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    Introduction 
 Chromosomal DNA replication is restricted to once per cell 

cycle in eukaryotes. Incomplete or continuous DNA replication 

without cell division can cause aneuploidy and disturb genomic 

stability. During metazoan development, however, some cells 

do not follow this once per cycle rule. For example, cells such 

as trophoblasts in mammalian placenta and salivary gland cells 

in dipterans undergo endoreplication, producing multiple copies 

of their nuclear DNA without dividing ( Edgar and Orr-Weaver, 

2001 ). In some organisms, certain genes are amplifi ed in some 

cells to meet massive demand for their products at particular devel-

opmental stages, such as the single locus in the  Sciara coprophila  

puffII/9A region and ribosomal DNA genes in  Tetrahymena 
thermophila  and  Xenopus laevis  ( Tower, 2004 ). These variants 

of DNA replication are essential for cellular function in meta-

zoan development. 

  Drosophila   melanogaster  epithelial follicle cells provide 

an excellent model for study of developmental regulation of 

cell cycle programs, DNA replication, and cell differentiation. 

The single monolayer of follicle cells that surrounds 16 inter-

connected germline cells to form the egg chamber undergo three 

distinctive cell cycle programs during oogenesis. In early stages 

(1 – 6), they carry out the normal mitotic cycle, including com-

plete G1, S, G2, and M phases. After stage 6, they undergo three 

rounds of endocycle, duplicating their genomic DNA without 

division. At stage 10B, genomic DNA replication stops, and the 

main body follicle cells (columnar cells that surround the oo-

cyte rather than those that cover the nurse cells) switch from 

endoreplication to synchronized amplifi cation of some genomic 

loci ( Calvi et al., 1998 ). During amplifi cation, continuous ori-

gin fi ring occurs without obvious gap phases. The amplifi ed ge-

nomic regions encode eggshell proteins, which are in high demand 

during late oogenesis. 

 At the switch of cell cycle programs, follicle cells also 

change the expression pattern of molecular markers such as Cut, 

Hindsight (Hnt), and Fasciclin III ( Sun and Deng, 2005 ,  2007 ). 

The mitotic cycle/endocycle (M/E) switch is induced by Delta-

Notch signaling originating from the germline cells ( Deng et al., 

2001 ;  Lopez-Schier and St Johnston, 2001 ). Notch activates ex-

pression of Hnt, a zinc-fi nger protein, in follicle cells during 

endocycle stages. Hnt mediates the role of Notch in suppressing 

T
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 Here, we report that Notch signaling is down-regulated in 

main body follicle cells at stage 10B. Extended Notch signaling 

causes an extra round of genomic DNA replication and suppresses 

ecdysone signaling and the up-regulation of the zinc-fi nger pro-

tein Tramtrack (Ttk), both key regulators of the E/A switch. 

Overexpression of Ttk69 before stage 10 is suffi cient to induce 

exit from the endocycle. Our fi ndings elucidate a developmental 

pathway that includes down-regulation of Notch activity, acti-

vation of the EcR pathway, and up-regulation of Ttk to regulate 

the E/A switch. 

 Results 
 Extended Notch activity prolongs 
endocycle and prevents synchronous 
gene amplifi cation 
 The important role of Notch signaling in follicle cell proliferation 

and differentiation led us to examine the temporal and spatial 

pattern of Notch activity during oogenesis. Three independent 

reporter lines,  Gbe-Su(H)m8-lacZ  ( Gbe-lacZ ),  E(Spl)m � -CD2  

( m � -CD2 ), and  E(spl)m7-lacZ  ( m7-lacZ ;  de Celis et al., 1998 ; 

 Furriols and Bray, 2001 ;  Assa-Kunik et al., 2007 ), showed similar 

patterns of Notch activity in follicle cells, as revealed by costaining 

of anti –  � -galactosidase or anti-CD2 antibodies with Cut anti-

body for egg chamber staging. During stages 1 – 6, Notch activity 

was limited to anterior and posterior ends of the egg chamber 

(Fig. S1 A, available at http://www.jcb.org/cgi/content/full/jcb

.200802084/DC1; and not depicted), which is related to the role 

of Notch in polar and stalk cell differentiation. At around stage 7, 

Notch activity was detected in the entire follicle cell epithelium 

and reached its highest level at stage 8 ( Fig. 1 A  and Fig. S1 A). 

It then slowly decreased until stage 10A in main body cells. 

No Notch activity was observed in these follicle cells at stage 

10B ( Fig. 1 A ), when follicle cells have already left the endocycle 

and begun synchronous site-specifi c DNA replication. The residual 

levels of reporter gene detected may result from the longevity 

of the gene product. The coincidence of Notch down-regulation 

and initiation of gene amplifi cation in follicle cells was verifi ed 

by a BrdU incorporation assay in the  Gbe-lacZ  reporter line. 

Normally, cells undergoing gene amplifi cation have a unique 

punctate BrdU incorporation pattern. Each nucleus contains four 

BrdU incorporation foci representing the  Drosophila  amplicons 

in follicle cells (Fig. S1, C and C � ;  Calvi et al., 1998 ;  Claycomb 

et al., 2004 ). Sometimes the fi fth focus was also detected with 

our sensitized BrdU labeling protocol (Fig. S1 C). Notch activ-

ity was absent from the main body cells that began to show gene 

amplifi cation (Fig. S1, B and B � ), suggesting a potential connec-

tion between Notch down-regulation and the E/A switch. 

 To determine whether down-regulation of Notch signaling 

is necessary for the E/A switch, we induced misexpression of a 

constitutively active form of Notch, Notch intracellular domain 

(NICD), using the fl ip-out act-Gal4/UAS system in follicle cells. 

NICD-misexpressing cells showed high levels of Notch activity 

after stage 10B (not depicted), when such activity had already di-

minished in the wild type ( Fig. 1 A  and Fig. S1 A). Through BrdU 

incorporation analysis, we found that NICD-misexpressing cells 

did not have the punctate BrdU incorporation pattern but instead 

the expression of a homeobox gene,  cut , and the Cdc25 phos-

phatase,  string , to regulate the M/E transition. Hnt also suppresses 

hedgehog signaling, which promotes follicle cell proliferation 

in early oogenesis ( Sun and Deng, 2007 ). 

 However, the developmental signal triggering the endo-

cycle gene/amplifi cation (E/A) switch remains unknown, although 

amplifi cation has been demonstrated to use the same DNA rep-

lication machinery as is used in the mitotic cycle ( Claycomb and 

Orr-Weaver, 2005 ). Gene amplifi cation requires the replication 

origins at specifi c genomic regions to be fi red repeatedly with-

out cell division, whereas all other origins in the genome are 

inhibited. Several proteins and protein complexes required for 

forming the prereplication complex are involved, including the 

origin recognition complex (ORC), Cdt1 (encoded by  double 
parked  in  Drosophila ), and the minichromosome maintenance 

complex ( Landis et al., 1997 ;  Whittaker et al., 2000 ;  Schwed et al., 

2002 ). ORC2 moves from a diffused nuclear distribution into a 

localized distribution at the amplifi cation foci in stage 10 egg 

chambers but is undetectable at stage 12 ( Royzman et al., 1999 ). 

Restriction of ORC2 to amplifi cation foci depends on dE2F1, 

which forms a heterodimer with dDp and acts as a transcriptional 

activator ( Royzman et al., 1999 ;  Bosco et al., 2001 ). The  dE2F1 i1   
mutant lacks punctate ORC2 staining and shows decreased 

intensity of chorion gene amplifi cation ( Royzman et al., 1999 ). 

dE2F1 and dE2F2 forming complexes with Rbf1, the  Drosophila  

homologue for retinoblastoma, are also involved in suppression 

of genomic replication during amplifi cation ( Cayirlioglu et al., 

2003 ).  Rbf1 120a /Rbf1 14   follicle cells have an additional round of 

genomic DNA replication ( Cayirlioglu et al., 2003 ). dE2F2 and 

Rbf also belong to the Myb-Muv B – dREAM complex that con-

strains genomic DNA replication during amplifi cation ( Beall et al., 

2002 ,  2004 ,  2007 ;  Georlette et al., 2007 ). Some evidence also 

indicates that chromatin modifi cation regulates origin activity dur-

ing amplifi cation ( Aggarwal and Calvi, 2004 ;  Hartl et al., 2007 ). 

 The steroid hormone ecdysone and its receptor may be in-

volved in chorion gene expression. Ecdysone functions during 

postembryonic development, including larval molts and meta-

morphosis. 20-hydroxyecdysone, the active hormone produced in 

the peripheral tissues by metabolism of ecdysone, binds to the ecdy-

sone receptor (EcR), which forms heterodimers with the  Drosoph-
ila  RXR homologue USP (encoded by the gene  ultraspiracles ), 
and activates the ecdysone signaling pathway, which turns on the 

early response genes, including Broad, E75, and E74, during 

metamorphosis ( Thummel, 1996 ). In adult fl ies, ecdysone is 

mainly synthesized in ovaries, and the ecdysteroid hierarchy is 

known to regulate  Drosophila  oogenesis and reproduction (for re-

view see  Kozlova and Thummel, 2000 ). Egg chambers with germ-

line clones of  ecdysoneless , which disrupts production of ecdysone, 

arrest before vitellogenesis ( Gaziova et al., 2004 ). Both EcR-A 

and EcR-B1, two EcR isoforms, are expressed in nurse and follicle 

cells during oogenesis. Removal of EcR function in germline cells 

causes abnormal egg chamber formation, loss of vitellogenic egg 

chambers, and nurse cell degeneration ( Carney and Bender, 2000 ). 

Recently, EcR activity was shown to be required for follicle cell 

migration, dorsal appendage tube formation, and chorion gene ex-

pression and amplifi cation. The EcR activity in the dorsal anterior 

region is also sensitive to Ras signaling ( Hackney et al., 2007 ). 
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showed an oscillating genomic BrdU incorporation pattern at 

stage 10B and later ( Fig. 1 B ;  > 300 egg chambers counted with 

100% penetrance), so they are in either the mitotic cycle or the 

endocycle. Staining with mitotic markers cyclin B and phospho-

histone 3 ( Deng et al., 2001 ) showed that the NICD-misexpressing 

cells stopped expressing these markers after stage 6, like the wild-

type cells (unpublished data), so they are probably not maintained 

in the mitotic cycle. Together, these data suggest that extended 

Notch signaling in main body follicle cells keeps them in the endo-

cycle when they would otherwise have proceeded to synchronous 

gene amplifi cation. 

 To determine whether NICD-misexpressing cells complete 

an extra round of the endocycle, we isolated follicle cells from 

NICD mosaic egg chambers (marking the NICD-misexpressing 

cells with GFP) and analyzed the genomic DNA content by 

fl uorescence-activated cell sorting. The wild-type follicle cells 

(GFP negative) showed four different cell populations, with 

2C, 4C, 8C, and 16C DNA contents, consistent with three endo-

cycle rounds ( Fig. 1 G ). In contrast, NICD-misexpressing (GFP 

positive) cells additionally showed a fi fth peak indicating 32C 

DNA content ( Fig. 1 H ), which suggests that they undergo an 

extra round of the endocycle. Normally, cells with more copies 

of genomic DNA have larger nuclei, and indeed, nuclei of 

the NICD-misexpressing cells were larger than those of their 

wild-type neighbors ( Fig. 1 B ). 

 Gene amplifi cation requires that replication origins be fi red 

repeatedly without cell division. To fulfi ll this task, ORC2 be-

comes restricted at the amplifi cation foci in stage 10B egg cham-

bers ( Royzman et al., 1999 ). Staining ORC2 in NICD mosaic egg 

chambers, we found that the punctate ORC2 pattern normally 

seen in wild-type cells was not detected in follicle cells with con-

tinued Notch activity at stage 10B ( Fig. 1 C ;  n  = 50). These follicle 

cells showed unrestricted localization of ORC2 ( Fig. 1, C and C �  ), 

suggesting that continued Notch signaling blocks the transition to 

competency for gene amplifi cation. 

 Extended Notch activity disrupts dE2F1, 
Hnt, and Cut expression during 
late oogenesis 
 Restriction of ORC2 to amplifi cation foci depends on dE2F1 

( Royzman et al., 1999 ). Staining wild-type egg chambers with a 

polyclonal antibody against dE2F1, we found that dE2F1 ex-

pression oscillated in follicle cell nuclei until about stage 10A 

( Fig. 1 D ), a pattern probably related to the involvement of dE2F1 

during the onset of S phases in both the mitotic cycle and the endo-

cycle ( Follette et al., 1998 ;  Reis and Edgar, 2004 ). Starting at 

stage 10B, dE2F1 was expressed in all main body follicle cell nu-

clei ( Fig. 1 E ), coincident with the E/A switch, but this uniform ex-

pression of dE2F1 was disrupted in cells with NICD misexpression. 

 Figure 1.    Down-regulation of Notch activity is required for the proper 
E/A switch and cell differentiation.  DAPI (B – F, I, and J; blue) was used to 
mark cell nuclei. Follicle cells with NICD misexpression are marked by GFP 
(B, C, F, I, and J; green). Bars, 10  μ m. (A) The pattern of Notch activity 
illustrated by  Gbe-lacZ  expression (green). Cut staining (red) was used 
to mark the egg chambers before stage 7 and after stage 10A. (B and B ’ ) 
Genomic BrdU incorporation (B, red; B ’ , white) was found in follicle 
cells with NICD misexpression in a stage 10B egg chamber (top). Dashed 
outlines separate the follicle cells with NICD overexpression and wild-type 
cells. Cells above the line are NICD-overexpressing cells. (C and C ’ ) Re-
stricted subnuclear ORC2 localization (C, red; C ’ , white) was not detected 
in NICD-misexpressing follicle cells (outlined) in a stage 10B egg chamber. 
(D and E) dE2F1 showed an oscillating expression pattern in follicle cell 
nuclei at stage 10A (D) but was accumulated in all follicle cell nuclei at 
stage 10B (E). (F and F ’ ) dE2F1 (F, red; F ’ , white) showed an oscillating 
pattern in NICD-misexpressing follicle cells in a stage 10B egg chamber. 
Arrows point to follicle cells with dE2F1 staining, and arrowheads point to 
those without dE2F1 staining. (G and H) Fluorescence-activated cell-sorting 

analyses of DNA contents in GFP-negative (G, wild type) and GFP-positive 
(H, NICD misexpressing) follicle cells. The fi fth peak, which indicates a 
32C DNA content, was found in NICD-misexpressing cells (H, arrow). 
(I and I ’ ) Cut (I, red; I ’ , white) was not expressed in NICD-misexpressing 
follicle cells in a stage 10B egg chamber. (J and J ’ ) Hnt (J, red; J ’ , white) 
was continuously expressed in follicle cells with NICD misexpression at 
stage 10B.   
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dE2F1 expression continued to oscillate in stage 10B and older 

follicle cells ( Fig. 1 F ;  > 20 egg chambers counted). The other 

member of the  Drosophila  E2F transcription factor, dE2F2, 

which is also involved in promoting the E/A switch ( Cayirlioglu 

et al., 2001 ), is expressed in all follicle cells throughout oogen-

esis (Fig. S2, A and B, available at http://www.jcb.org/cgi/

content/full/jcb.200802084/DC1), but continued Notch activity 

did not change dE2F2 expression in follicle cells (Fig. S2 B). 

 dE2F1 has been shown to regulate cyclin E (CycE) ex-

pression, and CycE/Cdk2 activity is required for gene ampli-

fi cation ( Duronio and O ’ Farrell, 1995 ;  Calvi et al., 1998 ). 

To determine whether that activity is altered by extended Notch 

activity, we used the MPM2 antibody, which detects the CycE/

Cdk2-dependent phosphoepitope at the histone locus body 

( White et al., 2007 ) to stain NICD-misexpressing mosaic egg 

chambers. MPM2 appeared in an oscillating dotted pattern in 

follicle cells in the endocycle, but, as  Calvi et al. (1998)  reported, 

it accumulated in all main body follicle cells at stage 10B in the 

wild type. In contrast, NICD-misexpressing follicle cells showed 

an oscillating pattern of the MPM2 signal at stage 10B (Fig. S2, 

C – C �  �  � ), consistent with the conclusion that these cells are 

still in the endocycle ( Fig. 1 B ). In addition, some of the NICD-

misexpressing follicle cells had higher MPM2 signal intensity 

than did their wild-type neighbors (Fig. S2 C �  �  � ), suggesting that 

continued Notch activity affects CycE/Cdk2 activity during the 

E/A switch. 

 Cut expression is down-regulated by Notch signaling dur-

ing the endocycle but resumes at around stage 10B ( Sun and Deng, 

2005 ). This resumption is not essential for the E/A switch, as 

 cut  mutant clones at stage 10B showed normal gene amplifi ca-

tion ( Sun and Deng, 2005 ). Nonetheless, expression of Cut in 

late follicle cells serves as a marker for late follicle cell differ-

entiation. Staining Cut in egg chambers with extended Notch 

activity, we found that NICD misexpression suffi ced to block 

Cut expression during late oogenesis ( Fig. 1 I ;  > 100 egg cham-

bers counted), suggesting that down-regulation of Notch signal-

ing in follicle cells is required for resumption of Cut expression 

in those cells. 

 Hnt, a positive target of Notch signaling, is normally 

expressed in follicle cells during stages 7 – 10A and down-

regulated in main body cells at stage 10B ( Sun and Deng, 2007 ). 

In main body cells with NICD misexpression during late oogen-

esis, Hnt expression continued ( Fig. 1 J ;  n  = 100), indicating 

that extended Notch signaling maintains Hnt expression. The 

maintenance of the middle stage expression patterns of dE2F1, 

Hnt, and Cut in NICD-misexpressing cells during late oogenesis 

suggests that extended Notch activity suffi ces to keep the mid-

dle stage (endocycle) identity of follicle cells. 

 Ttk function is required for the E/A switch 
 To elucidate regulation of the E/A switch further, we performed 

a mosaic screen to isolate  P  element insertion mutations that dis-

turb late Cut expression in follicle cells. The target gene of such 

a mutation,  l(3)S144802 , turned out to be  ttk , which encodes a 

zinc-fi nger domain protein and is required in early follicle cell 

differentiation and dorsal appendage morphogenesis ( French 

et al., 2003 ;  Jordan et al., 2006 ;  Sun and Deng, 2007 ). To determine 

 Figure 2.    Up-regulation of Ttk69 is required for the proper E/A switch 
and cell differentiation.  Images in A and E – G are collapsed images of the 
z stacks.  ttk 1e11   mutant clones are marked by the absence of Ttk69 (A, E, 
and F; green) or GFP (D and G; green). (A and A ’ ) Cut (A, red; A ’ , white) 
was not detected in  ttk  mutant clones (outlined) in a stage 10B egg cham-
ber. (B and C) The expression pattern of Ttk69 in follicle cells. Ttk69 was 
steadily expressed at a low level in follicle cells before stage 10 (B) but sig-
nifi cantly up-regulated at stage 10B (C). (D and D ’ )  ttk  mutant follicle cells 
(outlined) at stage 10B had oscillating genomic BrdU incorporation 
(D, red; D ’ , white). (E and E ’ ) dE2F1 (E, red; E ’ , white) showed an oscillating 
expression pattern with an overall low level in  ttk  mutant clones (outlined) 
in a stage 10B egg chamber. The arrow points to a follicle cell with dE2F1 
expression, and the arrowhead points to one without dE2F1 expression. 
(F and F ’ ) Hnt (F, red; F ’ , white) was still detected in stage 10B  ttk  mutant 
clones. Outlining indicates the ttk mutant follicle cells. (G and G ’ ) MPM2 
staining (red) retained an oscillating pattern in  ttk  mutant clones in a stage 
10B egg chamber. The arrow points to a cell with MPM2 signal, and the 
arrowhead points to a cell without MPM2 signal. Outlining indicates the ttk 
mutant follicle cells. Bars, 10  μ m.   

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/182/5/885/1895935/jcb_200802084.pdf by guest on 09 February 2026



889 NOTCH, ECR, AND TTK IN GENE AMPLIFICATION  • Sun et al. 

down-regulated in the posterior half of the main body cells rela-

tive to that in the anterior half at stage 10B ( Fig. 3 A �  ). Consis-

tent with the  ttk  mutant phenotypes, C204/ ttk  RNAi caused 

extended Hnt expression and suppression of Cut expression af-

ter stage 10B in the posterior half of the main body cells ( Fig. 3 A �  �  ; 

and not depicted). In addition, these cells showed oscillating 

genomic DNA replication ( Fig. 3 B ), suggesting that specifi c 

knockdown of  ttk  after the M/E switch suffi ces to disrupt the 

E/A switch and supporting our conclusion that up-regulation of 

Ttk69 at stage 10B is required for the proper E/A switch and 

follicle cell differentiation. 

 Premature up-regulation of Ttk69 results 
in precocious exit from the endocycle 
 To determine whether Ttk69 overexpression during midoogen-

esis could cause premature exit from the endocycle, we fi rst com-

pared the sizes of nuclei in follicle cells overexpressing Ttk69 

and in adjacent wild-type cells and found no obvious difference 

until stage 8. At around stage 9, the nuclei of Ttk69-overexpressing 

follicle cells were slightly smaller (unpublished data); the differ-

ence was much more obvious at around stage 10B or later, when 

the wild-type cells had fi nished three rounds of the endocycle and 

had 16 copies of the genomic content ( Fig. 4 A ). We then per-

formed the BrdU incorporation assay in Ttk69-overexpressing 

mosaic egg and control egg chambers containing GFP-over-

expressing clones. Consistent with the nuclear size defect, Ttk69 

overexpression signifi cantly reduced genomic DNA replication; 

the replication ratio was 12-fold lower in clone areas of stage 9 egg 

 Figure 3.    Ttk function in late oogenesis is separable from its earlier  function.  
(A – A ’  ’  ’ ) A stage 10B egg chamber with overexpression of double-stranded 
RNA targeting  ttk  mRNA driven by C204 Gal4 driver. UAS-eGFP ex-
pression (A, green) indicated a C204 expression pattern, and Ttk69 anti-
body staining (A ’ , yellow) confi rmed that Ttk69 was knocked down in the 
posterior half of the egg chamber with strong GFP expression. Hnt staining 
(A ’  ’ , red) revealed continuous expression in these follicle cells with low 
levels of Ttk69. White lines separate follicle cells with ttk RNAi  and wild-type 
cells. (B and B ’ ) Oscillating genomic BrdU incorporation (B, red; B ’ , white) 
was found in follicle cells in the posterior half of a stage 10B egg chamber. 
Bars, 10  μ m.   

whether  ttk  is indeed required for late Cut expression in follicle 

cells during the E/A switch, we generated  ttk  mosaic clones with 

a known  ttk -null allele,  ttk 1e11   ( French et al., 2003 ). Consistently, 

late Cut expression was disrupted in  ttk  mutant follicle cells 

( Fig. 2 A ;  > 45 stage 10B or later egg chambers bearing  ≥ 10  ttk  

mutant follicle cells). In contrast, early Cut expression during 

mitotic and endocycle stages was unaffected in  ttk  mutant cells 

( Jordan et al., 2006 ; unpublished data). 

 To determine whether the function of  ttk  in late follicle cells 

is refl ected in its expression pattern, we reexamined its protein 

distribution in wild-type egg chambers using antibodies against 

different Ttk isoforms. Consistent with a previous study, only the 

69-kD isoform (Ttk69) was steadily expressed, albeit at a rela-

tively low level, in follicle cells before stage 10 ( Fig. 2 B ;  Sun and 

Deng, 2007 ). At around stage 10B, Ttk69 expression was signifi -

cantly up-regulated in all main body cells ( Fig. 2 C ), concurrent 

with the E/A switch and the resumption of Cut expression. 

 To determine whether Ttk69 up-regulation is functionally 

related to the E/A switch, we monitored BrdU incorporation in 

 ttk 1e11   mosaic egg chambers. Interestingly,  ttk  mutant follicle 

cells showed oscillating genomic BrdU incorporation during or 

after stage 10B, when adjacent wild-type cells showed synchro-

nized gene amplifi cation ( Fig. 2 D ). The  ttk  mutant cells also 

lacked the punctate ORC2 localization pattern at stage 10 (un-

published data). These defects resemble those of the NICD-

misexpressing follicle cells ( Fig. 1 ). Further analyses of the 

 ttk  mutant clones with MPM2 and antibodies against dE2F1 

and Hnt supported the conclusion that these mutant cells are kept 

in the endocycle. dE2F1 expression and MPM2 still showed an 

oscillating pattern in  ttk  mutant cells after stage 10B, when the wild 

type showed uniform expression ( Fig. 2, E and G ). Hnt was also 

detected in  ttk  mutant cells after stage 10B, when its expression in 

the wild type had already ceased ( Fig. 2 F ), but the  ttk  mutation 

did not disturb Hnt expression during stages 7 – 10A of oogenesis, 

when Hnt is normally expressed, consistent with our previous 

study ( Sun and Deng, 2007 ). Together, these data suggest that 

loss of  ttk  and extended Notch signaling produce similar defects 

in the E/A switch and cell differentiation in late follicle cells. 

 Ttk function in the E/A switch in late 
oogenesis is separable from its 
earlier function 
 Clonal analysis of  ttk  function in the E/A switch is based on fl i-

pase (FLP)/FLP recombinase target (FRT) mitotic recombina-

tion, which requires generation of clones when follicle cells are 

still in the mitotic cycle. As previously reported, Ttk is required 

during early oogenesis for the suppression of  cubitus interruptus  

and  string  and for up-regulation of  fi zzy related  during the M/E 

switch ( Jordan et al., 2006 ;  Sun and Deng, 2007 ). To determine 

whether the phenotypes of  ttk  mutation during the E/A switch 

are unrelated to its earlier role, we used the RNAi technique 

to knock down  ttk  expression in follicle cells only after the 

M/E switch. We used the temperature-sensitive Gal80/Gal4 

( McGuire et al., 2004 ) and RNAi techniques to remove  ttk  func-

tion specifi cally after stage 7 in posterior follicle cells with the 

C204 Gal4 driver ( Manseau et al., 1997 ). When adult fl ies were 

shifted to the restrictive temperature, Ttk69 was signifi cantly 
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 Figure 4.    Overexpression of Ttk69 causes premature exit from the 
endocycle.  B, C, and E are collapsed images of the z stacks. (A and A ’ ) 
Cell nuclei (stained with DAPI) in Ttk69-overexpressing follicle cells 
(A, outlined and green) were much smaller than those in the wild-type 
cells in a stage 10B egg chamber. (B – B ’  ’ ) A stage 9 egg chamber 
with Ttk69-overexpressing follicle cells marked by the presence of GFP 
(B, blue) and high levels of Ttk69 (B, green; B ’ , white). No or very little 
BrdU incorporation (B, red; B ’  ’ , white) was found in these follicle cells 
(outlined). (C – C ’  ’ ) A control egg chamber with misexpression of GFP 
(C, blue) but not Ttk69 (C, green; C ’ , white). The GFP-positive cells 
(outlined) had normal BrdU incorporation (C, red; C ’  ’ , white) similar 
to that of the GFP-negative cells. (D) Quantitative analysis of the BrdU 
incorporation ratio in the clone area (blue) and outside of the clone 
(orange) in  UAS-Ttk69  and  UAS-GFP  egg chambers. In total, 235 Tt69-
overexpressing and 703 wild-type follicle cells from three  UAS-Ttk69  
egg chambers were counted. 113 GFP-positive and 236 GFP-negative 
follicle cells were counted from one  UAS-GFP  egg chamber (C). (E and E ’ ) 
dMyc (E, red; E ’ , white) was down-regulated in Ttk69-misexpressing 
follicle cells in a stage 8 egg chamber. Bars, 10  μ m.   

chambers than elsewhere ( Fig. 4, B �  �  and D ). In the control egg 

chamber, the GFP clone and areas outside did not differ signifi -

cantly ( Fig. 4, C �  �  and D ). Together, these data suggest that Ttk69 

overexpression causes premature exit from the endocycle at around 

stage 9, but no precocious gene amplifi cation was observed 

( Fig. 4 B �  �  ). In addition, Ttk69-overexpressing cells showed pre-

mature down-regulation of dMyc ( Fig. 4 E ), a transcription factor 

required for the endocycle ( Maines et al., 2004 ). 

 Extended Notch activity suppresses 
Ttk69 up-regulation 
 Because extended Notch activity and loss of  ttk  function pro-

duced similar defects in the E/A switch, we explored the rela-

tionship between Notch signaling and  ttk  in late oogenesis. Using 

polyclonal antibody against Ttk69, we found during late oogen-

esis that NICD-misexpressing follicle cells maintained low lev-

els of Ttk69 protein, whereas their wild-type neighbors had 

elevated levels ( Fig. 5 A ). Extended Notch activity may there-

fore suppress Ttk69 up-regulation at stage 10B. In contrast, 

Notch activity, as revealed by the  m � -CD2  reporter, was un-

affected in  ttk  mutant follicle cells ( Fig. 5 B ; and not depicted). 

 Next, to determine whether extended Notch activity caused 

the E/A switch and cell differentiation defects by suppressing 

Ttk69 up-regulation, we co-overexpressed NICD and Ttk69 in 

follicle cells and found that one copy of  UAS-ttk69, ttk 1e11   could 

restore Ttk69 to wild-type or higher levels in the presence of 

NICD ( Fig. 5 ,   compare  C �   with  A ). These egg chambers showed 

normal expression of Cut (compare  Fig. 5 C �  �  �   with  Fig. 1 I ) 

and lack of Hnt expression after stage 10B (compare  Fig. 5 D  

with  Fig. 1 J ). The BrdU incorporation assay revealed that gene 

amplifi cation was present in some of the follicle cells with NICD/

Ttk69 co-overexpression at stage 10B, although at a lower in-

tensity than in the wild type ( Fig. 5 E , red circles). The majority 

of the NICD/Ttk69 cells had neither genomic nor site-specifi c 

BrdU incorporation, similar to the follicle cells with Ttk69 

overexpression alone ( Fig. 5 E , white circles; and not depicted). 

The nuclei of the NICD/Ttk69 follicle cells were either smaller 

than or similar in size to those of the adjacent wild-type cells, 

unlike those produced by NICD overexpression alone (compare 

 Fig. 5, C �  �   and  D  with  Fig. 1 B ). Together, these results suggest 

that Ttk69 overexpression can partially reverse the E/A switch 

defects caused by extended Notch activity. 

 EcR activity is required for Ttk69 
up-regulation and proper E/A switch 
 Although extended Notch activity suffi ced to induce an extra 

round of endoreplication in follicle cells, premature down-

regulation of Notch activity during the endocycle did not obvi-

ously shift the E/A transition to an earlier stage (Fig. S4, available 

at http://www.jcb.org/cgi/content/full/jcb.200802084/DC1), so we 

investigated other signaling pathways that might affect the E/A 

switch. Disruption of EcR activity by misexpression of a domi-

nant-negative (DN) form of the EcR causes defects in chorion 

gene expression and reduces gene amplifi cation ( Hackney et al., 

2007 ). Consistently, using an ecdysone sensor line  hs-Gal4-EcR, 
UAS-nlacZ  ( Kozlova and Thummel, 2002 ), we found that the 

EcR pathway was activated in main body follicle cells at around 
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we stained Ttk69 in follicle cells with misexpression of a DN 

form of the EcR-A isoform EcR-A (F645A) to suppress the 

EcR activity using fl ip-out Gal4. Ttk69 was kept at a low level 

in follicle cells with DN EcR-A misexpression when the adja-

cent wild-type cells already had high levels of Ttk69 expression 

at stage 10B ( Fig. 6 C ), suggesting that suppression of EcR ac-

tivity is suffi cient to block Ttk69 up-regulation at this stage. 

 Because Ttk69 up-regulation at stage 10B is crucial for 

the E/A switch, we asked whether disruption of EcR signal-

ing keeps follicle cells in the endocycle during late oogenesis. 

stage 10B but not earlier ( Fig. 6, A and B ).  � -Galactosidase 

antibody labeling of these egg chambers together with Cut or 

Ttk69 antibody revealed that EcR activation was concurrent 

with the up-regulation of Ttk69 and the E/A switch in follicle cells 

(unpublished data). To determine whether the two are related, 

 Figure 5.    The relationship between Notch signaling and Ttk.  Images in 
C – D �  are collapsed images of the z stacks. (A and A ’ ) Ttk69 (A, red; 
A ’ , white) was down-regulated in follicle cells with NICD misexpression (out-
lined and marked by UAS-lacZ expression; A, green) in a stage 10B egg 
chamber. (B and B ’ ) Notch activity (illustrated by  m � -CD2  expression; 
B, red; B ’ , white) was not detected in  ttk  mutant clones (outlined) in a stage 
10B egg chamber. The arrow points to the polar cell/border cell cluster 
with normal  m � -CD2  expression. (C – C ’  ’  ’ ) A stage 11 egg chamber with 
co-overexpression of NICD (outlined and marked by UAS-lacZ expression; 
C, green) and Ttk69 (C ’ , yellow). Cut expression (C ’  ’  ’ , red) was detected 
in these follicle cells. (D and D ’ ) Hnt (D, red; D ’ , white) was not detected in 
main body follicle cells with co-overexpression of NICD and Ttk69 (marked 
by UAS-lacZ; D, green) in a stage 11 egg chamber. (E and E ’ ) Site-specifi c 
BrdU incorporation (E, red; E ’ , white) was detected at a low level in some 
follicle cells with co-overexpression of NICD and Ttk69 (E, green; red cir-
cles). The majority of the follicle cells with NICD/Ttk69 co-overexpression 
(white circles) had no BrdU incorporation. Bars, 10  μ m.   

 Figure 6.    EcR activity is required for the proper E/A switch and cell dif-
ferentiation.  Images in C, E, and F are collapsed images of the z stacks. 
Follicle cells with DN EcR-A misexpression were marked by EcR-A staining 
(C, E, and F; green) or Ttk69 down-regulation (D, green). (A and B) The 
pattern of EcR activity illustrated by the  EcR - LBD-Gal4, UAS-nlacZ  system. 
EcR activity, marked by the LacZ (LZ) expression, was not observed in 
follicle cells before stage 10 (A), but it was strongly detected in follicle 
cells at stage 10B and later (B). (C and C ’ ) Ttk69 (C, red; C ’ , white) was 
down-regulated in follicle cells with DN EcR-A (outlined) at a stage 10B 
egg chamber. (D and D ’ ) Oscillating genomic BrdU incorporation (D, red; 
D ’ , white) was observed in DN EcR-A – misexpressing follicle cells (outlined) 
in a stage 10B egg chamber. (E and E ’ ) Hnt (E, red; E ’ , white) was still de-
tected in follicle cells with DN EcR-A (outlined) at stage 10B. (F and F ’ ) Cut 
(F, red; F ’ , white) was not detected in follicle cells with DN EcR-A (outlined) 
in a stage 10B egg chamber. Bars, 10  μ m.   
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els of Ttk69 stop endoreplication and allow the cells to enter the 

synchronous gene amplifi cation stage. Our data suggest that the 

Notch and EcR pathways have opposite function in the regula-

tion of Ttk69 expression and the E/A switch. Their interaction 

is probably indirect because Notch signaling is usually involved 

in activation of gene expression. 

 Our results did not reveal a developmental signal suffi -

cient to trigger the E/A switch. Although extended Notch activity 

suffi ced to drive an extra round of endocycle, premature down-

regulation of Notch activity by an  N ts   allele caused neither pre-

mature exit from the endocycle (Fig. S4 B), probably because it 

was insuffi cient for premature up-regulation of Ttk69 (Fig. S4 D), 

nor premature entry into the gene amplifi cation stage (Fig. S4 C). 

Down-regulation of Notch therefore provides only a permissive 

signal for the E/A switch. Our data also indicate that EcR sig-

naling is required for the E/A switch. Is ectopic activation of 

EcR-A (F645) – misexpressing follicle cells showed oscillating 

patterns of genomic DNA replication after stage 10B, whereas 

the adjacent wild-type cells had punctate BrdU incorporation 

( Fig. 6 D ). The genomic BrdU incorporation pattern was also 

detected in follicle cells misexpressing other forms of DN EcR, 

such as EcR-A (W650A), EcR-B2 (F645A), and EcR-B2 (W650A). 

In addition, follicle cells with DN EcR had diffused localization 

of ORC2 and oscillating expression of dE2F1 at stage 10B (not 

depicted) like the NICD-overexpressing follicle cells ( Fig. 1, C 

and F ). Suppression of EcR activity by DN EcR was also suffi -

cient to extend Hnt expression and suppress late Cut expression 

after stage 10B ( Fig. 6, E and F ), similar to the defects caused 

by removal of  ttk  function or extension of the Notch activity. 

To determine whether EcR signaling acts through Ttk69 to reg-

ulate the E/A switch and follicle cell differentiation, we examined 

BrdU incorporation and Hnt and Cut expression in late follicle 

cells with coexpression of DN EcR-A (F645A) and Ttk69. 

These cells had almost normal levels of Cut expression and no 

Hnt expression at stage 10B or later (Fig. S3, A and B; available 

at http://www.jcb.org/cgi/content/full/jcb.200802084/DC1), 

like those with NICD and Ttk69 coexpression. Most DN ECR/

Ttk69 cells had no detectable BrdU incorporation, but a few had 

low levels of chorion gene amplifi cation (Fig. S3 C), suggesting 

that Ttk69 alleviates the cell differentiation and gene amplifi ca-

tion defects caused by DN EcR expression. 

 Extended Notch activity antagonizes EcR 
activity during the E/A switch 
 Because both Notch and ecdysone signaling are involved in reg-

ulating Ttk69 expression, we investigated the relationship between 

these two pathways during the E/A switch. First, we found that 

in DN EcR – misexpressing follicle cells, Notch signaling was 

properly down-regulated at stage 10B, as revealed by the Notch 

reporter  m7-lacZ  in these cells ( Fig. 7 A ). Second, by over-

expressing NICD with the  hsp70  promoter, we found that ectopic 

NICD suppressed activation of EcR signaling, whereas the con-

trol egg chambers without NICD misexpression had normal re-

porter expression at stage 10B ( Fig. 7, B and C ). 

 Discussion 
 In  Drosophila  follicle cells, cell cycle program switches and 

DNA replication patterns are tightly associated with different de-

velopmental stages of oogenesis. Here, we report that inactivation 

of the Notch signaling pathway in late oogenesis is important 

for cell differentiation and cell cycle regulation. Down-regulation 

of Notch is required for main body follicle cells to switch 

from genomic DNA replication in the endocycle stage to site-

specifi c DNA replication in the gene amplifi cation stage. 

The developmental pathway involved in this E/A switch also 

includes the activation of ecdysone signaling and up-regulation 

of a zinc-fi nger transcriptional repressor, Ttk. On the basis of 

our current fi ndings, we propose the following model to explain 

the developmental regulation of the E/A switch in follicle cells 

( Fig. 7 D ). At around stage 10, main body cells down-regulate 

Notch signaling as the prerequisite for activation of ecdysone 

signaling, which promotes the up-regulation of Ttk69. High lev-

 Figure 7.    Notch signaling antagonizes EcR activity during the E/A switch.  
(A and A ’ ) Notch activity (marked by  m7-lacZ  expression; A, red; A ’ , 
white) was not detected in follicle cells with DN EcR-A (A, green) in a stage 
10B egg chamber or in the adjacent wild type. The arrow points to the 
polar cells with  m7-lacZ  expression. (B and B ’ ) EcR activity (illustrated by 
the  LBD-Gal4, UAS-nlacZ  expression; B, red; B ’ , white) was dramatically 
suppressed in follicle cells with NICD misexpression driven by the  hsp70  
promoter in a stage 10B egg chamber. The arrowheads point to follicle 
cells with weak EcR activity. (C and C ’ ) A control egg chamber without 
NICD misexpression during the same stage had high levels of EcR activity 
(C, red; C ’ , white) in follicle cells. Red channels in B and C had the same 
settings when the images were acquired. (D) A schematic drawing of the 
involvement of Notch and ecdysone signaling and high levels of Ttk69 in 
the E/A switch. Bars, 10  μ m.   
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teresting exception is the centripetal cells, which are located an-

terior to the main body cells and migrate centripetally to separate 

the nurse cells and the oocyte at stage 10B. In these cells, Notch 

activity is still detected after stage 10B ( Dobens et al., 2005 ), 

but how it is maintained remains unclear. The centripetal cells do 

enter gene amplifi cation, but not at the same time as main body 

cells; we often observe genomic DNA replication in centripetal 

cells at stage 10B when main body cells have obvious gene am-

plifi cation. Other developmental signaling pathways are also 

known to be active in these cells, and they could regulate the ex-

pression of cell cycle machinery genes that are responsible for 

gene amplifi cation in the presence of Notch activity. 

 Use of a tissue-specifi c Gal4 ( slbo < Gal4 ) has been reported 

to reduce amplifi cation in follicle cells expressing DN EcR 

( Hackney et al., 2007 ), in contrast to our fi nding that the DN EcR 

cells stay in the endocycle. These discrepancies could be caused 

by the different Gal4 lines used. The expression of  slbo < Gal4  is 

probably too low to signifi cantly block EcR activity in main body 

cells. Several lines of evidence suggest that EcR regulates the 

E/A switch at the transcriptional level. First, expression levels of 

Ttk69 are reduced by the DN form of EcR, which does not block 

EcR binding to DNA but does block transcriptional activation 

( Cherbas et al., 2003 ). Second, a transcriptional target of EcR 

during metamorphosis, the broad complex, also confers a fragile 

eggshell phenotype when mutated ( Tzolovsky et al., 1999 ). 

 Ttk was fi rst isolated as a transcriptional repressor of the 

 fushi tarazu  segmentation gene ( Harrison and Travers, 1990 ) and 

is also an inhibitor of the neuronal fate of cells such as photo-

receptors ( Xiong and Montell, 1993 ). In the peripheral nervous 

system, Ttk is positively regulated by Notch signaling to fulfi ll 

the suppression of the neuronal fate ( Guo et al., 1996 ). It is gener-

ally expressed in follicle cells throughout oogenesis, but its ex-

pression is not regulated by Notch during the M/E switch ( Sun 

and Deng, 2007 ). The involvement of Ttk in late follicle cells ap-

pears to be negatively regulated by Notch because up-regulation 

of Ttk69 at stage 10B was completely blocked by extended Notch 

activity ( Fig. 5 A ). Notch most likely blocks Ttk69 up-regulation 

by suppressing EcR activity. How exactly does the Notch – EcR –

  ttk  pathway regulate endocycle exit as well as gene amplifi cation? 

It probably acts by regulating dE2F1 and CycE/Cdk2 activity, 

as follicle cells with extended Notch activity or disruption 

of EcR or  ttk  function retained oscillating patterns of dE2F1 and 

MPM2 staining at stage 10B ( Fig. 1 F ;  Fig. 2, E and G ; Fig. S2 C; 

and not depicted). Some NICD cells had levels of MPM2 signal 

higher than the uniform level in the wild-type cells undergoing 

gene amplifi cation ( Fig. 2 G  and Fig. S2 C), indicating higher 

Cdk2 activity in those cells. To initiate genomic DNA replication, 

levels higher than the uniform levels of CycE/Cdk2 activity in 

late follicle cells are probably required. Ttk up-regulation during 

the E/A switch is probably important for lowering the CycE/

CDK2 activity to a level too low to initiate an additional round of 

genomic replication yet suffi cient to allow the amplifi cation 

of specifi c loci. Consistently,  ttk  can suppress CycE expression 

in  Drosophila  glial cells and bristle cell lineage and thus exit 

from the cell cycle ( Badenhorst, 2001 ;  Audibert et al., 2005 ). 

Similarly, other cell cycle – related genes such as  dacapo  (CDK2 

inhibitor;  Lane et al., 1996 ),  dmyc  ( Maines et al., 2004 ), and  dmyb  

EcR in follicle cells suffi cient to drive premature E/A switch? 

Treating egg chambers with ponasterone A (PonA) can activate 

the EcR sensor in follicle cells before stage 10 (Fig. S5 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200802084/DC1; 

 Hackney et al., 2007 ), but it did not cause any up-regulation of 

Ttk69 or defects in BrdU incorporation (Fig. S5 A � ; and not de-

picted). Notch activity in PonA-treated follicle cells was normal 

during midoogenesis (Fig. S5 A �  �  � ), so ectopic EcR activity 

could not interfere with Notch signaling. The combination of 

Notch down-regulation and EcR activation in midoogenesis 

did not result in premature E/A transition either (Fig. S5 B). 

Although ectopic EcR activity may therefore not suffi ce to in-

duce premature E/A switch, we could not rule out that 5-h incu-

bation is not long enough for EcR to up-regulate Ttk69 indirectly. 

In addition, the sensor line might be more sensitive to PonA treat-

ment, whereas the target gene expression requires higher levels 

of EcR activity. Unfortunately, no constitutively active EcR trans-

genes are currently available. In summary, these analyses have 

not ruled out that EcR is the inductive signal. Alternatively, the E/A 

switch may require involvement of other developmental signals. 

 Although we proposed a model that involves Notch, EcR, 

and Ttk in regulating the E/A switch, the relationships among 

Notch, ECR, Ttk69, and a Notch target, Hnt, are complicated. 

Extended Notch signaling suppresses Ttk69 up-regulation. Loss 

of  ttk  function does not affect Notch activity but causes continu-

ous expression of Hnt, whereas misexpression of Ttk69 suffi ces 

to down-regulate Hnt expression early (unpublished data). Simi-

larly, DN EcR misexpression affects Hnt expression but not 

Notch activity reporters, suggesting that EcR regulates Hnt through 

Ttk69. Indeed, coexpression of DN EcR and Ttk69 restored al-

most normal expression patterns of Hnt and Cut in late follicle 

cells (Fig. S3, A and B). These data also suggest that Hnt is prob-

ably not a direct target of the NICD – Su(H) activator complex and 

that Ttk69 intersects with Notch signaling downstream of Su(H) 

but upstream of Hnt. Our previous study showed that  hnt  mutant 

cells had only one extra round of mitotic cycle ( Sun and Deng, 

2007 ) and that Hnt misexpression had no obvious defects in the 

E/A switch. Notch may therefore have additional targets to main-

tain the endocycle in follicle cells. 

 Notch signaling has been implicated in a wide range of 

biological and pathological processes ( Bolos et al., 2007 ) and 

has prompted much research into the biological consequences 

of its activation. Notch activation at stages 6 and 7 is necessary 

for follicle cells to enter the endocycle ( Deng et al., 2001 ;  Lopez-

Schier and St Johnston, 2001 ). Our current fi ndings indicate 

that its down-regulation is also a critical step for them to con-

tinue to differentiate and exit the endocycle. Both up- and down-

regulation of Notch may therefore play important roles in 

temporal regulation of follicle cell differentiation and cell cycle 

programs. In accordance with the temporal pattern of Notch ac-

tivity in follicle cells, Delta (Dl), the ligand for Notch signaling 

in follicle cells, was gradually down-regulated from its peak 

level at stages 7 and 8, especially in the oocyte (Fig. S1, D and E; 

 Bender et al., 1993 ). By stage 10, no Dl expression was de-

tected in oocyte membranes adjacent to main body follicle cells 

(Fig. S1 F), so Dl down-regulation is probably the cause of the 

down-regulation of Notch activity during late oogenesis. An in-
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Male fl ies from individual stocks were crossed with female virgins of the 
 hsFLP, 82BGFP/TM3  stock. Generation of mosaics followed the protocol 
described in the previous section. Anti-Cut antibodies were used to stain 
the ovaries for late Cut expression analysis. Target genes were identifi ed 
according to the inverse PCR protocol. 

 Immunohistochemistry, BrdU labeling, and imaging 
 Immunohistochemistry and BrdU labeling were performed as previously 
described ( Sun and Deng, 2005 ) with the following antibodies: rabbit anti-
Ttk69 and rat anti-Ttk69 (1:200; provided by P. Badenhorst, University of 
Birmingham, Edgbaston, Birmingham, UK), guinea pig anti-dE2F1 (1:500; 
provided by T. Orr-Weaver, Whitehead Institute, Cambridge, MA), rabbit 
anti-dE2F2 (provided by N. Dyson, Harvard Medical School, Boston, MA), 
rabbit anti-ORC2 (1:3,000; provided by S.P. Bell, Whitehead Institute, 
Cambridge, MA), rabbit anti-Cut (1:500; provided by Y.N. Jan, University 
of California, San Francisco, CA), mouse anti-Cut (2B10; 1:15), anti-Dl 
(C594.9B; 1:15), anti – EcR-A (15G1a; 1:50), anti-Hnt (1G9; 1:15), anti –
 cyclin B (F2F4; 1:50; Developmental Studies Hybridoma Bank), mouse 
anti-BrdU (1:50; BD Biosciences), mouse anti-CD2 (1:50; AbD Serotec), 
mouse anti-Ser/Thr-ProMPM-2 (1:1,000; Millipore), rabbit anti –  � -galacto-
sidase (1:5,000; Sigma-Aldrich), and rabbit anti – phosphohistone 3 (1:200; 
Millipore). Images were acquired with a confocal microscope (LSM510; 
Carl Zeiss, Inc.) with a Plan Neofl uar 40 ×  1.3 NA lens, a camera (Hama-
matsu Photonics), and a photo multiplier tube at 72 ° F assembled with Photo-
shop (7.0.1; Adobe). 

 Fluorescence-activated cell-sorting analysis 
 Follicle cell isolation was conducted as described previously ( Bryant et al., 
1999 ). Ovaries of 80 – 100 females per experiment were dissected in 
Grace ’ s insect medium supplemented with 10% fetal calf serum and 1 ×  
antibiotic antimycotic. Ovaries were washed three times in calcium-free 
phosphate-buffered saline and incubated in 0.7 ml of 0.25% trypsin with 
intermittent vortexing at room temperature for 15 min. Supernatant was 
passed through a 40- μ m nylon fi lter into 1 ml of Grace ’ s medium and pel-
leted at 4,000 rpm for 7 min in an Eppendorf Minispin. Trypsinization and 
fi ltration steps were repeated two to three additional times or until the su-
pernatant became clear. Follicle cells were then resuspended in 0.5 ml of 
Grace ’ s medium containing 1  μ l of 5 mM Vybrant DyeCycle DNA-specifi c 
stain, incubated at room temperature for 30 min, washed once in 
calcium-free phosphate-buffered saline, and stored on ice. A fl ow cyto-
meter (FACSAria; Becton Dickinson) determined follicle cell ploidy by 
fl uorescence-activated cell-sorting analysis of Vybrant DyeCycle – stained 
cell preparations with excitation at 407 nm for Vybrant DyeCycle stain and 
at 488 nm for GFP. 

 In vitro culture of egg chambers and PonA treatment 
 Egg chambers were dissected from the abdomen region and cultured in 
Grace ’ s medium with 1 ×  antibiotic antimycotic (Invitrogen) and physiologi-
cal levels of an agonist of ecdysone signaling (10  � 6  M PonA) to activate 
ecdysone signaling at room temperature or in the 29 ° C incubator for the 
 N ts   clones. After a 5-h incubation, egg chambers were fi xed and stained 
with the correct antibodies according to the standard staining procedure 
( Sun and Deng, 2005 ). 

 Online supplemental material 
 Fig. S1 shows that down-regulation of Notch activity is concurrent with the 
E/A switch. Fig. S2 shows that MPM2 and dMyc, but not dE2F2, are 
affected by ectopic Notch activity. Fig. S3 that shows overexpression of 
Ttk69 alleviates the defects caused by DN EcR-A. Fig. S4 shows that pre-
mature down-regulation of Notch activity is not suffi cient to induce a 
premature E/A switch. Fig. S5 shows that EcR activity alone or with down-
regulation of Notch activity is not suffi cient to up-regulate Ttk69 preco-
ciously. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200802084/DC1. 

 We thank J. Horabin and A.B. Thistle for critical comments and reading; 
J. Poulton, Y.-C. Huang, L.-F. Shyu, A. Wolfson, S. Qian, C. Green, G. Barrio, 
and other members of the Deng laboratory for technical help; and P. Baden-
horst, S.P. Bell, C. Berg, S.J. Bray, N. Dyson, Y.N. Jan, T.L. Orr-Weaver, 
D. Stein, G. Struhl, C.S. Thummel, the BSC, the Vienna Drosophila RNAi Cen-
ter, and the Developmental Studies Hybridoma Bank for generous supplies of 
fl y stocks and antibodies. We are also grateful to E. Spana for inverse PCR; 
K. Riddle and the Biological Science Imaging Facility at Florida State Univer-
sity for help with the confocal microscope; and R. Didier at the fl ow cytometry 
laboratory in the Florida State University College of Medicine for help with 
the fl uorescence-activated cell-sorting analysis. 

( Beall et al., 2002 ) could be targets of  ttk . Indeed, extended Notch 

activity, which suppresses Ttk69 up-regulation, suffi ces to pro-

long the expression of dMyc after stage 10B (Fig. S2 D), whereas 

misexpression of Ttk69 suffi ces to down-regulate dMyc ex-

pression precociously ( Fig. 4, E and E �  ). Determining whether 

any of these genes is a direct target of Ttk69 will be interesting. 

 We also show that an increase in Ttk expression suffi ces to 

induce precocious exit from the endocycle, but the cells did not 

then go into gene amplifi cation, perhaps because the Gal4-UAS –

 induced expression of Ttk69 is much higher than the endoge-

nous level of Ttk69 during late oogenesis. Because different levels 

of Ttk69 have profound effects on DNA replication patterns in 

follicle cells, these much higher levels could have eliminated all 

DNA replication in follicle cells. The ability of different expres-

sion levels of transcription factors to induce a different cellular 

differentiation status is well documented in early  Drosophila  

development. Gradients of morphogens, mostly transcription fac-

tors, are the major source of segmentation and pattern formation 

in embryos. Follicle cells also adopt this rule to allow different 

cellular functions of Ttk at different oogenesis stages. Low levels 

of Ttk69 contribute to stage 6 entry into the endocycle, whereas 

high levels of Ttk69 permit exit from the endocycle and further 

differentiation at stage 10. Notch signaling, probably in concert 

with other signals, ensures the proper timing of up-regulation of 

Ttk69 and thus proper egg chamber development. 

 Materials and methods 
 Genetic strains 
  N ts   allele was obtained from the Bloomington Stock Center (BSC) and 
recombined to the  FRT18D  chromosome.  FRT82B ttk 1e11   and  UAS-Ttk69, 
ttk 1e11   were obtained from C. Berg (University of Washington, Seattle, WA; 
 French et al., 2003 ).  UAS-N intr   a  (BSC) was used to express the constitutively 
active form of Notch, and  hs-N intra , ry 506   was provided by G. Struhl (Colum-
bia University, New York, NY).  UAS – EcR-A (F645A) ,  UAS – EcR-A (W650A) , 
 UAS – EcR-B2 (F645A) ,  UAS – EcR-B2 (W650A) ,  tubP-Gal80 ts  , and C204 
( Manseau et al., 1997 ) were obtained from the BSC.  ttk dsRNA   was obtained 
from the Vienna Drosophila RNAi Center. Ecdysone sensor  hs-Gal4-EcR LBD , 
UAS-nlacZ 7.4   was provided by C.S. Thummel (University of Utah, Salt Lake 
City, UT;  Kozlova and Thummel, 2002 ). We used three Notch activity re-
porters:  Gbe-Su(H)m8-lacZ  ( Furriols and Bray, 2001 ),  E(Spl)m � -CD2  
( de Celis et al., 1998 ), and  E(spl)m7-lacZ  ( Assa-Kunik et al., 2007 ). The 
following marker lines were used:  yw ,  hsFLP ;  act < CD2 < Gal4 ,  UAS-GFP/
TM3 ;  yw ,  hsFLP ;  act < y+ < Gal4 ,  UAS-nlacZ/Cyo ;  yw ,  hsFLP ;  FRT82B ubiGFP/
TM3 ;  and hGFP FRT18D/FM7 ;  MKRS ,  hsFLP/TM6B . 

 Generation of mosaics 
 Flies were raised under standard conditions at 25 ° C except for  N ts   fl ies, 
which were raised at 18 ° C. Mitotic clones were generated by FLP/FRT-
mediated recombination. Adult female fl ies were heat shocked for 1 h at 
37 ° C and incubated at 25 ° C for 3 – 4 d for generation of loss-of-function 
follicle cell clones. For generation of fl ip-out clones, adult females were 
heat shocked for 45 min at 37 ° C and incubated at 25 ° C for 2 – 3 d before 
dissection. For ectopic expression of  ttk dsRNA   driven by C204, we raised 
adult females at 29 ° C after hatching to remove Gal80 ts  function. For exam-
ination of EcR activity, fl ies were heat shocked for 45 min at 37 ° C and 
 allowed to recover at 29 ° C for 16 h before dissection. 

 To bypass the early requirement for Notch in follicle cells, we used the 
 N ts   mutant to induce follicle cell clones but grew the fl ies at the permissive 
temperature (18 ° C) for 4 – 7 d and shifted to the restrictive temperature 
(30 ° C) for 18 h to remove the Notch function suffi ciently from the mutant 
clone cells. Notch activity reporter E(spl)m � -CD2 and Cut staining were used 
to monitor the Notch activity in these experiments (Fig. S5, B and D). 

 Mosaic screen 
 A small-scale mosaic screen was performed on the 3R collection of the 
FRT-SXXXXX stocks from the Szeged Stock Center ( Bellotto et al., 2002 ). 
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