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    Introduction 
 Meiosis is a special type of cell division that generates haploid 

gametes from diploid progenitors. During meiosis, two rounds 

of chromosome segregation successively take place without an 

intervening S phase. At meiosis I (MI), homologues segregate 

apart from each other (reductional segregation), whereas at mei-

osis II (MII), sister chromatids segregate apart from each other 

(equational segregation). These distinct types of chromosome 

segregation depend on distinct types of spindle attachment of 

chromosomes: at MI, homologues attach to the opposite spindle 

poles (bipolar attachment), whereas sister chromatids attach to 

the same pole (monopolar attachment); in contrast, at MII, sis-

ter chromatids attach to the opposite poles. How these distinct 

types of attachment are properly established is one of the funda-

mental problems in meiosis. 

 It is thought that the spindle assembly checkpoint (SAC) 

ensures proper spindle attachments of chromosomes. Chromo-

somes attach to the spindle via a special site called the kineto-

chore, and the spindle – kinetochore interaction is stabilized by 

tension generated at the kinetochore. The SAC delays anaphase 

onset by sensing unattached kinetochores and/or a lack of tension. 

This delay provides time for the cells to correct the improper at-

tachments, thereby ensuring accurate chromosome segregation 

( Musacchio and Hardwick, 2002 ). 

 The SAC inhibits anaphase promoting complex/cyclo-

some (APC/C), an E3 ubiquitin ligase that promotes protea-

some-dependent protein degradation and induces anaphase. 

During mitosis, APC/C is activated by two related factors, 

Cdc20/Slp1/Fzzy and Cdh1/Ste9/srw1/Fzzy-related (for review 

see  Peters, 2006 ). Cdc20-activated APC/C (APC/C Cdc20 ) fi rst ini-

tiates anaphase onset by promoting the degradation of B-type cy-

clin and securin (e. g., Cut2 in fi ssion yeast [ Funabiki et al., 1996 ] 

and Pds1 in budding yeast [ Cohen-Fix et al., 1996 ;  Yamamoto 

et al., 1996 ]). Cyclin B degradation causes the decline of the 

 D
uring mitosis, the spindle assembly checkpoint 

(SAC) inhibits the Cdc20-activated anaphase-

promoting complex/cyclosome (APC/C Cdc20 ), which 

promotes protein degradation, and delays anaphase 

 onset to ensure accurate chromosome segregation. How-

ever, the SAC function in meiotic anaphase regulation is 

poorly understood. Here, we examined the SAC function 

in fi ssion yeast meiosis. As in mitosis, a SAC factor, Mad2, 

delayed anaphase onset via Slp1 (fi ssion yeast Cdc20) 

when chromosomes attach to the spindle improperly. 

However, when the SAC delayed anaphase I, the interval 

between meiosis I and II shortened. Furthermore, ana-

phase onset was advanced and the SAC effect was re-

duced at meiosis II. The advancement of anaphase onset 

depended on a meiosis-specifi c, Cdc20-related factor, 

Fzr1/Mfr1, which contributed to anaphase cyclin decline 

and anaphase onset and was ineffi ciently inhibited by the 

SAC. Our fi ndings show that impacts of SAC activation 

are not confi ned to a single division at meiosis due to 

meiosis-specifi c APC/C regulation, which has probably 

been evolved for execution of two meiotic divisions.

 Spindle checkpoint activation at meiosis I 
advances anaphase II onset via meiosis-specifi c 
APC/C regulation 

  Ayumu   Yamamoto ,  1,2    Kenji   Kitamura ,  3    Daisuke   Hihara ,  1    Yukinobu   Hirose ,  1    Satoshi   Katsuyama ,  1   and  Yasushi   Hiraoka   2   

  1 Department of Chemistry, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan 
  2 Cell Biology Group, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Nishi-ku, Kobe 651-2492, Japan 
  3 Center for Gene Science, Hiroshima University, Higashi Hiroshima 739-8527, Japan    

©  2008  Yamamoto et al. This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months after the publication 
date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/182/2/277/1894800/jcb_200802053.pdf by guest on 08 February 2026



JCB • VOLUME 182 • NUMBER 2 • 2008 278

wild-type fi ssion yeast cells. Conventional analysis of fi xed 

specimens of cultures synchronously induced to enter meiosis 

was not suitable for characterization because of poor synchroni-

zation of the cultures and the rapid progression of meiosis. 

To circumvent this problem, we examined the dynamics of the 

spindle and the chromosome three-dimensionally in individual 

living cells. Visualization of the spindle using GFP-tagged 

 � 2-tubulin showed three distinct phases in spindle elongation at 

both divisions, as seen in mitosis ( Fig. 1, A and B ;  Nabeshima 

et al., 1998 ). A short spindle forms in the fi rst phase ( Fig. 1, A 

and B , PI) and remains relatively constant in length in the second 

phase (PII); the spindle further elongates and eventually 

disappears in the third phase (PIII). At MII, the two spindles 

elongated synchronously with almost identical kinetics ( Fig. 1 B , 

right). The behavior of the MI spindle was consistent with 

that described by  Yamaguchi et al. (2003) . 

 We next examined the chromosome dynamics in relation 

to the spindle dynamics. We visualized several chromosome loci 

using the lac operator/repressor GFP tagging system ( Fig. 1 C ; 

 Yamamoto and Hiraoka, 2003 ;  Ding et al., 2004 ) and the spindle 

pole body (SPB) using the GFP-tagged SPB component Sid4 

( Tomlin et al., 2002 ). The GFP-visualized chromosomal loci and 

spindle poles were distinguished by their distinct signal intensity 

and behavior. Visualization of centromeres of chromosome II 

( cen2 ) showed that in half of the cases (4 out of 8), the centro-

meres were located near the SPB before spindle formation at MI 

( Fig. 1 D , PI, 0 min). In the rest of the cases, the centromeres 

were located away from the SPB ( Fig. 1 E , 0 min). Regardless of 

the initial centromere positions, pairs of homologous centromeres 

became located between the two poles during phase I ( Fig. 1, D , 

6 min; and  Fig. 1, E , 8 min) and, subsequently, coordinately 

oscillated with a relatively constant distance between the two 

poles until the end of phase II ( Fig. 1 D , PII;  Fig. 1 D , right, D1 

and D2; and Table S2, available at http://www.jcb.org/cgi/

content/full/jcb.200802053/DC1). Thus, homologues attach to both 

spindle poles during spindle formation and experience opposing 

forces from the spindle, and phase II probably corresponds to 

metaphase in higher eukaryotes, during which chromosomes 

oscillate coordinately between the spindle poles at the spindle 

equator ( Skibbens et al., 1993 ). The distances between the ho-

mologous centromeres during phase II appeared to vary among 

cells, perhaps refl ecting different chromosomal positions of the 

chiasma that links homologues; the further away the chiasma is 

from the centromere, the further apart centromeres are pulled. 

At the end of phase II, the homologous centromeres separated from 

each other to reach the opposite poles ( Fig. 1 D , 25 min) and 

further separated during phase III with the elongating spindle 

( Fig. 1 D , PIII). Thus, homologues sequentially undergo anaphase A 

and anaphase B during reductional segregation. Simultaneous 

visualization of different centromere-linked loci ( Fig. 1 C ,  cen2  

and  lys1 ) showed that different chromosomes undergo anaphase 

almost concomitantly (not depicted). Sister centromeres mostly 

remained associated with each other throughout MI, as shown by 

rare splitting into two of the  cen2  dots (3.9% of observed events). 

In contrast, sister chromatid arms separated around anaphase on-

set ( Fig. 1 F , 21 min). This is consistent with the idea that sister 

chromatid arm separation causes resolution of the chiasma and 

Cdk activity, whereas securin degradation liberates separase, 

which resolves sister chromatid cohesion and activates the FEAR 

pathway that also regulates anaphase events ( D ’ Amours and 

Amon, 2004 ). After APC/C Cdc20  initiates anaphase, APC/C Cdh1  

facilitates exit from mitosis by degrading additional APC/C sub-

strates and maintains the low level of cyclin B during the next 

G1 phase. It has been shown in mitosis that the SAC targets 

APC/C Cdc20 . Mad2, one of the best-characterized SAC factors, di-

rectly binds to Cdc20 to inhibit the APC/C Cdc20  activity ( Musacchio 

and Hardwick, 2002 ). Mad2 binding is thought to be stimu-

lated by kinetochores that fail to attach to the spindle, as Mad2 

accumulates at unattached kinetochores, which generate signals 

to delay anaphase onset. 

 At meiosis, the SAC probably delays anaphase onset, as in 

mitosis, but meiotic SAC functions are not fully understood. 

Direct observation of chromosomes in insects showed that the 

SAC delays chromosome segregation at MI ( Nicklas, 1997 ), 

and previous studies of recombination-defective mutants of 

budding and fi ssion yeasts showed that when tension is not gen-

erated at the kinetochore, the SAC induces a delay at MI ( Shonn 

et al., 2000 ;  Yamaguchi et al., 2003 ). However, it has never been 

shown in any organisms that the SAC delays anaphase II onset. 

 Moreover, impacts of SAC activation may differ at meio-

sis. Anaphase regulation has been shown to be different at meiosis. 

Studies in frogs showed that APC/C does not fully degrade cyclin 

at the end of the fi rst division so that the Cdk activity is retained 

at an intermediate level at the MI – MII transition, which leads 

to initiation of MII without starting DNA replication ( Iwabuchi 

et al., 2000 ). Consistently, meiosis-specifi c factors regulate 

APC/C. In fi ssion yeast, a meiosis-specifi c APC/C activator, 

Fzr1, is required for proper sporulation ( Asakawa et al., 2001 ; 

 Blanco et al., 2001 ), and Mes1, a meiosis-specifi c inhibitor of 

APC/C slp1 , is required for initiation of MII ( Izawa et al., 2005 ). 

In budding yeast, Ama1, a putative functional homologue of 

Fzr1, is required for proper execution of MI and subsequent 

sporulation ( Cooper et al., 2000 ;  Oelschlaegel et al., 2005 ; 

 Penkner et al., 2005 ). A meiosis-specifi c APC/C activator also 

plays a critical role in meiotic anaphase in  Drosophila melano-
gaster  ( Jacobs et al., 2002 ). Meiosis-specifi c anaphase regula-

tion raises the possibility that SAC activation causes different 

consequences at meiosis. 

 In this study, we sought to elucidate the precise regulatory 

function of the SAC in the progression of meiosis by observ-

ing meiotic events in living fi ssion yeast cells. We show that 

the SAC delays anaphase onset not only at MI but also at MII. 

We further show that impacts of SAC activation are not con-

fi ned to a single division at meiosis because of meiosis-specifi c 

regulation of APC/C, which has probably been evolved for exe-

cution of two consecutive meiotic divisions. 

 Results 
 Dynamics of the spindle, the chromosome, 
and cyclin B during meiotic divisions 
in wild-type cells 
 As a fi rst step toward understanding the SAC function in mei-

otic anaphase regulation, we characterized meiotic events in 
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the lac operator repeats into the chromosome because more than 

three GFP dots were observed when we visualized the centro-

meres of all three pairs of sister chromatids using GFP-tagged 

centromere component Mis6 ( Fig. 1 H , arrows). The split sister 

centromeres frequently oscillated between the poles coordi-

nately, as homologous centromeres do at MI (Table S2). Tran-

sient separation indicates that sister centromere cohesion is 

not strong enough to resist the opposing forces and that sister 

chromatid cohesion is still retained at arms. Arm cohesion, 

however, is probably restricted to centromere-proximal regions 

because the centromere-distal arm loci ( ade8 ) remained sepa-

rated throughout MII (not depicted). Sister chromatids eventu-

ally underwent anaphase A and anaphase B, as homologues do 

at MI ( Fig. 1 G , PIII). 

thereby dissociation of homologues ( Petronczki et al., 2003 ). 

The telomere-proximal loci ( sod2 ) separated slightly later than 

other arm loci ( Fig. 1 F , right), which suggests that telomere sep-

aration occurs after arm separation. 

 At MII, sister chromatids were held together at centro-

meres, as one centromere ( cen2 ) dot ( Fig. 1 G , 5 min) and two 

arm ( ade8 ) dots (not depicted) were observed for each spindle 

in an early stage of MII. Sister centromeres probably attach to 

both poles during phase I, as indicated by the  cen2  positions be-

tween the two poles. Unexpectedly, however, they frequently 

underwent transient dissociation at phase II, as shown by the 

frequent splitting of the  cen2  dot into two ( Fig. 1 G , enlarged 

images, 13 min, arrowheads; and  Fig. 1 G , right, D1 and D2). 

This sister centromere splitting was not caused by integration of 

 Figure 1.    Dynamics of the spindle, the chromo-
some, and Cdc13 at meiosis in the wild type.  
(A and B) Spindle behavior at MI and MII. Graphs 
show changes in spindle length. In the graph in 
B, lengths of the two MII spindles are shown as 
blue and red lines. (C) An approximate map of 
GFP-visualized loci on three chromosomes used 
in this study. (D and E) Behavior of homologous 
centromeres ( cen2 ; white, arrowheads) and the 
SPB (yellow) at MI. The graph shows changes 
in distance between two SPBs (D3) and between 
one of the SPBs and each centromere (D1 and D2). 
(F) Behavior of the arm locus ( ade8 ; bottom, white, 
arrowheads, and graph) and the SPB (yellow) at 
MI. The graph shows the mean time of sister locus 
separation. Time 0 is PIII onset. (G) Behavior of sis-
ter centromeres (arrowheads) at MII. Arrowheads 
in enlarged images highlight transient sister cen-
tromere separation before anaphase. The graph 
shows changes in SPB-cen (D1 and D2) and SPB-
SPB (D3) distances at MII. (H) Centromeres were 
visualized by Mis6-GFP and the spindle was visu-
alized by mDsRed- � 2-tubulin at MII (8 min before 
anaphase). (right) Images are enlarged views of 
Mis6 dots (arrows). (I) Dynamics of Cdc13-GFP 
at meiosis in the wild type. White lines in images 
indicate cell shapes. Dotted lines in graphs show 
boundaries of the spindle phases. Error bars in-
dicate standard deviation. PI, phase I; PII, phase II; 
PIII, phase III. Bars: (A, B, and D – H) 5  μ m; (G, 
inset) 2  μ m.   

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/182/2/277/1894800/jcb_200802053.pdf by guest on 08 February 2026



JCB • VOLUME 182 • NUMBER 2 • 2008 280

dle behavior, disappearance of the spindle-localized Cdc13 and 

arm separation occurred with delayed timings ( Fig. 2, D , 28 min; 

 Fig. 2 E ; and Fig. S1 B,  rec12 ). These results indicate that 

anaphase I onset is delayed in  rec12 . 

 Depletion of Mad2 showed that the delay depended on 

the SAC. The Mad2 depletion eliminated both the extension of 

phase II and the delay in arm separation ( Fig. 2, C and E ,  rec12 
mad2 ). In addition, the Mad2 depletion also restored the three 

distinct phases and normal spindle morphology. Thus, Mad2 in-

duced the delay and the spindle abnormality in  rec12 . As in mitosis, 

Mad2 induces a delay by binding to Slp1, which plays a central 

role in meiotic anaphase (Fig. S2, A and B; and Fig. S3 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200802053/DC1; 

 Izawa et al., 2005 ), because the delay was markedly reduced 

by the  slp1-mr63  mutation ( Fig. 2 C ,  rec12 slp1-mr63 ), which 

abolishes Mad2 binding ( Kim et al., 1998 ). Furthermore, Mad2 

induces delay probably by localizing at kinetochores that fail to 

attach to the spindle properly because Mad2 centromere local-

ization was extended at MI in  rec12  (Fig. S3, B and C). 

 At MII, however, chromosome, and Cdc13 dynamics were 

largely normal except that the two spindles were frequently differ-

ent in length (Fig. S3, E and F). The longer spindle was associated 

with a larger chromosomal mass (Fig. S3 G), which may mean that 

the spindle length depends on chromosome numbers. In summary, 

our analysis of  rec12  confi rmed that the SAC delays anaphase I 

onset when chromosomes attach to the spindle improperly. 

 The SAC delays anaphase II onset in  rec8  
and  clr4  mutants 
 We next examined  rec8  and  clr4  mutants to determine if the 

SAC delays anaphase II onset. Rec8 is a subunit of a meiotic 

type of cohesin protein complex that is required for sister chro-

matid cohesion ( Watanabe and Nurse, 1999 ), whereas Clr4 is 

required for the centromere retention of Rec8 until anaphase II 

( Kitajima et al., 2003 ). In these mutants, sister chromatids are 

prematurely dissociated from each other and, thereby, chromo-

somes probably attach to the spindle improperly. If the SAC delays 

anaphase II onset, it should do so in the mutants. 

 Analysis of the chromosome dynamics confi rmed pre-

mature dissociation and improper spindle attachments of sister 

chromatids in these mutants. In  rec8 , sister chromatids underwent 

equational segregation at MI (not depicted;  Watanabe and Nurse, 

1999 ) and remained separated at MII ( Fig. 3 A , top,  rec8 ), whereas 

in  clr4 , although chromosomes underwent normal segregation 

at MI (not depicted), sister chromatids prematurely dissociated 

at MII ( Fig. 3 A , bottom,  clr4 ). As a consequence, preanaphase 

sister centromere distances increased by approximately twofold 

on average in both mutants ( Fig. 3 B ). Sister centromeres oscil-

lated between the two poles independently of each other in  rec8  

( Fig. 3 A , top,  rec8 , PII; and  Fig. 3 A , top right, D1 and D2), 

whereas they oscillated coordinately with apparent anaphase A 

movement thereafter in  clr4  ( Fig. 3 A , bottom,  clr4 , PII;  Fig. 3 A , 

bottom right, D1 and D2; and Table S2). Despite this difference, 

chromosomes attach to the spindle improperly, as shown by sis-

ter centromere segregation to the same pole (43.8% in 16 cells 

for  rec8  and 21.4% in 14 cells for  clr4 ;  Fig. 3 A , top, 34 min) and 

centromere lagging (37.5% for  rec8  and 25.0% for  clr4 ;  Fig. 3 A , 

 We also characterized the dynamics of cyclin B, Cdc13, 

which is a major substrate of APC/C and thereby a good indicator 

for the APC/C activity. Cdc13 tagged with GFP (Cdc13-GFP) 

was localized both at the spindle and throughout the nucleus at 

MI ( Fig. 1 I , 0 and 8 min). Spindle Cdc13-GFP disappeared just 

before phase III ( Fig. 1 I , 18 min; and Fig. S1 A, meiosis I, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200802053/DC1), 

whereas nuclear Cdc13-GFP disappeared during the elongation 

( Fig. 1 I , 20 – 30 min). It should be noted that the disappearance of 

nuclear Cdc13-GFP appeared to start from the spindle poles to 

the spindle midzone ( Fig. 1 I , 20 min), as seen in  D. melanogas-
ter  embryos ( Huang and Raff, 1999 ). After MI exit, Cdc13-GFP 

reaccumulated in the nucleus and on the SPB ( Fig. 1 I , 50 min); 

then the MII spindle was formed, and Cdc13-GFP showed a 

similar behavior to that seen at MI ( Fig. 1 I , 50 – 80 min; and 

Fig. S1 A, meiosis II). The observed Cdc13-GFP behavior was con-

sistent with that described by  Izawa et al. (2005)  and similar to the 

behavior of Cdc2 kinase described by  Decottignies et al. (2001) . 

 The SAC delays anaphase I onset 
in  rec12  mutant 
 Having characterized the meiotic events in the wild type, we next 

examined a  rec12-152  mutant, which is defective in the forma-

tion of recombination-associated DNA double-strand breaks ( Lin 

and Smith, 1994 ;  Cervantes et al., 2000 ), to understand anaphase I 

regulation by the SAC in detail. In recombination mutants, chro-

mosomes attach the spindle improperly because of the lack 

of chiasmata, and thereby, the SAC becomes activated at MI. 

Indeed, the SAC was previously found to delay anaphase I onset in 

a  rec7  recombination-defective mutant ( Yamaguchi et al., 2003 ). 

 Analysis of the chromosome dynamics confi rmed im-

proper spindle attachment of chromosomes at MI in  rec12 . 

Homologous centromeres oscillated between the two poles in-

dependently of each other, with kinetic parameters similar to 

those in the wild type ( Fig. 2 A , top, PII;  Fig. 2 A , bottom; 

 Fig. 2 A , top right, D1 and D2; and Table S2) and with frequent 

arrival at the poles before anaphase I ( Fig. 2 A , top, 12 min; and 

 Fig. 2 A , bottom, 16, 19, and 27 min); they frequently segre-

gated to the same pole (3 out of 7 cases;  Fig. 2 A , top, 59 min). 

In addition, sister centromeres occasionally underwent equa-

tional segregation (2 of 14 cases). Thus, both bipolar attachment 

of homologues and monopolar attachment of sister chromatids 

were perturbed in  rec12 . 

 Behavior of the spindle, the chromosome, and Cdc13-

GFP showed that anaphase progression was delayed. The spin-

dle dynamics were aberrant in the mutant. In half of the cells 

(9 out of 18 cells), the spindle underwent gradual elongation and 

sudden regression at phase II ( Fig. 2 B , top left and top right, 

arrow); in the rest of the cells, the spindle continually elongated 

to reach its maximum length after phase I, leading to a lack of 

the three distinct phases ( Fig. 2 B , bottom left and bottom right), 

and showed an aberrant morphology (thin spindle midzone; 

 Fig. 2 B , bottom, arrowheads). In both cases, the lifetime of the 

spindle was markedly extended ( � 1.4 times longer on average), 

which indicates that MI progression was delayed in the mutant. 

In the cells with three distinct phases, phase II was solely ex-

tended ( Fig. 2 C ,  rec12 ). Furthermore, irrespective of the spin-
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a discernible phase III elongation with normal spindle morphol-

ogy. In  clr4 , however, the MII spindle behaved almost normally 

at phase II ( Fig. 3 C ,  clr4 ). Despite this difference, the phase II 

duration was signifi cantly extended in both mutants ( Fig. 3 D , 

 rec8  and  clr4 ). Consistently, in  rec8 , Cdc13 disappeared from 

the spindle with signifi cant delay (Fig. S1 B,  rec8 ), and in  clr4 , 

top right,  rec8 ), and the parameters of centromere movements 

were similar (Table S2). 

 Analysis of the spindle, chromosome, and Cdc13 dy-

namics showed anaphase delay in the mutants. In  rec8 , the MII 

spindle prematurely elongated and regressed at phase II like the 

MI spindle in  rec12  ( Fig. 3 C ,  rec8 ), but it eventually underwent 

 Figure 2.    Dynamics of the chromosome, the spin-
dle, and Cdc13 at MI in  rec12  mutant.  (A) Behav-
ior of homologous centromeres and the SPB at MI. 
Arrowheads indicate the homologous centromeres 
( cen2 ). Bottom panels highlight independent oscil-
lations of the homologous centromeres (white and 
red arrowheads) at phase II. The graph shows 
changes in the SPB-cen (D1 and D2) and SPB-SPB 
(D3) distances. (B) Behavior of the MI spindle 
in  rec12 . The arrow in the top graph shows the 
sudden regression of the spindle. Arrowheads in-
dicate the thin spindle midzone. Dotted lines in 
graphs show boundaries of the spindle phases. PI, 
phase I; PII, phase II; PIII, phase III. (C) Duration 
of spindle phases. (D) Dynamics of Cdc13-GFP at 
MI. (E) Timing of arm locus separation at MI. Bars 
show time of separation of the  ade6 ,  ade8 , and 
 sod2  loci after spindle formation. At least seven 
cells were examined for each locus. Wt, wild type. 
Error bars indicate standard deviation. Bars: (A, top, 
B, and D) 5  μ m; (A, bottom) 2  μ m.   
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times ( Fig. 3 C ,  rec8 ), which suggests that the SAC regulates 

two MII divisions independently of each other in the same cell. 

Collectively, we concluded that the SAC delays anaphase II on-

set when chromosomes improperly attach to the spindle. 

 Anaphase I delay causes advancement 
of anaphase II onset 
 We examined if the SAC activation causes any other impacts on 

the progression of meiosis. We noticed that the interval between 

anaphase A started with delayed timing (14.9  ±  3.8 min for the 

wild type [ n  = 22] but 18.9  ±  2.6 min after the start of phase II 

for  clr4  [ n  = 15]). These results indicate that anaphase II onset 

was delayed in both mutants. 

 As seen at MI in the  rec12  mutant, the Mad2 depletion 

and  slp1-mr63  mutation eliminated the delay ( Fig. 3 D ,  rec8 
mad2 ,  clr4 mad2 , and  clr4 slp1-mr63 ). Therefore, Mad2 delays 

anaphase II onset via Slp1. It should be noted that two MII spin-

dles sometimes started anaphase spindle elongation at different 

 Figure 3.    Dynamics of the chromosome and 
the spindle at MII in  rec8  and  clr4  mutants.  
(A) Behavior of sister centromeres (white and 
red arrowheads) and the SPB (yellow) at MII 
in  rec8  (top left and right) and  clr4  (bottom left 
and right) mutants. The graph shows changes 
in the SPB-cen (D1 and D2) and SPB-SPB (D3) 
distances. PI, phase I; PII, phase II; PIII, phase III. 
Bar, 2  μ m. (B) Mean distances of centromeres 
at phase II. More than eight pairs of centro-
meres were examined for each analysis. 
(C) Changes in spindle length at MII in the 
 rec8  (left) and  clr4  (right) mutants. Graphs 
show kinetics of two MII spindles in the same 
cell. Dotted lines in graphs show boundaries of 
the spindle phases. (D) Duration of the spindle 
phases at MII. (E) Duration of MI, MII, and the 
MI – MII interval. Wt, wild type. Error bars indi-
cate standard deviation.   
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did not cause any signifi cant advancement of anaphase onset 

at MII ( Fig. 3 D , mad2), although it did at MI (P  <  0.000002 by 

 t  test;  Fig. 2 C , mad2). 

 To obtain a clue about the mechanism of the advancement 

of anaphase II onset, we quantifi ed the amount of Cdc13-GFP 

in the nucleus by GFP fl uorescence intensities and examined its 

changes during meiotic progression. In  rec12 , timing of Cdc13 

decrease was markedly different in relation to anaphase onset, 

which was judged by spindle elongation and/or disappearance 

of Cdc13 from the spindle. In the wild-type cells, the nuclear 

Cdc13 started to decline slightly after anaphase onset at MI 

(1 min later at MI on average,  n  = 9), and the Cdc13 amount 

reached the minimal level around the end of anaphase I ( Fig. 4 A , 

Wt). The subsequent Cdc13 reaccumulation started after ana-

phase I, and Cdc13 again declined around anaphase onset (a 

mean 0.1 min earlier,  n  = 15;  Fig. 4 A , Wt, MII, arrow) and 

eventually disappeared. In contrast, in  rec12 , despite the marked 

delay in anaphase onset ( Fig. 4 A ,  rec12 , MI, arrow), Cdc13 de-

cline was only slightly delayed at MI so that its decline started 

before anaphase onset (3.7 min earlier,  n  = 8;  Fig. 4 A ,  rec12 , 

MI, arrow) and the amount of Cdc13 reached the minimal level 

before the end of anaphase I. Cdc13 reaccumulated after ana-

phase I as in the wild type, but the next decline started before 

anaphase onset at MII (2.2 min earlier,  n  = 11;  Fig. 4 A ,  rec12 , 

MII, arrow). Furthermore, the maximal level of Cdc13 at MI 

and MII and its minimal level after anaphase I were slightly de-

creased on average (Fig. S1 D). It is currently unclear if this 

decrease is signifi cant because of the lack of proper internal con-

trols for the GFP signal. mDsRed-tagged  � 2-tubulin expression 

did not affect the Cdc13 dynamics, as the same dynamics were 

observed in cells lacking the GFP-tubulin (Fig. S1 C). 

 The preanaphase I decrease of Cdc13 in  rec12  raised the 

possibility that there is another cyclin degradation activity that 

MI and MII was shortened in  rec12  so that despite the extensive 

delay in MI execution, MII started with a slight delay after MI 

initiation ( Fig. 3 E , Wt and  rec12 , MII). This may mean that MII 

is programmed to start at a certain time after MI initiation and 

somewhat independently of MI completion. 

 More interestingly, in  rec12 , anaphase II onset was sub-

stantially advanced in relation to MII initiation, as shown by the 

shortening of phase II by  � 4 min on average ( � 26% shorten-

ing;  Fig. 3 D ,  rec12 , phase II, P  <  0.0000005). This advance-

ment was not specifi c to this mutant nor caused by expression of 

GFP-tagged  � 2-tubulin because phase II shortening was also 

observed in the  rec7  mutant (unpublished data), and almost 

identical results were obtained when the spindle dynamics was 

monitored by a GFP-tagged SPB protein Spo15 ( Nakase et al., 

2004 ). Therefore, when the SAC is fully activated at MI, ana-

phase II onset advances. 

 We next depleted Clr4 in  rec12  to determine if the MI 

SAC activation infl uences the SAC-induced anaphase II delay. 

In the  rec12  background, Clr4 depletion brought about the ana-

phase II delay, but the delay was shorter ( Fig. 3 D ,  rec12  and 

 rec12 clr4 , phase II); on average, Clr4 depletion extended phase II 

by 9 min at MII in the  rec12 +   background ( Fig. 3 D , Wt and 

 clr4 ) but only by 4.8 min in the  rec12  �    background ( Fig. 3 D , 

 rec12  and  rec12 clrr4 ). These results indicate that in the  rec12  �    
background, the SAC cannot induce a full level of delay at MII. 

Thus, in addition to advancement of anaphase onset, the MI 

SAC activation reduces the SAC effect at MII. 

 Fzr1 contributes to anaphase initiation and 
cyclin degradation at meiosis 
 Why does anaphase II onset advance in  rec12 ? One possibility 

is that reduction of the SAC activity causes the advancement. 

This possibility is unlikely because the Mad2 depletion alone 

 Figure 4.    Changes in the amount of nuclear Cdc13.  (A) Changes 
in Cdc13-GFP amount in the nucleus at meiosis. After fi rst nuclear 
division, the amount is shown as the total amount in the two nu-
clei. (B) Effect of Fzr1 depletion on changes in nuclear Cdc13-
GFP amount at MI. Arrows show disappearance of Cdc13-GFP 
from the spindle. Gray areas show anaphase determined by 
Cdc13 disappearance from the spindle and spindle behavior. 
Time 0 is the start of MI spindle formation. Dotted lines in graphs 
show boundaries of different meiotic stages.   
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 Fzr1 advances anaphase II onset in the 
 rec12  mutant 
 As Fzr1 contributes to anaphase, we examined if Fzr1 is respon-

sible for the preanaphase cyclin degradation and the advance-

ment of anaphase II onset in  rec12.  The Fzr1 depletion, although 

it caused no additional delay in anaphase onset ( Fig. 2 C ,  rec12 
fzr1 ), delayed nuclear Cdc13 decline at MI in  rec12  ( Figs. 4 B  

and S1 C,  rec12 fzr1 ) so that nuclear Cdc13 declined almost 

concomitantly with anaphase onset (0.3 min after the onset on 

average,  n  = 6). This indicates that Fzr1 induces the pre-

anaphase Cdc13 decline and suggests that the SAC inhibits Fzr1 

ineffi ciently. Supporting the ineffi cient inhibition of Fzr1, Fzr1 

is ineffi ciently inhibited by the SAC; this activity induces pre-

anaphase cyclin degradation at MI and causes advancement of 

anaphase II onset. To test this possibility, we examined Cdc20-

related APC/C activators with a meiosis-specifi c expression in 

the fi ssion yeast: Fzr1, a factor previously shown to be required 

for proper sporulation ( Asakawa et al., 2001 ;  Blanco et al., 2001 ); 

and Fzr2 (SPAC13G6.08) and Fzr3 (SPCC1620.04c), two factors 

with unknown functions ( Asakawa et al., 2001 ). We depleted 

these factors to determine if they contribute to anaphase. 

 Depletion of either Fzr2 or Fzr3 did not cause any signifi -

cant changes in anaphase onset (Fig. S2 C, phase II) but sig-

nifi cantly shortened the MI – MII interval (Fig. S2 D, interval). 

Thus, Fzr2 and Fzr3 likely play a role in MII initiation but not 

in anaphase. In contrast, the Fzr1 depletion, though there were 

no apparent effects on two divisions or chromosome segrega-

tion (not depicted;  Asakawa et al., 2001 ), caused signifi cant 

extension of phase II at both divisions (P  <  0.05 at MI and P  <  

0.001 at MII;  Figs. 2 C and 3D ,  fzr1 , phase II) in addition to 

shortening of the MI – MII interval (Fig. S2 D, interval). This in-

dicates that Fzr1 participates in anaphase regulation in addition 

to MII initiation. Fzr1 probably contributes to the anaphase Cdc13 

degradation because the Fzr1 depletion delayed the spindle 

Cdc13 disappearance at both divisions (Fig. S1 B,  fzr1 ) and the 

nuclear Cdc13 decline at MI (the decline starts 4 min after ana-

phase I onset on average,  n  = 7;  Figs. 4 B  and S1 C,  fzr1 ). 

 The critical role of Fzr1 in the meiotic progression was fur-

ther supported by its relationship with a meiosis-specifi c factor, 

Mes1, that inhibits APC/C Slp1  to initiate MII. MII is not initiated 

in  mes1  cells, but reduction of the APC/C Slp1  activity by an 

 slp1-362  mutation restores MII in these cells ( Izawa et al., 2005 ). 

Interestingly, it was also reported that Mes1 inhibits Fzr1 as well 

as Slp1 from interacting with Cdc13 in vitro. If APC/C Fzr1  func-

tions and is inhibited by Mes1 at anaphase I in vivo, the Fzr1 de-

pletion may restore MII in the  mes1  cells, as does the  slp1-362  

mutation. We examined this possibility by monitoring the spindle 

behavior in individual cells. Consistent with previous fi ndings, 

the majority of the Mes1-lacking cells underwent only MI, and 

the population of the cells that underwent MI and MII was only 

 � 20% ( Fig. 5 A ,  mes1 ). Introduction of the  slp1-362  mutation 

restored MII in the Mes1-lacking cells, resulting in an increase in 

the population to  � 60% ( Fig. 5 A ,  mes1 slp1 ). These results sup-

port the notion that Mes1 inhibits APC/C Slp1  to initiate MII. 

Importantly, the Fzr1 depletion restored MII more effi ciently 

( Fig. 5 A ,  mes1 fzr1 ; Izawa, D., and M. Yamamoto, personal 

communication). These results suggest that Mes1 also inhibits 

APC/C Fzr1  to initiate MII and that APC/C Fzr1  degrades Cdc13 at 

anaphase I. The lower restoration effi ciency of  slp1-362  is not 

caused by metaphase arrest induced by the  slp1-362  mutation be-

cause metaphase arrest was eliminated in the  mes1 slp1  cells 

( Fig. 5 B , meiosis I), and this may rather refl ect the remaining 

weak activity of Slp1 in the  slp1-362  mutant or the distinct role of 

Slp1 in MII initiation. In the  mes1  background, in addition, the 

Fzr1 depletion additively delayed anaphase II onset together with 

the  slp1  mutation ( Fig. 5 B , meiosis II), which supports the notion 

that Fzr1 contributes to anaphase. However, such an effect was 

not observed at MI ( Fig. 5 B , meiosis I). This may mean that con-

tribution of Fzr1 to anaphase is different at MI and MII. 

 Figure 5.    Functional relationship of Mes1 with Fzr1 and Slp1.  (A) The 
population of cells that underwent MI and MII. MI and MII were judged 
by the formation of the MI and MII spindles, respectively. 21, 18, and 17 
cells were examined for the wild type,  mes1 , and other mutant strains, 
respectively. (B) Duration of the spindle phases in the  mes1  mutants. Wt, 
wild type. *, results of 4 spindles; **, results of 10 spindles. Error bars 
indicate standard deviation.   
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nisms ( Nicklas, 1961 ;  Severin et al., 2001 ;  Parry et al., 2003 ). 

The chromosome oscillation likely refl ects repeated cycles of 

chromosome detachment from one pole and their reattachment 

to the other pole, whereas the premature spindle elongation is 

probably caused by a lack of tension at the kinetochore that 

counteracts with an elongation force. Abnormal MI spindle 

morphology seen in  rec12  ( Fig. 2 B , bottom) is probably caused 

by elongation of the metaphase spindle whose microtubule dy-

namics is distinct from that of the anaphase spindle ( Mallavarapu 

et al., 1999 ;  Higuchi and Uhlmann, 2005 ). Occasional spindle 

regression may be caused by bipolar attachment of sister ki-

netochores (in  rec12 ) or a single sister kinetochore (in  rec8 ). 

We also showed that although the  clr4  mutant is defective in 

sister centromere cohesion like the  rec8  mutant, its phenotype is 

different; independent oscillation of sister chromatids and pre-

mature spindle elongation did not occur. Although Clr4 is re-

quired for chromosome localization of Rec8, Rec8 may not be 

completely dislocalized from the chromosome and may loosely 

hold sister chromatids together in  clr4 . 

 The SAC delays anaphase onset at meiosis 
 Our examination of the  rec12  mutant and the  rec8  or  clr4  mu-

tant showed that the SAC delays anaphase onset at both meiotic 

divisions. This conclusion was drawn from the delay in ana-

phase events (which include spindle elongation, cyclin degrada-

tion, and sister chromatid arm separation) and elimination of 

this delay by Mad2 depletion. In  rec12 , Mad2 depletion also 

eliminated abnormal elongation of the MI spindle, probably be-

cause the abnormality was the result of SAC-induced delay in 

metaphase – anaphase transition of the spindle. As in mitosis, the 

SAC probably inhibits APC/C Slp1  because the  slp1-mr63  muta-

tion abolishes the delay. The SAC probably senses a lack of ten-

sion at the kinetochore and/or improper spindle attachment of 

chromosomes because a lack of tension and improper attach-

ments are common in all of the mutants. To our knowledge, this 

is the fi rst fi nding that the SAC delays anaphase onset at MII. 

 Anaphase regulation by the APC/C 
activators at meiosis 
 The most important fi nding of this study is that SAC activation 

at MI causes advancement of anaphase onset and reduction of 

the SAC effect at MII; thus, impacts of SAC activation are not 

confi ned to a single division at meiosis. We found that Fzr1 de-

pletion largely eliminated this advancement and slightly restored 

the SAC effect. Furthermore, Fzr1 reduced SAC-induced meta-

phase arrest in the  nda3  mutant. Given these facts, the most 

plausible explanation is that Fzr1 induces the advancement and 

contributes to reduction of the SAC effect, although we cannot 

exclude a possibility completely that the advancement is caused 

by an Fzr1-independent mechanism, and Fzr1 depletion elimi-

nated the advancement by merely inducing an additive delay. 

 Fzr1 is required for sporulation but is dispensable for two 

divisions ( Asakawa et al., 2001 ;  Blanco et al., 2001 ). However, 

Fzr1 also contributes to the Cdc13 degradation and anaphase 

initiation at both divisions, as shown by delayed Cdc13 decline 

and anaphase onset in Fzr1-lacking cells. The Fzr1 functions 

are likely conserved among eukaryotes because budding yeast 

failed to interact with Mad2, unlike Slp1, in the yeast two-

hybrid assay (Fig. S3 A). Remarkably, the Fzr1 depletion delayed 

the next decline of the nuclear Cdc13 and the disappearance of 

the spindle Cdc13 at MII (Fig. S1, B and C,  rec12 fzr1 ), and com-

pletely eliminated the advancement of anaphase II onset in  rec12  

( Fig. 3 D ,  rec12 fzr1 , phase II). Thus, Fzr1 is responsible for the 

advancement. The Fzr1 depletion also slightly extended  clr4-
 dependent anaphase II delay in the  rec12  background ( Fig. 3 D , 

 rec12 fzr1  and  rec12 clr4 fzr1 ; phase II was 6 min longer on av-

erage in  rec12 clr4 fzr1  than in  rec12 fzr1 , whereas it is 4.8 min 

longer in  rec12 clr4  than in  rec12 ). Furthermore, unlike Slp1, 

Fzr1 reduced the SAC-induced metaphase arrest in the  nda3  

 � -tubulin mutant ( Hiraoka et al., 1984 ) when expressed in mitosis, 

decreasing the cells with condensed chromosomes and increasing 

those with decondensed chromosomes signifi cantly (Fig. S3 D). 

Thus, Fzr1 may contribute to reduction of the SAC-dependent 

anaphase delay. In summary, these results indicate that Fzr1 

probably advances anaphase II onset in the  rec12  mutant. 

 Discussion 
 Dynamics of the spindle, the chromosome, 
and Cdc13 at meiosis 
 In this study, we elucidated the details of the chromosome and 

Cdc13 dynamics in relation to the spindle dynamics at meiosis 

in living fi ssion yeast cells, providing a basis for the analysis 

of the mechanism of meiotic chromosome segregation. We showed 

that the spindle elongates in three phases, that chromosomes 

attach to the spindle during the early stage of spindle elongation 

and undergo anaphase A and anaphase B, and that Cdc13 dis-

appears from the spindle and decreases in the nucleus around 

anaphase onset. Concomitant occurrence of the Cdc13 dis-

appearance from the spindle and anaphase spindle elongation 

supports the idea that cyclin B degradation on the spindle triggers 

anaphase elongation; degradation of the spindle cyclin probably 

causes inactivation of Cdk and induces phosphatase-dependent 

transition of the metaphase spindle to the anaphase spindle, as 

described for budding yeast mitosis ( Higuchi and Uhlmann, 

2005 ). In addition, our observation that disappearance of the 

nuclear Cdc13 starts from the SPB to the spindle midzone may 

mean that cyclin degradation occurs from the spindle pole. 

 We also showed how sister chromatid cohesion is resolved 

at meiosis, the details of which were previously unclear. At MI, 

sister chromatids undergo separation solely at the arms, which 

occurs around anaphase onset. Arm separation, however, does not 

occur with the same timing along the chromosome length; telomere-

proximal regions separate slightly later than other regions, which 

may mean that telomere disjunction occurs after arm separation. 

Furthermore, contrary to the general view, arm cohesion is still 

retained around centromeres at MII. The centromere-proximal 

arm regions may never undergo dissociation. Alternatively, arm 

cohesion may be reestablished at the centromere-proximal re-

gions after MI. 

 Analyses of the  rec12  and  rec8  mutants showed that when 

chromosomes are prematurely separated before anaphase, they 

oscillate between the two poles independently of each other 

and the spindle prematurely elongates, as seen in other orga-
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sive possibility is that delayed MI activation of APC/C Slp1  and/or 

shortening of the MI – MII interval alters accumulation levels 

of critical meiotic regulators and causes activation of APC/C Fzr1  

in an untimely manner, which in turn causes advancement of 

APC/C Slp1  activation. The altered accumulation of the regulators 

may also contribute to advancement of APC/C Slp1  activation in-

dependently of APC/C Fzr1 . In this possibility, SAC-independent 

MI delay may also cause the advancement. In any scenarios, 

Mes1 may play a critical role in the advancement because it nega-

tively regulates both APC/C Slp1  and APC/C Fzr1  to induce MII and 

is itself an APC/C substrate ( Fig. 5 ;  Izawa et al., 2005 ;  Kimata 

et al., 2008 ). 

 The reason for the SAC effect reduction is also unclear. 

Duration of the SAC effect may be limited at meiosis. Alterna-

tively, there may be an adaptation mechanism that reduces the 

SAC effect after MI SAC activation. APC/C Fzr1  may contribute 

to the reduction by degrading SAC factors, as some SAC factors 

were shown to be the APC/C substrates ( Palframan et al., 2006 ; 

 Qi and Yu, 2007 ). 

 It is possible that the advancement of anaphase onset is a 

general phenomenon of anaphase, and anaphase onset may ad-

vance during mitosis when the SAC delays the previous divi-

sion. However, we favor an idea that the advancement is meiosis 

specifi c because the advancement depends on a meiosis-specifi c 

APC/C activator, and meiotic anaphase regulation is substantially 

different. The regulatory mechanism that induces the advance-

ment is perhaps common among eukaryotes, as Fzr1 functions 

are likely conserved between two evolutionally divergent yeasts 

and have likely been evolved for execution of two consecutive 

divisions. It may not be able to afford substantial SAC activa-

tion or progression delay, and the advancement may be a conse-

quence of perturbed meiotic progression that resulted from the 

MI SAC activation or delay. Alternatively, the mechanism may 

have been evolved not only for two divisions but also for swift 

completion of meiosis, and the advancement may be actively 

induced by it. Swift completion of meiosis may be advantageous 

for organisms that produce a large amount of gametes such as 

sperms in a relatively short period, and especially for those which 

undergo meiosis in nutrient-poor conditions, like yeasts, because 

it would increase chances for the cells to generate gametes be-

fore using up the nutrients. 

 Our fi nding may be clinically important. In human meio-

sis, trisomy that leads to abortion or mental retardation origi-

nates from chromosome missegregation at both MI and MII 

( Hassold and Hunt, 2001 ). The MI defect-dependent advance-

ment of anaphase II onset may partly account for such divergent 

origins of human trisomy in spermatogenesis in which meiosis 

progresses without arrests, as in fi ssion yeast. The advancement 

of anaphase II onset apparently increases the chance of chromo-

some missegregation at MII by reducing the time for establish-

ing spindle attachment of chromosomes and correcting improper 

attachments. This means that the outcome of an MI hazardous 

event may be divergent; it can cause chromosome missegre-

gation not only at MI but also at MII. Eukaryotic organisms 

have evolved a mechanism that executes two meiotic divi-

sions swiftly but may in turn have assumed the risk of chromo-

some missegregation. 

Ama1 is also dispensable for two divisions and contributes to 

the degradation of APC/C substrates and anaphase I progression 

( Cooper et al., 2000 ;  Oelschlaegel et al., 2005 ;  Penkner et al., 

2005 ). Fzr1 is probably ineffi ciently inhibited by the SAC be-

cause Fzr1 induces preanaphase Cdc13 decline at MI in  rec12  

and fails to interact with Mad2 in the yeast two-hybrid assay. 

Furthermore, the Fzr1 contribution may be greater at MII than 

at MI because Fzr1 depletion delayed anaphase initiation at MII 

but not at MI in the  mes1  background ( Fig. 5 B ). This may ac-

count for the undetectable effects of the Mad2 depletion on ana-

phase II onset and normal morphology of the prematurely 

elongated MII spindle in  rec8 . 

 Fzr1 apparently regulates anaphase together with Slp1, a 

central regulator of anaphase (Fig. S2, A and B;  Izawa et al., 

2005 ). We speculate that a major role of Fzr1 is to help Slp1 to 

execute anaphase swiftly. Perhaps Fzr1 confers the substrate 

specifi city on APC/C, which is largely overlapping with that of 

Slp1, but is more preferential for anaphase completion rather than 

anaphase initiation, such that Fzr1 alone can hardly induce ana-

phase. Fzr1 probably also functions after MI to ensure exit from 

anaphase I and thereby delays initiation of the next division. 

 Considering the supportive role of Fzr1, the function of 

Fzr1 may be similar to that of Cdh1 in mitosis ( Peters, 2006 ). 

Consistently, Fzr1 is most similar to Ste9/Srw1 (fi ssion yeast 

Cdh1) in sequence ( Asakawa et al., 2001 ), and not only Fzr1, 

but also budding yeast Cdh1, is ineffi ciently inhibited by the 

SAC (Ushimaru, T., personal communication). One idea is that 

Fzr1 replaces Ste9/Cdh1 at meiosis. Given shortening of the 

MI – MII interval in  rec12 , there is probably a meiosis-specifi c 

regulatory mechanism that induces MII events with certain tim-

ings after MI initiation. This mechanism is perhaps required to 

execute two consecutive divisions and/or prevent DNA replica-

tion, and a replacement of Ste9/Cdh1 by Fzr1 may be inevitable 

for the mechanism to accomplish its task. At present, it is known 

that Ste9/Cdh1 is dispensable for execution of two meiotic divi-

sions in both budding and fi ssion yeasts (unpublished data;  

Buonomo et al., 2003 ) and that it is required for entry into meio-

sis from G1 in fi ssion yeast ( Kitamura et al., 1998 ;  Yamaguchi 

et al., 1997 ), but, otherwise, the meiotic functions of Ste9/Cdh1 

remain unclear. Future studies will be required to elucidate the 

precise meiotic roles of both Fzr1 and Cdh1/Ste9. 

 A meiotic regulatory mechanism that 
induces advancement of anaphase II onset 
 It is apparent that MI SAC activation causes advancement of 

anaphase II onset by advancing APC/C Slp1  activation, as APC/C Slp1  

is a major initiator of anaphase and the SAC can delay anaphase II 

in  rec12  despite the advancement. However, how MI SAC 

activation advances APC/C Slp1  activation remains unclear. As 

shown by Cdc13 analysis, APC/C Fzr1  induces preanaphase I 

degradation of APC/C substrates in  rec12 . One possibility is 

that preanaphase I degradation of critical meiotic regulators 

induced by APC/C Fzr1  advances APC/C Slp1  activation at MII. 

Because the SAC inhibition of APC/C Slp1  is likely incomplete, as 

suggested by a limited period of MI delay in  rec12 , APC/C Slp1  

that escapes from the inhibition may also contribute to the pre-

anaphase I degradation. An alternative but not mutually exclu-
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SacI sites of an integration plasmid, p1095, which bears a gene encoding 
monomeric DsRed (a gift from Y. Chikashige, Kansai Advanced Research 
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The amplifi ed fragment was digested by BglII and inserted at the BamHI 
site of the plasmid bearing the fusion gene such that the fusion gene ex-
pression was driven by the  nda3  promoter. The resultant plasmid was 
transformed into cells bearing  lys1-131.  The integrants were selected by 
 lys1 +   phenotype, and their integration was confi rmed by colony PCR. 

 Live cell analysis of spindle and chromosome dynamics 
 Cells were grown on solid YES medium at 33 ° C and then induced to 
undergo meiosis by incubation on solid ME medium for 12 – 16 h. The cells 
were then suspended in EMM medium  lacking nitrogen and observed for 
dynamics of the GFP-labeled spindle or chromosomes at 26 ° C as described 
previously ( Yamamoto et al., 2001 ;  Ding et al., 2006 ). A computer-controlled 
microscope system including the objective lens and camera is described in 
 Ding et al. (2006) . Chromosome or spindle behavior was observed every 
1 or 2 min, respectively. A set of images from six focal planes at 0.5- μ m 
 intervals was taken at each time point. The measurements were conducted 
in three dimensions. In each analysis of the spindle, at least 15 spindles 
were examined if not indicated. 

 Quantifi cation of fl uorescence intensity of Cdc13-GFP 
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