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    Introduction 
 The Ran GTPase performs vital functions throughout the eu-

karyotic cell cycle. During interphase, high RanGTP within the 

nucleus drives the vectorial transport of cargo between the nu-

clear and cytoplasmic compartments ( Terry et al., 2007 ;  Trinkle-

Mulcahy and Lamond, 2007 ;  Yoon et al., 2008 ). In organisms 

with open mitoses, RanGTP stabilizes spindle microtubules near 

chromatin and facilitates kinetochore attachment ( Carazo-Salas 

et al., 1999 ;  Kalab et al., 1999 ;  Zhang et al., 1999 ;  Gruss et al., 

2001 ;  Gruss and Vernos, 2004 ;  Silverman-Gavrila and Wilde, 

2006 ), whereas in telophase, RanGTP is required for reassembly 

of the nuclear envelope ( Zhang and Clarke, 2000 ;  Walther et al., 

2003 ). These functions depend on association of the Ran gua-

nine nucleotide exchange factor with chromatin, which spatially 

restricts the generation of RanGTP ( Kalab et al., 2002 ,  2006 ; 

 Caudron et al., 2005 ). 

 In vertebrates, the Ran guanine nucleotide exchange factor 

is called RCC1 ( Bischoff and Ponstingl, 1991 ). RCC1 resembles 

a donut, from which protrudes a fl exible N-terminal tail consist-

ing of aa 1 – 20 ( Renault et al., 1998 ). Early studies suggested that 

the tail binds DNA ( Seino et al., 1992 ;  Chen et al., 2007 ), and 

recently we demonstrated that this association is facilitated by 

an unusual posttranslational modifi cation of RCC1 in which the 

initial Met residue is removed and the exposed  � -amino group 

(Ser in primates and Pro in other vertebrates) is tri- or dimethylated 

( Chen et al., 2007 ). Deletion of the tail or mutations of RCC1 

that block methylation show weaker binding to chromatin, which 

causes mitotic defects ( Moore et al., 2002 ;  Chen et al., 2007 ). 

However, the isolated N terminus binds only weakly to chroma-

tin ( Chen et al., 2007 ). A second important binding mode occurs 

through histones H2A/H2B ( Nemergut et al., 2001 ). 

 The RCC1 tail is a locus for multiple regulatory mecha-

nisms. It contains an NLS, which is recognized by the transport 

factor importin- � 3 (Imp � 3;  Nemergut and Macara, 2000 ;  Talcott 

and Moore, 2000 ;  Moore et al., 2002 ), and Imp �  binding can 

interfere with chromatin association. Mitotic phosphorylation 

of the tail has been reported to block Imp � 3 binding, thereby 

stabilizing chromatin association ( Hutchins et al., 2004 ;  Li and 

Zheng, 2004 ). In addition, there are three splice variants of RCC1, 
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CC1 is the only known exchange factor for the Ran 

guanosine triphosphatase and performs essential 

roles in nuclear transport, spindle organization, 

and nuclear envelope formation. RCC1 binds to chroma-

tin through a bimodal attachment to DNA and histones, 

and defects in binding cause chromosome missegrega-

tion. Chromatin binding is enhanced by apo-Ran. How-

ever, the mechanism underlying this regulation has been 

unclear. We now demonstrate that the N-terminal tail of 

RCC1 is essential for association with DNA but inhibits 

histone binding. Apo-Ran signifi cantly promotes RCC1 

binding to both DNA and histones, and these effects are 

tail mediated. Using a fl uorescence resonance energy 

transfer biosensor, we detect conformational changes in 

the tail of RCC1 coupled to the two binding modes and in 

response to interactions with Ran and importin- � . The 

biosensor also reports changes accompanying mitosis in 

living cells. We propose that Ran induces an allosteric 

conformational switch in the tail that exposes the histone-

binding surface on RCC1 and facilitates association of the 

positively charged tail with DNA.
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 Figure 1.    The N-terminal tail controls binding to both DNA and histones.  (A) Amino acid sequence of the human RCC1 N-terminal tail. (B) Deletion of the 
tail signifi cantly decreases chromatin binding. MDCK cells plated on a poly-lysine – coated coverglass were permeabilized, and identical concentrations 
of recombinant proteins RCC1-YFP and RCC1( � 1 – 20)-YFP were added. Images were collected before and after the cells were washed sequentially with buffers 
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829 CONFORMATIONAL SWITCH IN RCC1  • Hao and Macara 

containing indicated NaCl concentrations. (C) Deletion of the tail abolishes DNA binding. Recombinant RCC1-His 6  or RCC1( � 1 – 20)-His 6  proteins were 
incubated with DNA-agarose beads or plain agarose beads. Bound proteins were detected by Coomassie blue staining. The gels were scanned and quanti-
fi ed by densitometry (left). The right panel shows representative DNA binding. (D)  � -N-amino methylation of RCC1 further promotes RCC1 binding to DNA. 
Recombinant RCC1( � 1 – 20)-His 6 , WT RCC1-His 6 , or purifi ed Me-RCC1-His 6 , which had been methylated in vitro, was incubated with agarose beads as in B. 
Proteins were detected and quantifi ed by immunoblotting with anti-His6 antibody and an Odyssey scanner. (E) The RCC1 tail negatively regulates histone 
binding. Recombinant RCC1-His 6  or RCC1( � 1 – 20)-His 6  was incubated at various concentrations with biotin-labeled core histones on streptavidin beads or with 
streptavidin beads alone. Bound proteins were detected by ECL with anti-His6 antibody (right) and quantifi ed (left) as in B. Error bars represent  ± 1 SD.   

 

 � ,  � , and  � , and the  �  and  �  variants contain unique inserts down-

stream of the tail, which affect chromatin binding ( Hood and 

Clarke, 2007 ). 

 RCC1 association with chromatin is also regulated by Ran. 

The dynamic interaction of RCC1 with chromatin in living cells 

is stabilized by Ran(T24N), a mutant that mimics the apo state 

of the GTPase and forms a stable binary complex with RCC1 

( Li and Zheng, 2004 ). Conversely, a mutation in RCC1 (D182A) 

that disrupts Ran binding destabilizes chromatin association 

( Moore et al., 2002 ;  Hutchins, et al., 2004 ). Mutational analyses 

have suggested that one face of the RCC1 donut binds to chro-

matin ( Seino et al., 1992 ), whereas the other face binds Ran 

( Renault et al., 2001 ). In this study, we address the question of 

how Ran on one side of RCC1 can regulate chromatin binding to 

the other. We propose that the tail undergoes an allosteric con-

formational change upon binding Ran. In the closed state, the 

tail inhibits histone binding, whereas in the open state, the tail 

permits histone binding and can more readily bind DNA. 

 Results and discussion 
 How does Ran enhance the binding of its exchange factor, RCC1, 

to chromatin? Steric effects are unlikely because Ran binds to 

one face of RCC1 and chromatin to the opposite face. An alter-

native mechanism involves allosteric switching, but the crystal 

structures of RCC1 alone and Ran(T24N)-bound RCC1 are 

almost identical to one another. However, the 20-aa N-terminal 

tail is absent from both structures and is assumed to be fl exible 

( Renault et al., 1998 ,  2001 ). Therefore, we reasoned that Ran 

binding might cause a conformational change in the tail. To test 

this hypothesis, we needed to know whether the fi rst 20 aa are 

necessary for chromatin binding. Deletion of aa 1 – 27 results in 

a diffusive cytoplasmic distribution of RCC1 ( Moore et al., 

2002 ), but this deletion also removes residues that lie across the 

chromatin-binding face of the RCC1 donut and interact with key 

amino acids on this surface. 

 Because the NLS lies within the fi rst 20 aa ( Fig. 1 A ), we 

used cells permeabilized with Triton X-100 to remove the nuclear 

envelope and added recombinant YFP-tagged wild-type (WT) 

RCC1  �  isoform or RCC1( � 1 – 20) proteins. Using recombinant 

proteins also avoids the complication of  � -N-methylation. The 

cells were washed with increasing salt concentrations, and re-

tained YFP-RCC1 was imaged ( Fig. 1 B ). RCC1( � 1 – 20) showed 

substantially reduced binding to chromatin as compared with 

WT-RCC1, even at the lowest salt concentration (70 mM), and 

was almost entirely lost at higher concentrations, whereas WT-

RCC1 was partially retained by chromatin even at 320 mM 

NaCl, suggesting that the 1 – 20-aa tail is essential for stable 

chromatin binding. 

 The RCC1 tail is believed to bind DNA, probably by electro-

static interactions between positively charged amino acids ( Fig. 1 A ) 

and the negatively charged DNA ( Seino et al., 1992 ). There-

fore, we next assayed the binding of His6-tagged WT-RCC1 and 

RCC1( � 1 – 20) to DNA beads and to core histone octamers coupled 

to beads. Bound RCC1 was detected by immunoblotting with anti-

His6 antibody. Under salt concentrations close to physiological, 

deletion of the N-terminal tail drastically reduced the binding of 

RCC1 to DNA beads compared with WT-RCC1, confi rming that 

the tail is necessary for DNA binding ( Fig. 1 C ). Next, because the 

N-terminal  � -amino group of RCC1 is methylated in mammalian 

cells, the DNA binding capacities of in vitro methylated RCC1, 

recombinant RCC1, and RCC1( � 1 – 20) were also compared. 

Confi rming our previous study ( Chen et al., 2007 ), methylation 

of RCC1 resulted in elevated binding to DNA ( Fig. 1 D ). 

 The region of RCC1 that interacts with histones has not 

been previously established. Surprisingly, deletion of the tail 

strongly increased binding to core histone-conjugated beads 

( Fig. 1 E ). This result suggests that the tail inhibits RCC1 binding 

to histones either by charge repulsion or by screening the inter-

action surface. In either case, one can imagine that a conforma-

tional change in the tail might modulate the ability of RCC1 to 

bind chromatin. To detect such conformational switches, we de-

veloped a fl uorescence resonance energy transfer (FRET) – based 

RCC1 biosensor. Because both the N and C termini of RCC1 ex-

tend from the same side of the donut, we predicted that a FRET 

pair attached to the ends would be suffi ciently close to interact. 

CFP was fused to the N terminus, and YFP was fused to the C ter-

minus of RCC1 ( Fig. 2 A ). The CFP-RCC1-YFP fusion was ex-

pressed in HEK293T cells, and emission spectra were collected 

from the soluble fraction. Lysates from cells expressing CFP 

alone and YFP alone were also analyzed. The CFP-RCC1-YFP 

emission spectrum showed a large peak at 522 nm, corresponding 

to YFP emission, which demonstrates that, as expected, the bio-

sensor exhibits effi cient FRET ( Fig. 2 B ). 

 We next asked whether this biosensor could be used to de-

tect conformational changes in RCC1. Imp � 3 binds to an NLS 

in the tail, and because it is a large (50 kD) protein, it might be 

expected to force the tail away from the body of RCC1, which 

could change either the distance or orientation between fl uoro-

phore dipoles of the biosensor. Therefore, we tested whether the 

biosensor would detect this interaction. In the presence of Imp � 3, 

FRET effi ciency of CFP-RCC1-YFP showed a saturable de-

crease ( Fig. 2, C and D ), which is consistent with the known 

affi nity of Imp �  for monopartite NLSs ( Nemergut and Macara, 

2000 ). This result demonstrates that the biosensor is sensitive to 

direct interactions with the N-terminal tail. 

 To test whether DNA binding to the tail would also alter 

its conformation, we added increasing concentrations of annealed 
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 Figure 2.    Development of FRET-based RCC1 
biosensor.  (A) Schematic of the FRET-based 
RCC1 biosensor CFP-RCC1-YFP. (B) The bio-
sensor CFP-RCC1-YFP exhibits effi cient FRET. 
Excitation was at 430 nm. Emission spectra are 
shown for CFP alone, YFP alone, and for CFP-
RCC1-YFP. (C) FRET effi ciency of CFP-RCC1-YFP 
is saturably reduced by Imp � 3; representative 
emission spectra  ±  Imp � 3. (D) Titration of the 
emission ratio (YFP/CFP) versus increasing con-
centrations of Imp � 3. (E) DNA decreases FRET 
effi ciency of CFP-RCC1-YFP in a dose-dependent 
manner. Annealed 64-nt complimentary oligo-
nucleotides were used as the source of DNA. 
FRET effi ciencies were measured in the presence 
of increasing concentrations of oligonucleotides. 
Emission spectrum is shown  ±  DNA. (F) Titration 
of emission ratio (YFP/CFP) versus increasing 
DNA concentration. For D and F, error bars 
represent  ± 1 SD.   

64-mer oligonucleotides and observed a dose-dependent decrease 

in FRET effi ciency ( Fig. 2, E and F ). Note that the CFP emis-

sion increases as the YFP emission drops, confi rming that the 

response resulted from a change in FRET effi ciency rather than 

collisional quenching or other nonspecifi c effects. Moreover, be-

cause the biosensor cannot be  � -amino methylated, it tests con-

formational changes independently of  � -methylation – mediated 

effects on DNA binding ( Chen et al., 2007 ). We conclude that the 

biosensor can detect changes in the conformation of the RCC1 

tail and that both Imp � 3 and DNA can alter this conformation. 

 Ran binds to the face of RCC1 opposite to that from which 

the N and C termini protrude. Moreover, Ran binding does not 

alter the structure of the body of the RCC1 protein ( Renault 

et al., 1998 ,  2001 ). A priori, therefore, one would not expect Ran 

binding to change the orientation or position of the N-terminal 

tail. However, the FRET effi ciency of the biosensor was signifi -

cantly reduced in a saturable manner by the addition of Ran(T24N) 

( Fig. 3, A and B ), whereas the addition of BSA as a negative 

control did not affect FRET (not depicted). To exclude the pos-

sibility that the FRET reduction might be caused by interference 

from other proteins in cell lysate, we purifi ed a recombinant 

biosensor from  Escherichia coli,  His 6 -CFP-RCC1-YFP-Flag. 

This fusion protein exhibits the same emission characteristics as 

the protein expressed in HEK293T cells and gave a similar re-

sponse upon addition of Ran(T24N) (Fig. S1 A, available at http://

www.jcb.org/cgi/content/full/jcb.200803110/DC1). These data 

identify an allosteric response of the N-terminal tail of RCC1 to 

Ran binding. 
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831 CONFORMATIONAL SWITCH IN RCC1  • Hao and Macara 

 The T24N mutant does not effi ciently bind guanine nucleo-

tides and so mimics the apo-Ran transition state in the nucleotide 

exchange reaction. For this reason, it binds RCC1 with an affi nity 

 � 10-fold higher than that of GDP- or GTP-bound Ran ( Klebe 

et al., 1995 ). Therefore, to further confi rm that the Ran(T24N)-

induced FRET decrease was caused by binding of Ran to the RCC1, 

emission spectra were measured in the presence of Ran(Q69L), 

a Ran mutant defi cient in nucleotide hydrolysis that binds to 

RCC1 weakly. In the absence of GTP and Mg 2+ , Ran(Q69L) be-

haved like Ran(T24N), decreasing the FRET effi ciency of the bio-

sensor ( Fig. 3, C and D ). However, in the presence of GTP and 

Mg 2+ , Ran(Q69L) did not change the FRET effi ciency, even at 

high concentrations ( Fig. 3, C and D ). These results confi rm that 

the effect of Ran(T24N) is mediated by its binding to RCC1. 

 Figure 3.    Ran(T24N) binding triggers a 
conformational switch in the RCC1 tail.  
(A) Ran(T24N) decreases FRET effi ciency of the 
RCC1 biosensor. Emission spectra are shown  ±  
recombinant Ran(T24N), with excitation at 
430 nm. (B) Titration of FRET effi ciency with 
increasing Ran(T24N) concentration. (C) GTP-
bound Ran(Q69L) does not change FRET ef-
fi ciency. Emission spectra were obtained  ±  
recombinant Ran(Q69L) and  ±  GTP and Mg 2+ . 
(D) Quantifi cation of YFP/CFP emission ratio 
at different concentrations of Ran(Q69L) in the 
presence or absence of GTP and Mg 2+ . Emis-
sion effi ciencies are compared with those in 
the presence of equivalent concentrations of 
Ran(T24N). (E) Core histones increase FRET ef-
fi ciency. Emission spectra are shown  ±  purifi ed 
core histone octamer. (F) Titration of YFP/CFP 
emission ratio with increasing concentrations 
of core histones. (G) Ran(T24N) can still de-
crease FRET effi ciency even in the presence of 
histones. Recombinant Ran(T24N) was added 
after the addition of histones. (H) Quantifi ca-
tion of emission ratios (YFP/CFP) when titrating 
with Ran(T24N) in the presence of histones. 
Error bars represent  ± 1 SD.   
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 Figure 4.    FRET imaging reveals conformational changes in RCC1 bound to chromatin upon binding Ran(T24N) and during mitosis in MDCK cells.  
(A) Ran(T24N) binding reduces FRET effi ciency of the CFP-RCC1-YFP biosensor bound to chromatin. Cotransfection of CFP and YFP was used as a negative con-
trol for FRET (top), and CFP-YFP fusion was used as a positive control (middle). After permeabilization with 0.1% Triton X-100, cells were imaged  ±  recombinant 
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Ran(T24N). RCC1 binding to DNA was substantially increased by 

Ran(T24N), suggesting that the conformational change makes the 

tail more accessible to DNA ( Fig. 5 A ). Intriguingly, Ran(T24N) 

also promoted the interaction of RCC1 with histones ( Fig. 5 B ). 

This result is consistent with the aforementioned data that the tail 

inhibits histone binding and with the idea that a Ran-induced con-

formational switch releases the inhibition. To test this model more 

decisively, we measured the binding of tailless RCC1 to histones in 

the presence or absence of Ran(T24N). As shown in  Fig. 5 C , the 

affi nity of RCC1( � 1 – 20) for histones was constitutively high and 

was not further increased by the Ran mutant. We conclude that the 

effects of Ran(T24N) are mediated by a conformational switch in 

the N-terminal tail. 

 We note that Ran can also bind directly to chromatin 

through histones H3/H4 ( Bilbao-Cort é s et al., 2002 ). However, 

the Ran(T24N) mutant does not appear able to bind histones 

( Bilbao-Cort é s et al., 2002 ), so it is unlikely to infl uence RCC1-

chromatin association through this mechanism. 

 Mitotic phosphorylation of the tail has been reported 

to prevent RCC1 association with Imp � 3, thereby stabilizing 

chromatin binding ( Hutchins et al., 2004 ;  Li and Zheng, 2004 ). 

Consistent with this, the addition of Imp � 3 reduced the asso-

ciation of our biosensor with chromatin in permeabilized cells 

(Fig. S2 A, available at http://www.jcb.org/cgi/content/full/

jcb.200803110/DC1), indicating that Imp � 3 could potentially 

block chromatin binding of RCC1 by associating with its NLS. 

However, it is unlikely that the Imp blocks RCC1 binding in 

intact cells because high RanGTP concentrations near the chro-

matin surface would prevent the Imp � / �  complex from associ-

ating with NLSs and would also promote association of Imp �  

with its export factor, CAS. To determine the molecular mecha-

nism by which Imp �  regulates RCC1 binding to chromatin, we 

examined RCC1 retention on DNA beads and histone beads  ±  

Imp � 3. As expected, the addition of Imp � 3 signifi cantly re-

duced RCC1 binding to DNA, possibly by directly blocking the 

DNA-binding region or pulling the tail away (Fig. S2 B). Strik-

ingly, however, the addition of Imp � 3 increased RCC1 bind-

ing to core histones ( Fig. 5 C ), which is consistent with the 

effects of deletion of the tail on core histone binding and further 

supports the idea that conformational changes in the tail can 

relieve its inhibitory effect on histone association. These data 

are summarized in Table S1 (available at http://www.jcb.org/

cgi/content/full/jcb.200803110/DC1). 

 We conclude that RCC1 binding to chromatin can be reg-

ulated by an allosteric switch mechanism ( Fig. 5 E ). The RCC1 

tail binds to DNA, whereas its body interacts with histones 

H2A/H2B. The tail can also inhibit association with histones. 

It undergoes a conformational switch in response to Ran binding, 

DNA binding, or to interactions with Imp � 3. We propose that in 

its closed state, RCC1 has a low affi nity for both DNA and his-

tones. Ran binding causes the tail to swing away from the body, 

 Because Ran binds to one side of the RCC1 body and chro-

matin is believed to bind to the other, we were also interested in 

whether histones would perturb the conformational alteration in 

the tail. Surprisingly, addition of core histones caused a signifi -

cant increase in the FRET effi ciency ( Fig. 3 E ). This change was 

saturable with increasing histone concentration ( Fig. 3 F ). 

Because the C and N termini are on the same chromatin-binding 

face, core histones might push the two termini closer together, 

resulting in elevated FRET. When Ran(T24N) was added to-

gether with histones, FRET effi ciency could still be reduced by 

Ran(T24N) ( Fig. 3 G ). At high concentrations, Ran(T24N) com-

pletely overrode the FRET increase induced by core histones, 

suggesting that core histones and Ran(T24N) have independent 

effects on conformation of the RCC1 tail ( Fig. 3 H ). 

 Does a Ran(T24N)-triggered conformational change also 

occur when RCC1 is associated with intact chromatin? To ad-

dress this issue, the biosensor was expressed in MDCK cells. 

The cells were permeabilized and imaged by FRET microscopy 

before and after the addition of Ran(T24N). Raw FRET images 

were corrected for donor bleedthrough, acceptor bleedthrough, 

and for levels of both donor and acceptor to acquire normalized 

FRET (N FRET ) images. Cells cotransfected with CFP and YFP as 

a negative control showed no detectable FRET signal, whereas 

cells expressing a CFP-YFP fusion protein as a positive control 

generated a high FRET signal as expected. CFP-RCC1-YFP 

gave a signal lower than that of the CFP-YFP fusion. When re-

combinant Ran(T24N) was added, N FRET  was signifi cantly re-

duced ( Fig. 4 A ). As expected, however, addition of Ran(Q69L) 

had no effect ( Fig. 4 A ). To rule out the possibility that permea-

bilization might affect the dynamics of the RCC1 binding to 

chromatin, we also transiently cotransfected the biosensor to-

gether with Ran(T24N) and measured FRET effi ciency in live 

cells (Fig. S1 B). N FRET  was consistently reduced by the pres-

ence of the Ran mutant. 

 RCC1-chromatin dynamics are somewhat faster in mito-

sis than interphase ( Li et al., 2003 ;  Hutchins et al., 2004 ). Using 

our biosensor, we found that mitotic cells display a slight but 

consistent reduction in FRET as compared with interphase cells, 

with the FRET effi ciency dropping through anaphase and going 

up at the end of mitosis ( Fig. 4, B and C ). Thus, conformational 

changes might contribute to the different dynamics of RCC1-

chromatin association during progression through mitosis. 

Together, these results demonstrate that apo-Ran binding trig-

gers a conformational switch in the tail of RCC1, even when the 

protein is bound to chromatin. Small conformational altera-

tions also occur in mitosis. 

 What is the function of this conformational change? To de-

termine whether and how the Ran-induced conformational change 

in the tail might regulate chromatin association, we conducted 

in vitro binding assays using DNA- and histone-conjugated 

beads. Binding of RCC1-His 6  was compared  ±  a molar excess of 

Ran(T24N) (middle) or Ran(Q69L) (bottom). After subtracting background, raw FRET images were corrected for donor and acceptor bleedthrough and for 
expression levels of donor and acceptor to obtain N FRET  images. (B) FRET effi ciency is slightly but consistently reduced in mitotic cells. FRET imaging was 
performed on live cells expressing the RCC1 biosensor. Representative N FRET  images of interphase cells and anaphase cells. (C) Quantifi cation of N FRET  
effi ciencies in interphase, prophase, metaphase, anaphase, and telophase cells. N FRET  intensities of 61 cells at different phases were measured, and the 
mean N FRET  values are compared. Error bars represent  ± SD. *, P  <  0.05; **, P  <  0.001.   
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 Figure 5.    Ran(T24N) promotes both RCC1 bindings to DNA and histones in vitro.  The effects of Ran(T24N) require the RCC1 tail. (A) RCC1 binding to 
DNA is promoted by Ran(T24N). (B) RCC1 binding to core histones is increased by Ran(T24N). (C) Ran(T24N) has no effect on RCC1( � 1 – 20) binding to 
core histones. (D) Core histone binding of RCC1 is increased by Imp � 3. (E) Conformational switch model. The N-terminal tail of RCC1 is essential for DNA 
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835 CONFORMATIONAL SWITCH IN RCC1  • Hao and Macara 

an inverted microscope (Axiovert; Carl Zeiss, Inc.) with a 40 ×  NA 0.9 
Plan-Neofl uar lens coupled to a charge-coupled device camera (Orca; 
Hamamatsu). Images were collected at 12-bit depth and 1,024  ×  1,280 –
 pixel resolution using Openlab 5.0 software (Improvision). The cells were 
imaged sequentially after washing with buffers containing 120 mM, 170 mM, 
220 mM, and 320 mM NaCl. Images were fi nally converted to 8-bit TIFF 
fi les and compiled using Photoshop 7.0 (Adobe). 

 In vitro binding assays 
 DNA-conjugated agarose beads were purchased from GE Healthcare. 
Purified core histones were biotin labeled with sulfosuccinimidyl-2-
[biotinamido]ethyl-1,3-dithiopropionate biotin (Thermo Fisher Scientifi c) 
and conjugated to streptavidin beads (Thermo Fisher Scientifi c)). DNA-binding 
assays were performed in buffer containing 25 mM Hepes, pH 7.2, 150 mM 
NaCl, 2 mM MgCl 2 , 1 mM DTT, and 25% glycerol. Histone in vitro binding 
assays were performed in 20 mM MOPS, pH 7.1, 150 mM NaCl, 5 mM 
Mg-acetate, and 0.1% NP-40. Binding reactions were incubated at 4 ° C 
for 30 min. Beads were washed four times, and bound proteins were 
detected by Coomassie blue staining or by immunoblotting with mouse 
monoclonal anti-His 6  antibody (Covance) and either chemiluminescence 
(ECL) or with an Odyssey system (Li-Cor). To quantify ECL and Coomassie 
band intensities, gels or blots were scanned, and the TIFF fi les were ana-
lyzed using ImageJ (National Institutes of Health [NIH]). 

 FRET spectroscopy 
 CFP-RCC1-YFP was expressed in HEK293T cells as described in Cell cul-
ture and transfection. After 24 – 48 h, cell lysates were prepared in 25 mM 
Hepes, pH 7.5, 10 mM MgSO 4 , 500 mM NaCl, and 0.5% Triton X-100 
supplemented with 2 mM DTT, 1 mM PMSF, 10  μ g/ml leupeptin, and 
20  μ g/ml aprotinin. Proteins were diluted in buffer containing 25 mM Hepes, 
pH 7.5, and 2 mM MgSO 4 . Samples were excited at 430 nm (slit width of 
4 nm), and emission spectra were collected between 450 and 550 nm (slit 
width of 4 nm) on a Fluorolog-3 spectrofl uorometer (FL3-11tau; Jobin Yvon, 
Inc.) using a 5-mm rectangular quartz cuvette at 25 ° C. FRET effi ciency 
changes were calculated as the ratio of the emission intensity peak of YFP 
to the emission intensity peak of CFP. 

 FRET microscopy 
 To determine donor and acceptor bleedthrough correction factors, CFP and 
YFP were transfected separately into MDCK cells, and images were ob-
tained in the CFP, YFP, and FRET channels (CFP excitation/YFP emission) 
using an inverted microscope (Eclipse T200; Nikon) with a 60 ×  NA 1.2 
Plan Achromatic water immersion lens and Orca camera set at 1  ×  1 bin-
ning. Openlab 5.0 software was used for acquisition. Excitation intensity 
was attenuated with a 75% neutral density fi lter to prevent photobleaching. 
Exposure times were  � 300 ms. Excitation and emission fi lters were as 
follows: CFP excitation (S436/10 × ) and emission (S470/30 m) and YFP 
excitation (S500/20 × ) and emission (S535/30 m; Chroma Technology 
Corp.). For each FRET experiment, CFP, YFP, and FRET images were col-
lected under identical conditions. After subtracting background, raw FRET 
images were corrected for bleedthrough and normalized for both donor 
level and acceptor level to obtain N FRET  using the Openlab FRET module 
(Improvision). Images were compiled using Photoshop 7.0. 

 Online supplemental material 
 Fig. S1 shows that Ran(T24N) decreases the FRET effi ciency in vitro 
and in vivo. Fig. S2 shows that Imp � 3 signifi cantly decreases chroma-
tin binding and DNA binding of RCC1 in permeabilized MDCK cells. 
Table S1 shows the summary of FRET and in vitro DNA/histone bind-
ing data. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200803110/DC1. 
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exposing the histone-binding surface and enabling the positively 

charged tail to interact effi ciently with DNA. Moreover, this bi-

modal binding mechanism is enhanced by  � -N-methylation. 

Other factors, such as RanBP3, might also play important roles 

in regulating RCC1 conformation and chromatin association 

( Nemergut et al., 2002 ;  Yoon et al., 2008 ). Together, such fac-

tors likely control the RanGTP gradient around chromatin and 

are essential for ensuring normal chromosome segregation, nu-

clear envelope formation, and nucleocytoplasmic transport. 

 Materials and methods 
 Constructs 
 To generate RCC1-His 6 , RCC1( � 1 – 20)-His 6 , RCC1-YFP-His 6 , and RCC1( � 1 – 20)-
YFP-His 6 , human RCC1 or RCC1-YFP was amplifi ed to introduce a 5 �  NdeI 
site and 3 �  XhoI site and was subcloned into pET-30a (Novagen). To en-
able purifi cation of full-length CFP-RCC1-YFP, His 6  was added to the N ter-
minus, and a Flag tag was added at the C terminus. A 5 �  BamHI site and 
a 3 �  NotI site were introduced into RCC1, and they were subcloned into 
pTAC-His 6 -CFP-YFP to produce pTAC-His 6 -CFP-RCC1-YFP. RCC1-YFP was 
then amplifi ed to introduce a 5 �  NotI site, a C-terminal Flag tag, and a 3 �  
XbaI site, and this replaced the original RCC1-YFP to generate pTAC-His 6 -
CFP-RCC1-YFP-Flag. To make CFP-RCC1-YFP for expression in mammalian 
cells, RCC1 was amplifi ed to introduce a 5 �  BamHI site and a 3 �  NotI site 
and was subcloned into pK-seFRET. 

 Protein expression and purifi cation 
 PET-30a or pTAC constructs were transformed into BL21(DE3) or XLI-blue. 
Bacterial cells were cultured at 37 ° C until OD 600  =  � 0.8. IPTG was then 
added to 500  μ M for pET-30a constructs or 200  μ M for pTAC constructs, 
and the cultures were incubated overnight at 18 ° C. Cells were collected by 
centrifugation and resuspended in buffer containing 20 mM Hepes-KOH, 
pH 7.9, 500 mM NaCl, 1 mM MgCl 2 , and 10% glycerol supplemented 
with 1 mM PMSF plus 5  μ g/ml aprotinin, 5  μ g/ml leupeptin, and 5  μ g/ml 
pepstatin. Cells were broken using a French press. All His 6 -tagged proteins 
were purifi ed using Ni – nitrilotriacetic acid beads (QIAGEN). His6-CFP-
RCC1-YFP-Flag was further purifi ed using M2-agarose beads (Sigma-
Aldrich) to generate full-length recombinant protein. Core histones were 
purifi ed from chicken red blood cells as described previously ( Lutter, 1978 ; 
 Simon and Felsenfeld, 1979 ;  Sandeen et al., 1980 ). 

 In vitro methylation of RCC1 
 HeLa nuclear extract was prepared as described previously ( Dignani et al., 
1983 ). In vitro methylation was performed at 30 ° C for 2.5 h in a 200- μ l 
reaction containing 16  μ g recombinant RCC1, 200  μ g HeLa nuclear ex-
tract, and 150  μ M SAM ( S -adenosyl- L -methy-methionine; Sigma-Aldrich) in 
methylation buffer containing 50 mM Tris-HCl, pH 8.0, 1 mM PMSF, and 
25 mM NaCl. The methylated RCC1 protein was then repurifi ed using 
Ni – nitrilotriacetic acid beads as described in the previous section. 

 Cell culture and transfection 
 HEK293T cells were cultured in DME supplemented with 5% calf serum, 
5% FBS, 100 Uml  � 1  penicillin, and 100 Uml  � 1  streptomycin (Invitrogen). 
MDCK cells were cultured in DME supplemented with 5% FBS, 100 Uml  � 1  
penicillin, and 100 Uml  � 1  streptomycin. HEK293T cells were transfected 
by calcium phosphate. For MDCK cells, plasmids were introduced by nu-
cleofection (Amaxa). 2  μ g DNA was used in each transfection for 2  ×  10 6  
cells. Transfection effi ciency was generally  > 70%. 

 Chromatin-binding assay 
 MDCK cells growing on poly-lysine – coated coverglass chambers were per-
meabilized with 0.1% Triton X-100 for 5 min at 23 ° C. Proteins were added 
to a fi nal concentration of 4  μ M in buffer containing 10 mM NaPO 4 , pH 
7.2, 70 mM KCl, 250 mM sucrose, and 1 mM MgCl 2  and incubated for 
10 min at 23 ° C. Cells were rinsed with the same buffer and imaged using 

binding but allosterically inhibits association with histones. In its closed state, RCC1 has a low affi nity for both DNA and histones. Binding of Ran causes 
the tail to undergo a conformational switch to an open state, exposing the histone-binding surface and enabling the tail to interact effi ciently with DNA. 
This interaction is enhanced by  � -N-methylation. Error bars represent  ± SD.   
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