

Taipale's post-docs busily sort through the data from myriad RNAi screens.

agonist mechanism. Cyclopamine drives the population of activated Smoothened molecules to the inactive state by mass action—it specifically binds to the inactive protein and locks it in that state. This helped explain how exogenous small molecules like cyclopamine can regulate Smoothened activity. Furthermore, the results suggested that Smoothened activity could also be regulated by endogenous small molecules, and that Patched might serve as a pump for these molecules. It took a while for us to arrive at this model.

Why did you decide to return to Helsinki to start your own laboratory?

Well, I really liked America. My time in Baltimore was very nice, and I would've happily stayed there. But we had two children at the time, and my wife wanted to return to Europe for family reasons.

It would have probably been better for my career if I had stayed in America. The research community there is much larger and it's easier to find people to staff your lab. Here in Helsinki, we have a good department and many strong investigators, but we don't have the same concentration of people as in the States. I get my pick of the top graduate students in Finland, and they are great. But it can be difficult to get others to come here. We have a reputation of being a

very cold country, and very far from everything, most of which is not really true. It is cold, but it's not Alaska. It's more like Toronto or Boston, and the research infrastructure and funding here are very good.

Personally, I like the way things work here. Finland is a Scandinavian country with a rather German tradition of how things work. Agreements tend to be held, which makes life simple. And of course, it's a great country in which one can raise a family.

ON THE BRIGHT SIDE

You are using genome-wide screens to study Hedgehog signaling and cancer in your laboratory. What are the advantages and pitfalls of this approach?

When I started my own laboratory, I decided that we would try to focus on growth control and on understanding how signaling pathways drive growth. We have now worked our way to the nucleus, where we try to look at how the expression of genes linked to cell growth is regulated. We start out with a very global approach to identify cell cycle genes and the target genes of signaling pathways. By combining this information, we hope to come up with pathways we can then study in more detail. RNAi screening is a very powerful method for these kinds of global, large-scale approaches.

I've always liked data—I like to have more data, as opposed to less. With these genome-wide approaches, you can come up with a large amount of data in a rather short timeframe, but that's where the problems arise. You can get buried in the data, trying to interpret every little snippet, most of which is just noise in the initial screening. You have to spend a lot of time in analyzing each hit and each gene, and in trying to figure out which ones are real, interesting, and represent novel findings. In this respect, it helps a lot to be computer literate. This work is not something for which many scientists are specifically trained, and I am lucky that my early interests in engineering prepared me for it.

Do you have any words of wisdom for young scientists just getting started in their careers?

I guess the key thing is to do what you are interested in, and keep your focus on the curiosity that will drive your efforts in science. If you start working on something you're not really interested in, then you will most likely fail because you just can't stay motivated. On the other hand, it's also important not to give up. If you don't get excited about fixing failed experiments, then it's going to be difficult to stay in science because 90% of experiments fail. One would do well to remember that on the days when nothing works. Frequently, the problem is not you—it's the experiment.

I think science is a great job, and I really wonder why more young people are not excited about it. Maybe we don't sufficiently promote the fact that it's the greatest job on Earth. **JCB**

1. Taipale, J., et al. 1997. *FASEB J.* 11:51–59.
2. Taipale, J., et al. 2000. *Nature*. 406:1005–1009.
3. Taipale, J., et al. 2002. *Nature*. 418:892–897.
4. Hallikas, O., et al. 2006. *Cell*. 124:47–59.
5. Bjorklund, M., et al. 2006. *Nature*. 439:1009–1013.

"I think science is a great job, and I really wonder why more young people are not excited about it."