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    Introduction 
 Unlike the central nervous system, peripheral nerves can re-

generate effi ciently. This ability is largely attributed to Schwann 

cells, glia cells of the peripheral nervous system that are able to 

dedifferentiate, proliferate and redifferentiate after injury, foster 

axonal regrowth, and rebuild myelin sheaths. Schwann cells 

also constitute a key lineage in nerve development, supporting 

the survival of neurons and axons as well as providing myelina-

tion for effi cient saltatory nerve conduction. Thus, understanding 

the regulatory mechanisms that guide Schwann cell proliferation, 

apoptosis, differentiation, dedifferentiation, and redifferentia-

tion after injury is of paramount importance for nerve biology in 

health and disease. 

 TGF �  is a key factor involved, triggering Schwann cell 

proliferation or apoptosis, depending on the cell maturation 

stage ( Eccleston et al., 1989 ;  Ridley et al. 1989 ;  Atanasoski 

et al., 2004 ;  Parkinson et al., 2004 ;  D ’ Antonio et al., 2006 ). 

 Interestingly, the same growth factor can induce growth arrest 

and differentiation of epithelial cells ( Schiller et al., 2004 ). 

The mechanisms underlying these cell type – specifi c effects of 

TGF �  on the cell cycle are largely unknown. 

 TGF �  is a ubiquitously expressed cytokine that affects 

crucial biological processes such as proliferation, immunity, 

and wound healing. Indeed, TGF �  is an antiproliferative agent 

in various tissues, including epithelial cells, and mutations 

in its signaling pathway are frequently found in epithelial 

cancers. TGF �  is also involved in fi brotic diseases including 

lung fi brosis, liver cirrhosis, hypertrophic scars, and keloids, 

and the inhibition of its pathway may constitute a treatment 

for fi brosis. 

 We have found that the protooncogene Ski (Sloan-Kettering 

viral oncogene homologue), a crucial negative regulator of 

TGF �  signaling ( Luo, 2004 ), plays a key role in the control of 

Schwann cell proliferation and myelination ( Atanasoski et al., 

2004 ). In epithelial cells, activation of TGF �  receptors leads to 

T
ransforming growth factor  �  (TGF � ) promotes epi-

thelial cell differentiation but induces Schwann cell 

proliferation. We show that the protooncogene Ski 

(Sloan-Kettering viral oncogene homologue) is an impor-

tant regulator of these effects. TGF �  down-regulates Ski in 

epithelial cells but not in Schwann cells. In Schwann cells 

but not in epithelial cells, retinoblastoma protein (Rb) is 

up-regulated by TGF � . Additionally, both Ski and Rb 

move to the cytoplasm, where they partially colocalize. 

In vivo, Ski and phospho-Rb (pRb) appear to interact in 

the Schwann cell cytoplasm of developing sciatic nerves. 

Ski overexpression induces Rb hyperphosphorylation, pro-

liferation, and colocalization of both proteins in Schwann 

cell and epithelial cell cytoplasms independently of TGF �  

treatment. Conversely, Ski knockdown in Schwann cells 

blocks TGF � -induced proliferation and pRb cytoplasmic 

relocalization. Our fi ndings reveal a critical function of 

fi ne-tuned Ski levels in the control of TGF �  effects on the 

cell cycle and suggest that at least a part of Ski regulatory 

effects on TGF � -induced proliferation of Schwann cells is 

caused by its concerted action with Rb.

 Expression and localization of Ski determine 
cell type – specifi c TGF �  signaling effects on the 
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 Rat epithelial cells of the line WB-F344 continued to pro-

liferate when cultured in DM and were not growth arrested like 

Schwann cells, indicating that growth factors present in DM 

were suffi cient to stimulate their proliferation. As reported pre-

viously with other epithelial cell lines, the addition of TGF �  

reduced cellular proliferation and promoted cell differentiation 

( Fig. 1, E – H ;  Schiller et al., 2004 ). WB-F344 cells cultured 

in DM had a polygonal morphology, and their size increased 

dramatically, whereas they acquired an irregular morphology 

when treated with TGF �  ( Fig. 1 E ). Size increase and expression 

of  �  smooth muscle actin (SMA) are commonly used as markers 

of epithelial cell differentiation ( Chen et al., 2006 ;  Mikaelian 

et al., 2006 ). In DM alone, WB-F344 cells did not express SMA, 

but the majority of cells strongly expressed this differentiation 

marker after TGF �  treatment ( Fig. 1, F and H ). Each experi-

ment was performed at least three times independently, and 

statistical analyses were performed using two-tailed  t  tests. 

We concluded that cultured Schwann cells and WB-F344 cells 

are suitable for our further studies aimed at identifying the dif-

ferent pathways that lead to cell-specifi c effects of TGF �  on the 

cell cycle. 

 TGF �  down-regulates Ski in epithelial cells 
but not in Schwann cells 
 Next, we examined Ski levels in our cell culture systems. 

In Schwann cells, treatment with TGF �  had no effect on Ski 

protein endogenous expression, whereas differentiation induced 

by dbcAMP led to a strong increase ( Fig. 2 A ). In contrast, and in 

accordance with previous experiments performed on other epi-

thelial cells ( Sun et al., 1999 ), Ski was drastically down-regulated 

in TGF � -treated WB-F344 cells ( Fig. 2 B ). Each experiment was 

performed four times independently, and statistical analyses 

were performed using two-tailed  t  tests. 

 TGF �  up-regulates total Rb and  ser780 pRb 
in Schwann cells but down-regulates 
 ser780 pRb in epithelial cells 
 Because of the key role of Rb in the regulation of cell prolif-

eration and its known interaction with Ski, we analyzed Rb 

in our experimental setting. TGF �  treatment signifi cantly up-

regulated total Rb as well as hyperphosphorylated  ser780 pRb 

(serine780-phosphorylated Rb) protein levels in proliferat-

ing Schwann cells, whereas dbcAMP-induced differentiation 

had no detectable effect ( Fig. 2, C and E ). In WB-F344 cells, 

TGF � -induced differentiation did not signifi cantly alter total 

Rb levels ( Fig. 2 D ) but strongly decreased the level of  ser780 pRb 

( Fig. 2 F ) in functional agreement with decreased proliferation. 

Each experiment was performed at least three times indepen-

dently, and statistical analyses were performed using two-

tailed  t  tests. 

 TGF �  induces localization of Ski and Rb 
in the cytoplasm of Schwann cells but not 
of epithelial cells 
 The up-regulation of total Rb and  ser780 pRb in TGF � -treated 

Schwann cells, which is compatible with the observed increased 

proliferation, was intriguing because it may indicate a potential 

phosphorylation of the signaling proteins Smad2/3. In turn, the 

latter form a complex with Smad4, translocate to the nucleus, 

and induce the expression of a specifi c set of downstream genes. 

Ski regulates and inactivates this mechanism by binding to 

Smad2/3. Additionally, Ski action is modulated by its inter-

action with multiple other partners, including SnoN, c-Jun, reti-

noic acid receptor, Gli3, histone deacetylase 1, N-CoR, mSin3a, 

MeCP2, HIPK2, Skip, C184M, NF1, GATA1, and retinoblas-

toma protein (Rb;  Luo, 2004 ). Rb is of particular interest in this 

context as a nuclear tumor suppressor regulating the G1/S-phase 

transition. Its hypophosphorylated form arrests cells in G1 phase 

by binding to the transcription factor E2F to repress its activity. 

When hyperphosphorylated, Rb releases E2F. The latter is thus 

activated and promotes entry into S phase. In vitro studies indi-

cate that c-Ski is required for the transcriptional repression medi-

ated by Rb ( Tokitou et al., 1999 ). 

 In epithelial cells, TGF �  promotes cycle arrest through 

down-regulation of c-myc ( Pietenpol et al., 1990 ;  Alexandrow 

et al., 1995 ), inhibition of Cdk2 ( Polyak et al., 1994 ;  Cipriano 

and Chen, 1998 ) and Cdk4 ( Hannon and Beach, 1994 ) activ-

ities, and inhibition of E2F-dependent transcription ( Schwarz 

et al., 1995 ;  Li et al., 1997 ;  Iavarone and Massague, 1999 ). 

The cyclin-dependent kinases Cdk2 and Cdk4/Cdk6 regulate 

E2F-dependent transcription through phosphorylation of Rb 

( Horton et al., 1995 ;  Connell-Crowley et al., 1997 ;  Lundberg 

and Weinberg, 1998 ). Therefore, by inhibiting Cdk2 and Cdk4 

activities in epithelial cells, TGF �  mediates cell cycle arrest by 

preventing hyperphosphorylation and thus inactivation of Rb. 

 In Schwann cells, TGF �  does not induce growth arrest 

and differentiation but, on the contrary, stimulates proliferation. 

This difference compared with epithelial cells is intriguing and 

prompted us to search for its molecular basis. We show that in 

Schwann cells, in contrast to epithelial cells, TGF �  does not al-

ter Ski expression and up-regulates Rb, particularly its hyper-

phosphorylated form. Furthermore, TGF �  triggers Ski and Rb 

relocalization as a complex to the cytoplasm most likely to pro-

mote TGF � -induced Schwann cell proliferation. This regula-

tory mechanism, occurring in Schwann cells but not in epithelial 

cells, is crucially dependent on the levels of Ski expression. 

 Results 
 TGF �  induces Schwann cell proliferation 
but decreases proliferation in epithelial cells 
and promotes their differentiation 
 Previous studies indicated that TGF �  is able to induce Schwann 

cell proliferation ( Atanasoski et al., 2004 ) or apoptosis ( Parkinson 

et al., 2004 ) in vitro ,  depending on the culture conditions. In our 

chosen experimental setting ( Fig. 1 A ), the addition of TGF �  

to growth-arrested Schwann cells in defi ned medium (DM) 

strongly promoted proliferation, as shown by increased S-phase 

entry ( Fig. 1 B ) and up-regulation of the proliferation marker 

cyclin D1 ( Fig. 1 C ). As previously reported ( Harrisingh et al., 

2004 ), treatment with dibutyryl cAMP (dbcAMP) induced 

Schwann cell differentiation, as indicated by up-regulation of 

the myelin proteins peripheral myelin protein 22 (PMP22), my-

elin protein zero (P0), and periaxin after 48 h ( Fig. 1 D ). 
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expression in both the nucleus and the cytoplasm, and no obvi-

ous relocalization was observed after TGF �  treatment ( Fig. 3, 

C and E ). We were unable to investigate the subcellular localiza-

tion of total Rb in WB-F344 cells because of a dramatic change 

in the quality of the commercially available anti-Rb antibodies 

and the lack of suitable alternative reagents. Each experiment 

was performed at least three times independently, and statistical 

analyses were performed using two-tailed  t  tests. 

 To determine whether proliferation of Schwann cells was cor-

related with the marked relocalization of  ser780 pRb into the cyto-

plasm, we double stained TGF � -treated cells to detect  ser780 pRb 

and the incorporation of BrdU simultaneously. All BrDU-positive 

cells also showed a pronounced  ser780 pRb cytoplasmic staining 

( Fig. 3 F ). Thus, we concluded that the relocalization of  ser780 pRb 

occurred in Schwann cells entering S phase. Interestingly, cyto-

plasmic Ski and Rb or  ser780 pRb exhibited a peculiar punctuate-

like pattern. Some of these structures were labeled with the 

early endosomal marker EEA1 and the P4D1 antiubiquitin anti-

body ( Fig. 3 G ). However, the biological relevance of these 

fi ndings remains to be determined. Each experiment was per-

formed at least three times independently. 

active functional role of, in particular, the hyperphosphorylated 

form of Rb in this cell type. To examine this issue further, we 

analyzed the intracellular localization of Rb in conjunction with 

Ski by immunofl uorescence and cell fractionation methods. 

In DM-cultured Schwann cells, total Rb ( Fig. 3 A ), and  ser780 pRb 

( Figs. 3, B and D ) were almost exclusively found in the nucleus. 

After 48-h treatment with TGF � , however, a fraction of the pro-

teins was present in the cytoplasm. This was surprising because 

Rb is a nuclear regulator of the G1/S-phase transition, and the 

cytoplasm was an unexpected subcellular localization for this 

protein. Parallel analysis of Ski localization revealed that Ski 

was concentrated in the nucleus (with minor amounts occasion-

ally present in the perinuclear region) of DM-cultured Schwann 

cells, but after TGF �  treatment for 48 h, Ski was mainly found 

in the cytoplasm ( Fig. 3, A, B, and D ). A time course analysis 

after TGF �  treatment showed that both Ski and Rb started to be 

relocalized into the cytoplasm after 6 h, reaching a maximum 

after 48 h (unpublished data). In differentiated Schwann cells 

(after treatment with dbcAMP), Ski and Rb were concentrated 

in the nucleus, and no cytoplasmic localization was observed 

(unpublished data). WB-F344 cells showed Ski and  ser780 pRb 

 Figure 1.    TGF �  induces Schwann cell proliferation but promotes epithelial cell differentiation.  (A) Morphology of growth-arrested (cultured in defi ned 
medium [DM] alone), proliferating (TGF � ), and differentiated (dbcAMP) rat Schwann cells. (B and G) BrdU incorporation in rat Schwann cells (B) and 
in WB-F344 cells (G) cultured in DM or treated with TGF �  (BrdU, green; DAPI, blue; double stain, turquoise), and graph representing the percentage of 
BrdU-positive cells. (C) Western blot analysis of cyclin D1 in lysates of rat Schwann cells cultured in DM (set to 100%) or treated with TGF � . (B, C, and G) 
 n  = 3. (D) Western blot analysis of periaxin, PMP22 (*, P = 0.032; one-tailed  t  test), and P0 in rat Schwann cells cultured in DM treated with TGF �  (T) 
or dbcAMP (db; set to 100%).  n   ≥  3. (E) Morphology of WB-F344 cells in DM alone or treated with TGF � . (F) Immunostaining of SMA (green) and DAPI 
(blue) labeling of WB-F344 cells cultured in DM or treated with TGF � . (H) Western blot analysis of SMA in WB-F344 cells cultured in DM or treated with 
TGF � . For Western blot analyses,  � -actin was used as loading control, and graphs represent the densitometry of the protein of interest normalized to the 
loading control. Statistical analyses were performed using two-tailed  t  tests on at least three independent experiments, unless mentioned otherwise. Error 
bars represent SEM. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001.   
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to Schwann cells, we detected no colocalization of Ski with 

 ser780 pRb in WB-F344 epithelial cells ( Fig. 4 C ). 

 To test for physical interactions of the colocalized pro-

teins, we performed subcellular fractionation of TGF � -treated 

Schwann cell lysates followed by coimmunoprecipitation of Ski 

and total Rb. These techniques allowed us to show that Ski and 

Rb interact both in the nuclear and in the cytoplasmic compart-

ments of Schwann cells treated with TGF �  ( Fig. 4 D ). Each ex-

periment was performed at least three times independently. 

 Upon TGF �  treatment, Ski and Rb 
colocalize and interact in the cytoplasm of 
Schwann cells but not of WB-F344 cells 
 Because we had observed extensive relocalization of total Rb, 

 ser780 pRb, and Ski in TGF � -treated Schwann cells cultured in 

DM, we next examined to what extent these proteins were co-

localizing and potentially interacting under these conditions. 

Indeed, we found partial but pronounced colocalization of Rb and 

 ser780 pRb with Ski in the cytosol ( Fig. 4, A, and B ). In contrast 

 Figure 2.    TGF �  down-regulates Ski in epithe-
lial cells but not in Schwann cells and mediates 
Rb up-regulation in Schwann cells but not in 
epithelial cells.  Western blot analysis of Ski (A), 
Rb (C), and  ser780 pRb (pRb; E) in Schwann cells 
cultured in DM alone or treated with TGF �  or 
dbcAMP. Western blot analysis of Ski (B), Rb 
(D), and  ser780 pRb (pRb; F) in WB-F344 cells 
cultured in DM or treated with TGF � . GAPDH or 
 � -actin were used as loading controls. Graphs 
represent the densitometry analysis of the pro-
tein of interest normalized to the loading con-
trol. Statistical analyses were performed using 
two-tailed  t  tests on at least three independent 
experiments. Error bars represent SEM. *, P  <  
0.05; ***, P  <  0.001. A and B,  n  = 4; 
C,  n   ≥  3; D – F,  n  = 3.   
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( Fig. 5 A ). This peak of expression was surprising, and we therefore 

also measured the expression levels of Ski in mouse sciatic nerves. 

Here, Ski expression was not increased at P21 (unpublished data), 

leaving us with the only explanation of species-specifi c differ-

ences of unknown functional relevance. We then measured total 

Rb levels. Total Rb was expressed at all developmental time points 

and in the adult at comparable levels. In contrast,  ser780 pRb levels 

were high at early stages of postnatal development (from P0 – 4) 

when rat Schwann cells proliferate ( Stewart et al., 1993 ) and de-

creased progressively until the adult stage ( Fig. 5 B ). Immuno-

histochemical stainings revealed that at P0, both Ski and  ser780 pRb 

are present and partially colocalize in both the cytoplasm and 

the nucleus, but the majority of each protein is localized in the 

Schwann cell cytoplasm. In adult rat sciatic nerves, however, Ski 

staining was equal in Schwann cell nuclei and cytoplasm ( Fig. 5, 

C and E ). The levels of  ser780 pRb in adult Schwann cells were 

 After TGF �  treatment, the levels of Ski expression were 

strongly reduced in WB-F344 cells ( Fig. 2 B ), and no coimmuno-

precipitation of Ski and Rb was detected using either the nuclear 

or the cytoplasmic fraction (unpublished data). 

 Ski and  ser780 pRb are mainly present and 
interact in the cytoplasm of Schwann cells 
in developing sciatic nerves, whereas low 
levels of nuclear  ser780 pRb are found in 
myelinating Schwann cells 
 Our next aim was to relate our cell culture data to the in vivo situa-

tion. To approach this issue systematically, we started with quanti-

tative assessments of Ski and Rb expression in developing rat 

sciatic nerves. Our Western blot analysis shows that Ski protein 

is present at every stage of postnatal development from postnatal 

day (P) 0 to adult in rat sciatic nerves, with a transient peak at P21 

 Figure 3.    In Schwann cells but not in epithelial cells, TGF �  treatment triggers Ski and Rb localization into the cytoplasm.  (A – C) Coimmunostaining of Ski (red) 
and Rb (green; A) or Ski (red) and  ser780 pRb (pRb; green; B) in rat Schwann cells or WB-F344 cells (C) cultured in DM or treated with TGF �  for 48 h. Nuclei 
are labeled with DAPI (blue), and each picture represents the overlay of Ski and DAPI (appears pink when Ski is nuclear), Rb, or  ser780 pRb and DAPI (appears 
turquoise when Rb or  ser780 pRb is nuclear). (D and E) Western blot of Ski and  ser780 pRb (pRb) in cytoplasmic (C) and nuclear (N) fractions of rat Schwann cells 
(D) and WB-F344 cells (E) cultured in DM (set to 100%) or treated with TGF �  for 48 h. GAPDH and lamin were used as loading and fractionation controls 
for the cytoplasmic and nuclear fractions, respectively. Statistical analyses were performed using two-tailed  t  tests on at least three independent experiments. 
D,  n  = 5; E,  n  = 3. (F) BrdU (green) labeling and overlay of BrdU and  ser780 pRb (red) immunostaining in rat Schwann cells treated with TGF �  for 48 h (double stain 
appears yellow). (G) Images of single confocal sections of coimmunostaining of Ski (green) or  ser780 pRb (pRb; green) with EEA1 (early endosome marker; red) 
or P4D1 (ubiquitin; red) in rat Schwann cells treated with TGF �  for 48 h. Arrows indicate examples of the colocalization (appears yellow) of Ski or  ser780 pRb 
with EEA1 or P4D1. Insets are magnifi cations of the regions outlined by boxes. Error bars represent SEM. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001.   
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expression experiment was performed at least three times with 

one viral vector, and the results were verifi ed with the other 

viral vector. Ski overexpression mediated by these vectors led 

to signifi cantly increased  ser780 pRb levels in growing medium 

(determined by Western blot analysis) in Schwann cells ( Fig. 6 A ) 

and WB-F344 cells ( Fig. 6 B ) and also in DM alone and in 

cells treated with TGF �  (determined by immunostaining; not 

depicted). Immunocytochemical analysis revealed that in both 

cell types, Ski and  ser780 pRb were strongly colocalized in the 

cytoplasm of Ski-overexpressing cells independently of TGF �  

treatment ( Fig. 6, C and D ). Additionally, in both Schwann 

cells and WB-F344 cells overexpressing Ski, S-phase entry (as-

sessed by BrdU incorporation) was increased independently of 

TGF �  treatment ( Fig. 6, E and F ). Interestingly, TGF � -induced 

SMA expression was strongly reduced in Ski-overexpressing 

WB-F344 cells ( Fig. 6, G and H ), but the myelin proteins P0, 

PMP22, and periaxin were not signifi cantly affected by Ski over-

expression in Schwann cells (Fig. S1, available at http://www

.jcb.org/cgi/content/full/jcb.200710161/DC1). Each experiment 

was performed at least three times independently, and statistical 

analyses were performed using two-tailed  t  tests. 

 generally low, and the residual expression was mostly restricted 

to the nucleus ( Fig. 5, D and E ). In the adult rat sciatic nerves, 

we detected some signal, presumably in axons ( Fig. 5 D ), which 

is likely to be nonspecifi c if the low expression of  ser780 pRb at this 

stage is considered. As anticipated from our in vitro results and 

expression data, we were able to coimmunoprecipitate Ski and 

 ser780 pRb from both nuclear and cytoplasmic fractions of P7 rat 

sciatic nerves, but not at the adult stage ( Fig. 5 F ). Each experi-

ment was performed at least three times independently, and sta-

tistical analyses were performed using two-tailed  t  tests on three 

groups of animals for each age. We conclude that Ski and  ser780 pRb 

interact in developing Schwann cells but not in fully differenti-

ated cells in the adult. 

 Ski overexpression in Schwann cells 
and WB-F344 cells leads to increased 
phosphorylation of Rb, TGF � -independent 
cytoplasmic colocalization of Ski with 
 ser780 pRb, and increased cell proliferation 
 To achieve effi cient exogenous overexpression of Ski, we used 

both adenoviral and lentiviral expression systems. Each over-

 Figure 4.    TGF �  promotes Ski and Rb localization as a complex in the cytoplasm of Schwann cells but not of epithelial cells.  (A – C) Images of single con-
focal sections of the coimmunostaining of Ski (red) and Rb (green; A) or Ski (red) and  ser780 pRb (pRb; green; B) in rat Schwann cells or in WB-F344 cells 
(C) cultured in DM or treated with TGF �  (the overlay appears yellow). Arrows indicate examples of the colocalization of Ski and Rb (A) and Ski and  ser780 
pRb (B). Insets are magnifi cations of the regions outlined by boxes. (D) Immunoprecipitation of Ski and Western blotting of Rb or Ski in the cytoplasmic 
(C) and nuclear (N) fractions of rat Schwann cells treated with TGF �  for 36 h, and Western blot of lamin (nuclear marker) and GAPDH (cytoplasmic marker) 
performed on lysates used for immunoprecipitation (input). The arrow indicates a nonspecifi c band or a degradation product.   
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was knocked down (Ski-40%), Schwann cells were growth 

 arrested in DM, and TGF �  did not signifi cantly promote pro-

liferation. Interestingly, if Ski expression was knocked down 

to undetectable levels in DM-cultured Schwann cells, prolif-

eration was increased, and TGF �  reduced this proliferation 

( Fig. 7 B ). We interpret these data as suggesting that Ski is also 

involved in the control of non-TGF �  – mediated Schwann cell 

proliferation and that a low level of Ski expression is suffi cient 

for this regulation. If we consider the effect triggered by TGF �  

on DM-cultured Schwann cells, TGF �  appears to be largely 

unable to stimulate their proliferation in the absence of Ski. 

Consistent with this notion, Ski knockdown blocked  ser780 pRb 

relocalization to the Schwann cell cytoplasm in the presence 

of TGF �  ( Fig. 7 D ). In DM, no cytoplasmic localization of 

 ser780 pRb was observed in either control cells or when Ski was 

down-regulated (unpublished data). Additionally, neither total 

Rb nor  ser780 pRb levels were affected by Ski down-regulation in 

growing medium (Fig. S2, available at http://www.jcb.org/cgi/

content/full/jcb.200710161/DC1). 

 We next examined the infl uence of Ski knockdown on 

Schwann cell differentiation using the marker protein P0. Although 

the addition of TGF �  resulted in a decrease of proliferation when 

 We conclude that the elevated expression of Ski pro-

motes hyperphosphorylation of Rb, cell type –  and TGF � -

in dependent cytoplasmic colocalization with  ser780 pRb, as well as 

cell proliferation. 

 Ski down-regulation in Schwann cells 
prevents TGF � -induced proliferation and 
 ser780 pRb relocalization to the cytoplasm 
 To perform loss-of-function experiments, we transduced Schwann 

cells with a lentivirus carrying a puromycin selection marker 

and a Ski-specifi c short hairpin RNA (shRNA) that was able 

to down-regulate endogenous Ski to either nondetectable levels 

(Ski-0%) or to 40% of its endogenous expression (Ski-40%) in 

puromycin-selected Schwann cells ( Fig. 7, A and C ). Concern-

ing Ski-0%, all experiments were performed with two different 

Ski shRNAs with comparable effi ciencies for down-regulation, 

yielding similar results in our assays. Ski levels of expression 

were quantifi ed in Schwann cells cultured in growing medium 

and selected with puromycin. 

 Schwann cells expressing endogenous levels of Ski are 

growth arrested when cultured in DM, and their proliferation 

is stimulated upon TGF �  treatment. If 60% of endogenous Ski 

 Figure 5.    In vivo, Ski and  ser780 pRb are found in the cytoplasm of developing Schwann cells, where they interact, whereas  ser780 pRb is mostly restricted 
to the nucleus of myelinating Schwann cells.  (A and B) Western blot analysis of Ski (A) and Rb and  ser780 pRb (pRb; B) expression in developing rat sciatic 
nerves, and graphs representing the densitometry of the bands normalized to the loading control  � -actin or GAPDH. Statistical analyses were performed 
using two-tailed  t  tests on three groups of animals for each age. (C and D) Images of single confocal sections of Ski (red; C) or  ser780 pRb (pRb; green; D) 
and DAPI (blue) immunostainings on longitudinal sections of P0 and adult rat sciatic nerves. Arrows point out Schwann cell nuclei. (E) Images of single 
confocal sections of Ski (red) and  ser780 pRb (pRb; green) coimmunostainings and DAPI (blue) labeling on teased nerve fi bers of P0 and adult rat sciatic 
nerves. In C – E, Ski appears pink, and pRb appears turquoise when nuclear. In E, the overlay of Ski and pRb appears yellow. Arrows indicate examples 
of the colocalization of Ski and  ser780 pRb. Insets are magnifi cations of the regions outlined by boxes. (F) Immunoprecipitation of Ski and Western blot of 
 ser780 pRb (pRb) or Ski in the cytoplasmic (C) and nuclear (N) fractions of P7 and adult rat sciatic nerve lysates. Error bars represent SEM. *, P  <  0.05; 
**, P  <  0.01; ***, P  <  0.001.   
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rat epithelial cells and promoted their differentiation, as indi-

cated by size increase and SMA expression used as differentiation 

markers. Schwann cells are a key lineage in nerve development, 

supporting axonal growth and providing myelination, and TGF �  

is an important regulator of Schwann cell proliferation during 

perinatal development ( D ’ Antonio et al., 2006 ). The reasons 

why TGF �  promotes Schwann cell proliferation but induces 

growth arrest and differentiation of other cell types such as epi-

thelial cells are largely unknown. In this study, we identify and 

describe a novel pathway induced by TGF �  in Schwann cells 

involving Ski and Rb and regulated by Ski levels of expression. 

The different regulation of this pathway in Schwann cells and 

epithelial cells is likely to be a major determinant of the ob-

served differences in the outcome of TGF �  signaling in Schwann 

cells compared with epithelial cells. 

 In a previous study, we have found that Ski is involved 

in the control of Schwann cell proliferation and myelination 

( Atanasoski et al., 2004 ). The protooncogene Ski is a negative 

regulator of TGF � -induced Smad2/3 activation and can interact 

with several different partners ( Luo, 2004 ). Thus, to identify 

Ski levels were reduced completely ( Fig. 7 B ), this effect did not 

lead to an increase of P0 but rather resulted in the reduced ex-

pression of P0 under these conditions ( Fig. 7 F ). In DM, knock-

down of Ski led to a decrease of P0 levels ( Fig. 7 E ) and an 

increase in proliferation ( Fig. 7 B ). However, upon dbcAMP 

treatment, P0 was up-regulated in the absence of Ski ( Fig. 7 F ). 

Each experiment was performed at least three times indepen-

dently, and statistical analyses were performed using two-tailed 

 t  tests. These data indicate that dbcAMP can up-regulate P0 and 

that TGF �  can down-regulate P0 in the absence of Ski. 

 Discussion 
 The aim of this study was to elucidate the critical mechanisms 

by which TGF �  induces cell type – specifi c effects on the cell 

cycle. TGF �  can trigger Schwann cell proliferation or apoptosis, 

depending on culture conditions and maturation stage, whereas 

it mediates epithelial cell growth arrest and differentiation. 

In our culture conditions, TGF �  induced Schwann cell prolifera-

tion. Furthermore, TGF �  mediated the growth arrest of WB-F344 

 Figure 6.    Ski overexpression up-regulates  ser780 pRb in rat Schwann cells and in epithelial cells and promotes TGF � -independent Ski and  ser780 pRb  cytoplasmic 
colocalization and the proliferation of rat Schwann cells and epithelial cells.  (A and B) Western blot analysis of Ski and  ser780 pRb (pRb) in rat Schwann cells 
(A) and WB-F344 cells (B) kept in growing medium and infected with a control or a Ski-overexpressing (Ski+) lentivirus. (C and D) Images of single confocal 
sections of Ski (red) and  ser780 pRb (pRb; green) coimmunostaining in rat Schwann cells (C) and WB-F344 cells (D) both infected with a Ski+ adenovirus and 
cultured in DM or treated with TGF � . Arrows indicate examples of the colocalization (appears yellow) of Ski and  ser780 pRb. Insets are magnifi cations of the 
regions outlined by boxes. (E and F) Percentage of BrdU-labeled rat Schwann cells (E) and WB-F344 cells (F) infected with a control or a Ski+ lentivirus and 
cultured in DM or treated with TGF � . (G) SMA (green) and Ski (red) coimmunostaining and DAPI labeling (blue) in TGF � -treated WB-F344 cells infected 
with a control or a Ski+ lentivirus. (H) Western blot analysis of SMA in lysates of WB-F344 cells infected with a control or a Ski+ lentivirus and cultured in 
DM or treated with TGF � . (A, B, and H)   � -Actin of GAPDH was used as loading control. Statistical analyses were performed using two-tailed  t  tests on at 
least three independent experiments. Error bars represent SEM. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001.   
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regulator of the G1/S-phase transition. This function of Rb is 

achieved through its hypophosphorylated form by binding and 

inactivation of the transcription factor E2F. The hyperphosphory-

lated form of Rb is thought to be functionally inactive. Thus, the 

unusual Rb regulation in Schwann cells prompted us to follow 

up on this issue. 

 We found that after treatment with TGF � ,  ser780 pRb started 

to be relocalized to the cytoplasm of Schwann cells within 6 h, 

and relocalization was maximal after 48 h. This fi nding was 

 surprising because Rb has been described as a nuclear protein. 

In the glioblastoma cell line T98G, however, serum induces cyto-

plasmic localization of the three pocket proteins p107, p130, 

TGF � -regulated pathways differing between Schwann cells 

and epithelial cells, we investigated the expression of described 

partners of Ski in cultured Schwann cells and epithelial cells. 

Rb was up-regulated in TGF � -treated Schwann cells, whereas it 

remained unaltered in epithelial cells. Furthermore, TGF �  in-

creased  ser780 pRb levels in Schwann cells but strongly decreased 

 ser780 pRb in epithelial cells, which, in principle, is consistent 

with the observed increase in proliferation of TGF � -treated 

Schwann cells and the growth-arrested and differentiated state 

of TGF � -treated epithelial cells. However, the up-regulation 

of both total Rb and  ser780 pRb in TGF � -treated Schwann cells 

was peculiar. The classical defi nition of Rb is that of a negative 

 Figure 7.    Ski down-regulation in Schwann cells prevents TGF � -induced proliferation and  ser780 pRb localization in the cytoplasm.  (A and C) Western blot 
analysis of Ski expression (A) and immunostaining of Ski (red) and DAPI (blue) labeling in Schwann cells infected with a control shRNA (control) or a Ski-
specifi c shRNA (Ski-0% or Ski-40%) lentivirus and kept in growing medium (for Western blot analysis) or treated with TGF �  (for immunostaining; C). (B) Graph 
representing the percentage of BrdU-labeled rat Schwann cells infected with a control shRNA or a Ski-specifi c shRNA (Ski-0% or Ski-40%) lentivirus and 
cultured in DM or treated with TGF �  for 24 h. (D) Immunostaining of  ser780 pRb (pRb; green) and DAPI (blue) labeling (pRb appears turquoise when nuclear) 
in rat Schwann cells infected with a control or a Ski-specifi c shRNA (Ski-0% or Ski-40%) lentivirus and treated with TGF �  for 24 h. (E) Western blot analysis 
of P0 in rat Schwann cells infected with a control or a Ski-specifi c shRNA (Ski-0% or Ski-40%) lentivirus and cultured in DM. Lysates of cells infected with 
the control shRNA and the Ski-specifi c shRNA lentiviruses have been run on the same gel but not on consecutive lanes. (F) Western blot analysis of P0 in rat 
Schwann cells infected with a Ski-specifi c shRNA (Ski-0%) and cultured in DM or treated with TGF �  or dbCAMP for 24 h. For A, E, and F,  � -actin was used 
as loading control, and the graphs represent the densitometry of the bands of the protein of interest normalized to the loading control. Statistical analyses 
were performed using two-tailed  t  tests on at least three independent experiments. Error bars represent SEM. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001.   
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stimulated proliferation and a decrease of the myelin protein P0 

were observed when Ski expression was knocked down to un-

detectable levels in Schwann cells cultured in DM only. These 

results are in agreement with our previous data showing reduced 

levels of myelin gene expression in Ski-defi cient peripheral 

nerves and the lack of myelin in cultured dorsal root ganglia in 

the absence of Ski ( Atanasoski et al., 2004 ). 

 In our present settings, dbcAMP was able to up-regulate the 

Schwann cell differentiation marker P0 in the absence of Ski, and 

overexpression of Ski did not affect the expression of P0 and 

other differentiation markers. These data suggest that culture con-

ditions modulate Ski effects on Schwann cell differentiation. It is 

possible, although it remains to be demonstrated, that Ski does 

not act primarily on Schwann cell differentiation. The decrease of 

myelin proteins in DM in the absence of Ski could be the result of 

increased proliferation. In the present study, we show that Ski 

regulates proliferation depending on its level of expression and its 

subcellular localization. However, we cannot exclude that Ski is 

also directly involved in the control of Schwann cell differentia-

tion under certain conditions. Importantly, proliferation and dif-

ferentiation were not always interdependent in Schwann cells 

because we observed that proliferation was induced in Ski-

overexpressing Schwann cells without affecting the expression of 

differentiation markers. In this study, we have focused our inves-

tigation on the function of Ski in the regulation of the TGF �  

pathway. However, Ski seems to also regulate pathways that are 

not induced by TGF � , and further work is necessary to fully 

understand the functions of Ski in Schwann cell biology. 

 In addition to the multiple effects of TGF �  on the cell cy-

cle, proliferation, and differentiation addressed in this study, 

TGF �  also mediates Schwann cell apoptosis ( Parkinson et al., 

2004 ;  D ’ Antonio et al., 2006 ). In fact, the balance of TGF � -

mediated control of Schwann cell proliferation and apoptosis 

has been elegantly documented in TGF �  receptor II – null mice 

( D ’ Antonio et al., 2006 ). Elucidating the molecular basis of 

the pathways mediating the apoptosis effects and the potential 

relationship to the mechanisms described here will be important 

topics for further studies. On a broader scale, a detailed under-

standing of the mechanisms controlling Schwann cell prolifera-

tion and survival are of wider signifi cance to provide the basis 

to develop treatment of peripheral nerve tumors (Schwann cell 

hyperplasia), inherited peripheral neuropathies, and common 

peripheral neuropathies secondary to diabetes, cancer chemo-

therapeutic agents, toxins, and autoimmune disorders. Schwann 

cells are also under evaluation in transplantation paradigms 

to augment regeneration, when accident-caused large gaps in 

peripheral nerves have occurred, and as auxiliary cells in non-

regenerating central nervous system lesions (e.g., spinal cord 

 repair). Profound knowledge of the control of Schwann cell pro-

liferation and differentiation is of key importance for the success 

of such applications in regenerative medicine. 

 With regard to epithelial cells, TGF �  signaling plays a criti-

cal role in the control of epithelial tumor formation as a tumor 

suppressor. We show here that if Ski levels are high, there is a 

concomitant increase in  ser780 pRb, proliferation is stimulated, and 

TGF �  is unable to promote growth arrest and differentiation. It is 

interesting to note in this context that Ski levels are up-regulated 

and Rb and the nucleocytoplasmic shuttling of p130 ( Chestukhin 

et al., 2002 ). It has been speculated that the pocket family mem-

bers accumulate in the cytoplasm during the late G1 phase of 

the cell cycle to provide a rapid and effi cient way to relieve 

pocket protein – mediated repression of E2F-dependent tran-

scription. Additionally, in transformed human lung fi broblasts 

in which a Cdk4 mutation leads to loss of sensitivity to p16 in-

hibition ( Jiao et al., 2006 ), hyperphosphorylated Rb is increased 

and mislocalized to the cytoplasm. This is possibly one of the 

reasons for allowing these transformed cells to evade growth-

regulatory constraints. These previous studies used tumor cells 

that have acquired various mechanisms allowing escape from 

cell cycle exit ( Chestukhin et al., 2002 ;  Jiao et al., 2006 ). Impor-

tantly, we show here that cytoplasmic relocalization of Rb also 

occurs in primary Schwann cells during proliferation and is 

likely an important component of the normal regulatory circuit 

in this cell type. If Schwann cells were treated with TGF � , Ski 

and  ser780 pRb moved in concert to the Schwann cell cytoplasm 

where Ski and  ser780 pRb partially colocalized and interacted. 

This is likely to be of physiological importance also in vivo 

 because a similar cytoplasmic colocalization and interaction of 

Ski with  ser780 pRb was observed in early postnatal development 

of the sciatic nerve when Schwann cells still proliferate. Whether 

hyperphosphorylated Rb plays an active role in the regulation 

of cytoplasmic Ski (for example, by regulating its stability) re-

mains to be determined. 

 Overexpression of Ski induced Rb hyperphosphory-

lation and the colocalization of both proteins in the cytoplasm of 

Schwann cells and epithelial cells. Furthermore, proliferation of 

Schwann cells and epithelial cells was stimulated independently 

of TGF � , and TGF �  was unable to trigger efficient growth 

 arrest and differentiation of Ski-overexpressing epithelial cells. 

These results indicate that a high expression of Ski promotes 

proliferation and suggest that at least a part of this effect is 

caused by the increased phosphorylation of Rb and its seques-

tration in the cytoplasm. These fi ndings are in partial disagree-

ment with our previous study ( Atanasoski et al., 2004 ) in which 

Ski overexpression did not promote proliferation of Schwann 

cells in DM but decreased TGF � -induced proliferation and up-

regulated myelin gene transcripts and the myelin protein peri-

axin. We have not been able to identify the causes for these 

differences. We must assume that they are caused by different 

culture conditions or unknown biological variants. Different fe-

tal calf sera, pituitary extracts, or preparation variability of pri-

mary Schwann cells are potential candidates. 

 When Ski was knocked down in Schwann cells, TGF �  

was no longer able to stimulate proliferation compared with the 

DM condition, and there was no or very reduced phospho-Rb 

(pRb) cytoplasmic localization. When Ski was knocked down 

to undetectable levels, TGF �  even decreased proliferation. 

These results indicate that Ski expression modulates the effect 

of TGF �  on Schwann cell proliferation and pRb relocalization 

to the cytoplasm and suggest that pRb cytoplasmic localization 

is very likely to account for at least a part of TGF � -induced 

proliferation of Schwann cells. 

 Our results further indicate that Ski is also involved in the 

control of other pathways than those induced by TGF �  because 
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 Western blotting 
 Sciatic nerves were dissected, frozen in liquid nitrogen, pulverized with a 
chilled mortar and pestle, lysed in radioimmunoprecipitation assay (RIPA) buf-
fer (10 mM Tris/HCl, pH 7.4, 150 mM NaCl, 50 mM NaF, 1 mM NaVO 4 , 
1 mM EDTA, 0.5% wt/vol sodium deoxycholate, and 1% Nonidet P-40) for 
15 min on ice, and centrifuged to pellet debris. Supernatants were col-
lected, and protein concentration was determined by bicinchoninic acid 
(BCA) assay (Bio-Rad Laboratories). 

 Cells were washed three times in PBS, lysed in RIPA buffer for 15 min 
on ice, and centrifuged to pellet debris. Sciatic nerves and cell lysates were 
submitted to SDS-PAGE and analyzed by Western blotting as described 
previously ( Jacob et al., 2005 ). 

 The primary antibodies used were as follows: rabbit polyclonal anti-
Ski (1:1,000; H-329; Santa Cruz Biotechnology, Inc.), mouse mono-
clonal anti-Ski (1:1,000; Cascade Bioscience), mouse monoclonal anti-Rb 
(1:2,000; Chemicon), rabbit polyclonal anti-Rb (1:1,000; NeoMarkers), 
rabbit polyclonal anti- ser780 pRb (1:2,000; Cell Signaling Technology), 
mouse monoclonal anti-P0 (1:1,000; Astexx Ltd), rabbit polyclonal anti-
periaxin (1:1,000; provided by P. Brophy, University of Edinburgh, Edin-
burgh, Scotland, UK), rabbit polyclonal anti-PMP22 (homemade; 1:2,000), 
mouse monoclonal anti –  � -actin (1:5,000; Sigma-Aldrich), mouse mono-
clonal anti – glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 1:3,000; 
Hytest Ltd.), goat polyclonal antilamin (1:2,000; lamin A [C20]; Santa 
Cruz Biotechnology, Inc.), rabbit polyclonal anti – cyclin D1 (1:2,000; 
C-20; Santa Cruz Biotechnology, Inc.), and mouse monoclonal anti-SMA 
(1:1,000; Sigma-Aldrich). 

 Immunoprecipitation 
 Sciatic nerves and cell lysates were prepared as described in the previous 
section. 1 ml of cleared lysates was rotated with immunoprecipitating 
antibodies (1  μ g of rabbit polyclonal Ski) overnight at 4 ° C. 40  μ l of pro-
tein A/G PLUS (Santa Cruz Biotechnology, Inc.) was added, and samples 
were rotated for 2 h at 4 ° C. Immunoprecipitates were pelleted, washed 
three times with RIPA buffer, boiled in laemmli buffer, and analyzed by 
Western blotting. 

 Subcellular fractionation 
 Cytoplasmic and nuclear fractions of sciatic nerves and cell lysates were 
separated as described previously ( Wesemann et al., 2004 ) and analyzed 
by Western blotting or subjected to immunoprecipitation. 

 Densitometry 
 Blots were digitized using a scanner (ScanMaker X12 USL; Microtek) and 
analyzed by densitometry with Image 1.63 (National Institutes of Health). 

 Immunofl uorescence 
 Cells were fi xed with 4% PFA in 100 mM PBS, pH 7.4, for 20 min at 4 ° C, 
washed in PBS, blocked for 15 min in PBS containing 0.1% saponin (or 
0.3% Triton X-100) and 2% goat serum, and incubated with primary anti-
bodies (rabbit polyclonal Ski at 1:100; mouse monoclonal Ski at 1:100; 
mouse monoclonal Rb at 1:50; rabbit polyclonal  ser780 pRb at 1:400; mouse 
monoclonal SMA at 1:300; mouse monoclonal EEA-1 at 1:700 [Transduc-
tion Laboratories]; and mouse monoclonal ubiquitin [P4D1] at 1:200 
[Santa Cruz Biotechnology, Inc.]) overnight at 4 ° C in blocking buffer. Cells 
were washed and incubated with secondary antibodies coupled to Alexa-
Fluor488 or Cy3 for 1 – 2 h at room temperature (1:500 – 1:750; Jackson 
ImmunoResearch Laboratories). 

 For BrdU labeling assay, the reagents were obtained from BrdU La-
beling and Detection kit I (Roche). In brief, cells were incubated with BrdU 
labeling reagent (1:1,000) for 1 h at 37 ° C with 5% CO 2 /95% air, washed 
with PBS, fi xed with 70% ethanol in 50 mM glycine, pH 2.0, for 20 min at 
 � 20 ° C, washed, and incubated with anti-BrdU with nucleases (mouse 
monoclonal BrdU antibody; 1:25) in incubation buffer (provided in the kit) 
for 30 min at 37 ° C. Cells were washed in PBS and incubated with anti –
 mouse Ig-fl uorescein (secondary antibody; 1:20) for 30 min at 37 ° C. 
When double labeling was performed, the other primary antibody was in-
cubated at the same time as the BrdU antibody. 

 Cells were observed using a fl uorescence microscope (Axioplan2 
Imaging; Carl Zeiss, Inc.) with 20 ×  0.50 NA, 40 ×  0.75 NA, or 63 ×  1.25 
NA oil immersion plan Neofl uar objectives (Carl Zeiss, Inc.). Images were 
digitized with a camera (PowerShot G5; Canon) and acquired with Axio-
vision 4.5 software (Carl Zeiss, Inc.). Brightness and contrast of images 
were adjusted using Photoshop 7.0 (Macintosh version; Adobe). 

 For confocal analyses, cells were observed using an inverse micro-
scope (DMIRE2; Leica) and a point laser-scanning confocal microscope 

in many tumor cells ( Nomura et al., 1989 ;  Fumagalli et al., 1993 ). 

Up-regulation of Ski and its interaction with Rb in the cytoplasm 

may therefore constitute a mechanism by which cancer cells are 

able to escape from cell cycle exit. 

 Materials and methods 
 Cell culture 
 Primary Schwann cells were derived from P2 – 3 Wistar rat sciatic nerves and 
dissociated in 0.3 mg/ml collagenase type I (Sigma-Aldrich) and 2.5 mg/ml 
trypsin (Sigma-Aldrich) in DME (Invitrogen) at 37 ° C and 5% CO 2 /95% air 
for 1 h. 

 After the addition of DME containing 10% FCS (Invitrogen), cells were 
centrifuged at 500  g  for 10 min, resuspended in DME containing 10% FCS, 
1:500 penicillin/streptomycin (Invitrogen), and 10  μ M cytosine arabinoside 
(Sigma-Aldrich), and plated on plastic dishes coated with poly- L -lysine 
(Sigma-Aldrich). After 24 h at 37 ° C and 5% CO 2 /95% air, cells were 
washed and incubated in Schwann cell growing medium (DME containing 
10% FCS, 1:500 penicillin/streptomycin, 4  μ g/ml of crude glial growth fac-
tor [bovine pituitary extract; BioReba Biotechnology, Inc.], and 2  μ M for-
skolin [Sigma-Aldrich]) until they reached confl uency. They were then purifi ed 
by sequential immunopanning as described previously ( Dong et al., 1997 ). 

 For growth arrest, cells were incubated for 2.5 d in DM containing 
0.5% FCS, 1:500 penicillin/streptomycin, 100  μ g/ml of human apotransfer-
rin, 60 ng/ml progesterone, 1  μ g/ml insulin, 16  μ g/ml putrescine,   400 ng/ml 
 L- thyroxin, 160 ng/ml selenium, 10 ng/ml triiodothyronine, and 300  μ g/ml 
BSA in DME/F12 (Invitrogen). Supplements were purchased from Sigma-
 Aldrich. For treatment with 10 ng/ml TGF � 1 (R & D Systems) or 1 mM db-
cAMP (Sigma-Aldrich), cells were incubated in DM overnight and treated for 
2 d (unless stated differently). The rat epithelial cell line WB-F344 was pro-
vided by J.E. Trosko (Michigan State University, East Lansing, MI). WB-F344 
cells were cultured in DME containing 10% FCS and 1:500 penicillin/strepto-
mycin (growing medium). For differentiation, cells were incubated in DM 
overnight and treated with 10 ng/ml TGF � 1 for 4 – 5 d. 

 Preparation of cryosections and teased fi bers 
 Animal use (Wistar and Sprague-Dawley rats; Elevage Janvier) was ap-
proved by the veterinary offi ce of the Canton of Zurich, Switzerland. Process-
ing of rat sciatic nerves was performed as previously described ( Atanasoski 
et al., 2001 ). 

 Generation of adeno- and lentiviruses 
 The Ski-overexpressing adenovirus and its control were generated as de-
scribed previously ( Atanasoski et al., 2004 ). For the Ski-overexpressing lenti-
virus construct, the GFP sequence of the pLentiLox 3.7 construct (American 
Type Culture Collection) was excised, and the human Ski cDNA coding se-
quence was inserted between NheI and EcoRI restriction sites (EcoRI was 
blunted before insertion). The pLentiLox 3.7 construct expressing GFP was 
used as a control. Both Ski-0% shRNA constructs, the Ski-40% shRNA con-
struct, and the Non-Target shRNA Control construct were purchased from 
Sigma-Aldrich. To produce lentiviral particles, HEK293T cells were cotrans-
fected with each lentiviral construct together with the packaging constructs 
pLP1, pLP2, and pLP/vesicular stomatitis virus glycoprotein (Invitrogen) using 
Lipofectamine 2000 (Invitrogen) according to the recommendations of the 
manufacturer (ViraPower Lentiviral Expression Systems manual). 

 Infection of Schwann cells and WB-F344 cells with adenoviruses 
or lentiviruses 
 The Ski-overexpressing adenovirus was used as previously described 
( Atanasoski et al., 2004 ). In brief, adenoviral particles were added to rat 
Schwann cells in their growing medium and to WB-F344 cells in DM at an 
MOI of 1,000. The next day, cells were washed. Schwann cells were 
maintained in their growing medium for an additional 2 d before use for 
experiments, and WB-F344 cells were maintained in DM alone or treated 
with TGF �  for 4 – 5 d. 

 The Ski-overexpressing lentivirus or Ski shRNA lentiviruses were in-
cubated overnight with Schwann cells or WB-F344 cells in their respective 
growing medium containing 8  μ g/ml Polybrene (Sigma-Aldrich) at an MOI 
of 5. The next morning, cells were washed and maintained in their re-
spective growing medium for an additional day. Cells transduced with Ski-
overexpressing lentiviruses were then used for experiments. Schwann cells 
transduced with Ski shRNA lentiviruses were selected with 2  μ g/ml puro-
mycin for 2 d before use for experiments. 
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