase activities using the Dual-Luciferase system (Promega). For the engi-
neered RBP-J � -VP16 and DBM variants, the results were similar whether the 
promoter used was cytomegalovirus, as used in adenovirus vectors ( Fig. 4 ), 
or Rous sarcoma virus, which is more potent in cardiomyocytes. 

 Immunofl uorescence staining 
 After cardiomyocytes were fi xed in 4% PFA for 15 min at room tempera-
ture, nonspecifi c binding was blocked for at least 1 h with blocking buffer 
(PBS  ×  1, 50 mM glycine, 2% BSA, 2% goat serum, and 0.01% sodium-
azide). Next, cells were incubated overnight at 4 ° C with primary antibod-
ies ( Table I ) in washing buffer (blocking buffer diluted 1:10 in PBS  ×  1), and 
immune complexes were detected with Alexa 488, Alexa 594 (Invitrogen), 

was disintegrated, staining for the V5 epitope on N2 ICD  became 

cytoplasmic, which indicates cytosolic relocalization of the pro-

tein (Fig. S2 G). 

 Notch in ventricular development 
and disease 
 We evaluated Notch2 because it is the predominant isoform pres-

ent on cardiomyocytes while the chamber myocardium is grow-

ing during mid-to-late gestation. An implication of our data is that 

Notch2 in the fetal heart might prevent differentiation and sustain 

replication of newly formed cardiomyocytes to permit the dra-

matic growth of ventricular myocardium, which expresses Jag-

ged1, Jagged2, and Notch2 in overlapping patterns ( Loomes 

et al., 2002 ;  Rutenberg et al., 2006 ;  Grego-Bessa et al., 2007 ; 

 Niessen and Karsan, 2007 ). Although the phenotypes caused by 

systemic deletions of Notch signaling components are consistent 

with such a model, the cardiac defects are likely to also be caused 

by secondary consequences of the loss of Notch, such as in the 

endocardium ( Grego-Bessa et al., 2007 ). All 3D-type cyclins are 

present in the developing heart, and, interestingly, the triple 

knockout mouse exhibited severely hypoplastic ventricular myo-

cardium and died by embryonic day 16.5 ( Kozar et al., 2004 ). 

Thus, we speculate that myocyte-autonomous Notch – cyclin D 

interactions might underlie ventricular growth. Myocardial con-

ditional knockouts of RBP-J k  and Notch2 using appropriate Cre 

lines are being analyzed to address this issue. 

 An important implication of this study is that Notch might 

play a similar role after myocardial injury by sustaining prolif-

 Figure 9.    Summary of Notch2-induced cell cycle entry.  RBP-J �  – dependent 
transcription leads to accumulation of cyclin D1 in the cytosol. Notch ICD 
regulates entry into the cell cycle by controlling nuclear localization of 
cyclin D1 independently of RBP-J � .   
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and Cy5-conjugated (Jackson ImmunoResearch Laboratories) secondary 
antibodies diluted 1:250 in washing buffer and counterstained with 0.5 
 μ g/ml DAPI. TUNEL staining was performed with the in situ Cell Death 
Detection kit (Roche). Statistical signifi cance was indicated by p-value as 
calculated from a two-tailed Student ’ s  t  test. 

 After immunostaining, the cultures were mounted in Dako medium 
(Dako), and wide-fi eld images were acquired at room temperature on an 
inverted fl uorescence microscope (SX71; Olympus) with a 20 ×  0.40 NA 
or 40 ×  0.60 NA objective (Olympus) using a camera (C47425; Hama-
matsu) and MetaMorph version 6 acquisition software (MDS Analytical 
Technologies). For high-magnifi cation and confocal images, cells were 
plated on 1% gelatine-coated chamber slides (Permanox; Nunc). Wide-
fi eld images were acquired at room temperature on a microscope (Axio-
plan; Carl Zeiss, Inc.) with a 40 ×  0.74 NA or 63 ×  1.4 NA objective (Carl 
Zeiss, Inc.) using a Spot RT camera (Diagnostic Instruments, Inc.) and 
MetaMorph version 6 acquisition software. Confocal images were ac-
quired at room temperature on a multiphoton microscope (Radiance 
2100/AGR-3Q; Bio-Rad Laboratories) with a 40 ×  0.6 NA objective using 
LS2000 software (Bio-Rad Laboratories). Images are presented after digi-
tal adjustment of curve levels (gamma) to maximize signal. In all cases, 
exposure times and digital manipulation were the same for control and 
experimental samples. Fluorochromes and color are as indicated in the 
fi gure legends. 

 Western blot analysis 
 Lysates were prepared by incubating cells in 20 mM Tris HCl, pH 8, 137 
mM NaCl, 10% glycerol, 1% NP-40, and 10 mM EDTA on ice for 15 min, 
cleared by centrifugation, frozen in dry ice, and thawed at 4 ° C. 20  μ g per 
lane of lysates were resolved by SDS-PAGE (4 – 12% or 8 – 16% gradient 
gels; Invitrogen), transferred onto polyvinylidene fl uoride membranes 
(Immobilon-P; Millipore), and probed overnight at 4 ° C with primary anti-
bodies; specifi c bands were then detected using HRP-conjugated secondary 
antibodies (1:20,000; GE Healthcare) and the ECL detection system (GE 
Healthcare). Primary antibodies are listed in  Table I . 

 Cell cycle analysis 
 The cell cycle profi le of cardiac cells was analyzed as described previously 
( Schmid et al., 1991 ). In brief, cells were fi xed for 1 h at 4 ° C with 0.25% 
PFA and then permeabilized for 15 min at 37 ° C with 0.2% Tween 20 before 
incubation with MF20 and secondary antibodies (Alexa 488 – conjugated 
anti – mouse Ig) diluted 1:100 in FACS buffer (PBS with 1% goat serum and 
0.1% NaN 3 ). Cells were then stained with 10  μ g/ml propidium iodide in 
FACS buffer supplemented with 500  μ g/ml of RNAase A. 

 Online supplemental material 
 Fig. S1 shows the incidences of cell cycle entry in response to N2 ICD , PHE, 
and 10% FCS. Fig. S2 shows the presence of mitotic fi gures in cardiomyo-
cytes treated with Ad-N2 ICD . Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200806104/DC1. 

 We thank Yoav Altman and Ed Monosov (Burnham Institute for Medical Re-
search Shared Resources), and Maria Luisa de la Puerta and Maria del 
Carmen Rodr í guez (Universidad de Valladolid) for expert advice and technical 
support. The Ad-N2 ICD  virus was provided by Tom Maciag, whose passing 
we regret. 

 Table I.    Antibodies and dilutions used for immunofl uorescent detection of proteins  

Antibody Dilution Source

Anti-muscle myosins, MF20 mouse Ab 1:100 Developmental Studies Hybridoma Bank, University of Iowa

Anti –  � -actinin, mouse Ab 1:200 Sigma-Aldrich

Anti – phospho-His3 (Ser10) rabbit Ab 1:100 Millipore

Anti-AuroraB rabbit Ab 1:250 BD Biosciences

Anti-Ki67 rabbit Ab 1:100 Novus Biologicals

Anti-p21 mouse Ab 1:100 Millipore

Anti-p57 rabbit Ab 1:200 Santa Cruz Biotechnology, Inc.

Anti-V5 mouse Ab 1:200 Invitrogen

Anti-Notch2 rabbit Ab 1:200 Abcam

Anti-cyclin D1 rabbit Ab 1:200 W. Jiang (Burnham Institute for Medical Research, La Jolla, CA)

Anti – phospho-Rb (Ser807/811) rabbit Ab 1:200 Cell Signaling Technology

Anti – c-myc mouse Ab 1:100 Santa Cruz Biotechnology, Inc.
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