
T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

JCB: ARTICLE

 ©  2008  Woolner et al. 
The Rockefeller University Press  $30.00
J. Cell Biol. Vol. 182 No. 1 77–88
www.jcb.org/cgi/doi/10.1083/jcb.200804062 JCB 77

 Correspondence to Sarah Woolner: sarah.woolner@manchester.ac.uk 

 S. Woolner ’ s present address is Faculty of Life Sciences, University of Manchester, 
Manchester M13 9PT, UK. 

 Abbreviations used in this paper: HMM, heavy meromyosin; LatB, latrunculin B; 
MO, morpholino; Myo10, myosin-10. 

  The online version of this paper contains supplemental material.  

    Introduction 
 Interactions between microtubules and F-actin are a key feature 

of many biological processes including cell division, oogenesis, 

and embryonic morphogenesis ( Rodriguez et al., 2003 ). One of 

the more fascinating and important examples of such inter-

actions is provided by interaction of mitotic spindles with 

cortical F-actin. These interactions are required for spindle 

positioning in yeast ( Gundersen and Bretscher, 2003 ;  Gundersen 

et al., 2004 ) and are thought to be used for asymmetrical cell di-

vision in polarized epithelia ( Perez-Moreno et al., 2003 ) and 

during orientation of the mitotic spindle in some cultured cell 

lines ( Kaji et al., 2007 ;  Toyoshima and Nishida, 2007 ). In addi-

tion, the F-actin – based motor, myosin-2, has recently been re-

ported to exert force on spindle poles during prophase via cortical 

fl ow of anchored microtubules ( Rosenblatt et al., 2004 ). 

 In the above examples, the key site of actomyosin – 

microtubule interaction is the cortex, and its major role is thought 

to be the anchoring or transport of spindle microtubules that 

extend there. However, whether actomyosin is an important 

component of the mitotic spindle interior or if actomyosin –

 microtubule interactions play additional roles in mitotic spindle 

function and assembly is the subject of an old and intense 

controversy. A series of fl uorescence and electron microscopy 

studies in the 1970s described the presence of F-actin in the mi-

totic spindle ( Schloss et al., 1977 ;  Forer et al., 1979 ), and more 

recent work has found that various actin poisons and myosin 

inhibitors have varying effects on spindle structure and function 

( Fabian and Forer, 2007 ;  Forer et al., 2007 ). However, the studies 

showing localization were challenged as artifacts of the methods 

used to prepare the samples ( Barak et al., 1981 ), and inhibition 

of what was then thought to be the only metazoan actin-based 

motor, myosin-2, was shown to prevent cytokinesis without 

having any effect on spindle assembly and function ( Kiehart 

et al., 1982 ). Finally, and most tellingly, morphologically normal 

and apparently functional spindles are routinely produced in 

 Xenopus laevis  egg extracts under conditions where F-actin as-

sembly is prevented ( Mitchison et al., 2005 ). 

 In contrast to mitotic spindles, meiotic spindles not only 

require F-actin for cortical anchoring, but, in many cases, also 

require F-actin for assembly ( Gard et al., 1995 ;  Kim et al., 2000 ; 

 Sun et al., 2001 ;  Sardet et al., 2002 ). Consistent with a role 

for actomyosin in the meiotic spindle, Myosin-10 (Myo10), 

an unconventional myosin, was recently shown to localize to 

meiotic spindles and to be required for their proper assembly 

( Weber et al., 2004 ). Myo10 has the unusual property of being 

able to bind to both F-actin, via a motor domain in its head 
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was microinjected into two cell embryos, and Western blot anal-

ysis of lysates made from embryos 24 h after injection showed 

that Myo10 protein levels were sharply reduced in Myo10 

MO-injected embryos (morphants) compared with uninjected 

controls ( Fig. 2 a ). 

 Controls and Myo10 morphants were fi xed and stained for 

 � -tubulin at 12, 16, and 24 h after microinjection, and mitotic 

spindles in the outermost epithelial layer of the embryo were as-

sessed for defects. At 12 h, no discernible mitotic phenotype was 

seen; however, by 16 h, Myo10 morphants showed a clear multi-

polar spindle phenotype, which was further enhanced by 24 h 

( Fig. 2, b and c ). At 24 h, an increase in the number of normal 

bipolar spindles was also seen in the morphants compared with 

water-injected controls ( Fig. 2 c ). The increase in bipolar spindles 

in morphants likely refl ects a delay in mitotic progression (see 

following section). Further analysis of the morphant spindles re-

vealed a third spindle phenotype; Myo10 morphant spindles were 

signifi cantly longer than controls, both in terms of absolute length 

(not depicted) and when corrected for cell size ( Fig. 2 d ). To test 

if other aspects of spindle organization were affected in mor-

phants, propidium iodide was used to visualize chromosomes. 

As in controls, most of the chromosomes were localized near to 

the metaphase plate in morphant metaphase spindles ( Fig. 2 e ). 

Moreover, Myo10 morphant spindles in the early stages of the 

phenotype, exhibiting increased length and one or two extra 

poles, were observed to have similar chromosomal content to 

controls ( Fig. 2 e ), which indicates that these phenotypes were 

not an indirect result of a previous failed cell division. 

 To ensure that these phenotypes represent Myo10 deple-

tion, two control experiments were performed: the morphant 

phenotype was rescued by microinjection of full-length Myo10 

(see  “ The head and tail of Myo10 …  ”  and  Fig. 5 ), and embryos 

were microinjected with a mispair control MO. The control MO 

differed from the Myo10 MO by just fi ve mispairing nucleo-

tides, and gave a reduced level of Myo10 knockdown ( Fig. 2 a ) 

and a correspondingly reduced level of phenotype compared 

with the morphant ( Fig. 2 c ), which indicates that Myo10 is the 

relevant target of the MO. Although these controls demonstrated 

the specifi city of the MO, it was possible that knockdown of 

Myo10 in the embryo caused spindle defects indirectly by, for 

example, disrupting nuclear architecture or previous cytokinetic 

events. To test if the effect on spindle structure was direct, we 

used the  X. laevis  egg extract system to assemble spindles in vitro 

in the absence or presence of a Myo10 antibody. Although con-

trol spindles displayed normal bipolar morphology, spindles as-

sembled in the presence of the Myo10 antibody appeared longer 

and exhibited multipolar phenotypes similar to those in the 

Myo10 morphants ( Figs. 2 f  and S2, available at http://www.jcb

.org/cgi/content/full/jcb.200804062/DC1). 

 Myo10 morphant spindles are 
initially bipolar and then undergo pole 
fragmentation 
 The fact that chromosomes localized near the metaphase plate 

in Myo10 morphant spindles suggested that these spindles 

initially assembled normally. To explore this possibility, live 

confocal imaging was used. Using GFP –  � -tubulin to visualize 

( Homma et al., 2001 ;  Homma and Ikebe, 2005 ); and micro-

tubules, via a C-terminal MyTH4/FERM domain cassette ( Weber 

et al., 2004 ). Intriguingly, Myo10 was also recently implicated 

in mitotic spindle positioning in cultured mammalian cells 

( Toyoshima and Nishida, 2007 ). Because Myo10 can bind both 

F-actin and microtubules, is required for meiotic spindle assem-

bly, and is involved in mitotic spindle positioning, it is a strong 

candidate to mediate F-actin – microtubule interactions in mi-

totic spindles. We have therefore analyzed the role of both 

Myo10 and F-actin in mitotic spindle assembly and function in 

the epithelium of the vertebrate  X. laevis . Using a combination 

of live cell imaging, morpholino (MO)-mediated Myo10 knock-

down, and gene replacement, we show that Myo10 localizes to 

the mitotic spindle and is required for proper spindle anchoring, 

spindle pole integrity, spindle length control, and mitotic pro-

gression. Furthermore, we reveal the existence of dynamic actin 

cables within the mitotic spindle and show that F-actin and 

Myo10 play both overlapping and distinct roles during mitosis. 

 Results 
 Myo10 localizes to the poles of mitotic 
spindles in  X. laevis  embryos 
 To begin to assess a role for Myo10 in mitosis, we used immuno-

fl uorescence in early  X. laevis  embryos (stages 9 – 11) using 

an antibody directed against a small region in the head of  

X. laevis  Myo10 ( Weber et al., 2004 ). Throughout the cell cycle, 

Myo10 was found localized at the cell cortex (Fig. S1, available 

at http://www.jcb.org/cgi/content/full/jcb.200804062/DC1), as 

expected from previous studies ( Berg et al., 2000 ;  Berg and 

Cheney, 2002 ). In addition, during interphase, Myo10 localized 

to the nucleus ( Fig. 1 a ). However, by metaphase, Myo10 local-

ized to the mitotic spindle, where it was found weakly associ-

ated with the entire spindle but concentrated at the spindle poles, 

and where it remained throughout anaphase and into telophase 

( Fig. 1 a ). Spindle pole localization of Myo10 was also seen in 

spindles that were assembled in vitro from  X. laevis  egg extracts 

(Fig. S1). Double labeling of embryonic spindles for Myo10 

and the spindle pole marker  � -tubulin showed that Myo10 

localized to a region just beside the  � -tubulin domain ( Fig. 1 b ). 

The localization pattern displayed by Myo10 (in the nucleus at 

interphase and moving to the spindle poles during mitosis) is 

reminiscent of spindle assembly factors such as TPX2 and 

NuMA ( Merdes et al., 1996 ;  Wittmann et al., 2000 ). Indeed, tri-

ple labeling for  � -tubulin, Myo10, and TPX2 demonstrated 

colocalization of Myo10 and TPX2 in the nucleus and in over-

lapping domains at spindle poles ( Fig. 1 c ). 

 Knockdown of Myo10 causes mitotic 
spindle defects 
 The localization pattern of Myo10 suggested that Myo10 might 

play a role in mitosis. To test this possibility in vivo, we used an 

MO knockdown approach, which has been widely used as an 

effi cient means of gene suppression in vertebrates ( Heasman, 

2002 ). An anti-sense MO oligo was designed to target a 25-

nucleotide sequence in the 5 �  untranslated region and fi rst 11 

coding nucleotides of the  X. laevis  Myo10 mRNA. The Myo10 MO 
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each original pole at a time ( Fig. 3 b  and Videos 2 – 4). Third, 

morphant spindles delayed in metaphase for signifi cant pe-

riods of time: morphant metaphase took a mean 46.0  ±  8.0 min 

( n  = 5), with 25.4  ±  3.2 min of that time spent as a bipolar 

spindle, before any pole fragmentation, compared with a meta-

phase duration of 6.6  ±  0.5 min ( n  = 4) in controls. The mor-

phant metaphase delay could explain the increase in bipolar 

spindles seen in the fixed analysis of the morphant ( Fig. 2, 

b and c ). Fourth, as the morphant phenotype progressed, cyto-

kinesis failures began to manifest, both in cells where spin-

dles were elongated but remained bipolar (Video 5) and also 

in those where multipolar spindles, after a long delay, entered 

mitotic spindles, we found that it was possible to follow mi-

tosis live in the cells of  X. laevis  embryonic epithelium by time-

lapse confocal microscopy ( Fig. 3 a  and Video 1, available 

at http://www.jcb.org/cgi/content/full/jcb.200804062/DC1). 

Live imaging revealed four features of the Myo10 morphant 

phenotype that were not apparent from fi xed cell analysis. 

First, in the initial stages of the morphant phenotype, spindles 

assembled normally with two poles, although these spindles 

were longer than controls (Videos 2 and 3). Second, super-

numerary poles formed via fragmentation of the original poles, 

and rather than a wholesale fragmentation, fragmentation was 

quantal, with only one supernumerary pole forming from 

 Figure 1.    Myo10 localizes to mitotic spindle 
poles in  X. laevis  embryos.  (a) Confocal micro-
graphs of interphase and mitotic cells in the 
epithelium of  X. laevis  embryos double stained 
for  � -tubulin (red) and Myo10 (green). During 
interphase and prophase, Myo10 localizes to 
the nucleus. From metaphase, Myo10 can be 
seen localized as a band close to the pole, 
a position it maintains through anaphase and 
telophase. Throughout the cell cycle, Myo10 is 
also found at the cell cortex (see Fig. S1, avail-
able at http://www.jcb.org/cgi/content/full/
jcb.200804062/DC1) but is less obvious in 
these images, as fl uorescent levels were re-
duced due to the high intensity of the nuclear 
staining. (b) Confocal images of an anaphase 
spindle double stained for  � -tubulin (red) and 
Myo10 (green) showing that Myo10 localizes 
to a region just inside the spindle pole marker 
 � -tubulin. (c) Confocal micrographs of spindles 
immunostained for  � -tubulin, Myo10 (red), 
and TPX2 (green) showing that Myo10 and 
TPX2 display signifi cant colocalization.   
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 Figure 2.    Knockdown of Myo10 leads to mitotic spindle defects.  (a) Western blot showing Myo10 protein levels in uninjected (U), Myo10 MO (MO), and 
5-mispair control MO (Ctrl MO) embryos. Lysates were prepared from embryos 24 h after microinjection. (b) Confocal micrographs of  � -tubulin staining 
in embryos microinjected with nuclease-free water or Myo10 MO (MO) fi xed at 12, 16, or 24 h after microinjection. (c) Quantifi cation of mitotic spindles 
in water (H 2 O)-, Myo10 MO (MO)-, and 5-mispair control MO (Ctrl MO)-injected embryos 16 and 24 h after microinjection. At 16 and 24 h, Myo10 
morphants have signifi cantly more multipolar spindles than the mispair control (red). An increased number of bipolar spindles is seen in the morphant at 24 h, 
which is suggestive of a delay in mitosis ( n  = 15, 11, 14, 17, 18, and 18 embryos for water 16 h, MO 16 h, Ctrl MO 16 h, water 24 h, MO 24 h, and 
Ctrl MO 24 h, respectively). Error bars represent the standard error of the mean. (d) Box and whisker plots displaying metaphase spindle length in water 
( n  = 92 spindles)- and Myo10 MO ( n  = 50 spindles)-injected embryos 24 h after injection. Spindle length measurements are shown as a percentage of 
total cell length to control for differences in cell size. Metaphase spindles in the Myo10 morphant are signifi cantly longer than in water-injected controls. 
(e) Propidium iodide (red) and  � -tubulin (green) staining of control and morphant spindles showing that chromosomes localize to the metaphase plate 
relatively normally in morphant spindles. (f) Confocal micrographs of  � -tubulin – stained spindles assembled in vitro in the presence of either a control anti-
body or an anti-Myo10 antibody. In control conditions, normal bipolar spindles assemble, whereas the inhibition of Myo10 by antibody addition leads to 
multipolar spindles. For signifi cance testing, unpaired Student ’ s  t  tests were performed: **, P  <  0.01; ***, P  <  0.001; ****, P  <  0.0001.   
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was performed using the MyTH4/FERM domain cassette of 

Myo10 and full-length TPX2. This assay demonstrated that 

Myo10 binds directly to TPX2 via its MyTH4/FERM cassette 

( Fig. 3 e ). 

 Abnormal spindle movement and anchoring 
in Myo10 morphants 
 Mitotic spindles in control embryos typically underwent a great 

deal of abrupt movement in the cell during metaphase, such that 

they rotated with a jerky motion, dramatically changing their 

position in very short periods of time ( Fig. 4 a  and Video 1). 

In contrast, Myo10 morphant spindles, even before they sprouted 

supernumerary poles, rotated with a much smoother motion 

( Fig. 4 b  and Videos 2 and 3). Rotation rate measurements showed 

that control spindles underwent only slight rotation before 

metaphase, displayed the greatest changes in rotation rate dur-

ing metaphase, and rotated slower once anaphase began ( Fig. 4 c , 

blue). In comparison, morphant spindles never reached the same 

extremes in rotation rate but instead gently rotated throughout 

their extended metaphase; similar movement continued after 

spindle pole fragmentation and remained unchanged right up to 

an aberrant anaphase ( Fig. 4 c , red). 

a disorganized anaphase and attempted cytokinesis (Video 2). 

As a result of these aberrant divisions, binucleate cells were 

often seen at later time points, and when these cells entered 

mitosis, spindles were multipolar from the onset of assembly 

(Videos 2 and 6). 

 To gain more insight into the multipolar aspect of the 

Myo10 morphant phenotype, further immunostaining of the 

spindles was performed. The spindle pole marker  � -tubulin 

localized to every supernumerary pole in morphant multi-

polar spindles, irrespective of whether the spindle had recently 

undergone pole fragmentation (in spindles with one or two 

extra poles;  Fig. 3 c ) or was a more established multipolar 

spindle (three or more extra poles;  Fig. 3 c ). Morphant spin-

dles were also stained to assess the localization of the spindle 

assembly factor TPX2. Intriguingly, TPX2 localization was 

more diffuse in morphant spindles compared with controls, 

with TPX2 no longer showing a strong concentration at the 

spindle pole but instead spreading down the spindle micro-

tubules toward the metaphase plate ( Fig. 3 d ). This result in-

dicated that Myo10 might be required to recruit or maintain 

TPX2 at the spindle pole during mitosis. To test for an inter-

action between Myo10 and TPX2, a GST pull-down assay 

 Figure 3.    Mitotic spindles in Myo10 morphants undergo spindle pole fragmentation, and Myo10 interacts with the spindle assembly factor TPX2.  (a) Stills 
taken from a confocal video (Video 1, available at http://www.jcb.org/cgi/content/full/jcb.200804062/DC1) of mitosis in a control embryo using 
GFP –  � -tubulin to visualize the spindle; time stamps indicate time in minutes and seconds. (b) Stills taken from a video of a Myo10 morphant spindle (Video 4) 
showing that it assembles in a bipolar fashion, but, subsequently, a pole fragments to form a supernumerary pole (arrows). (c) Confocal micrographs of 
mitotic spindles in Myo10 morphants immunostained for  � -tubulin (red) and  � -tubulin (green). All supernumerary poles in the multipolar spindles possess 
 � -tubulin, independent of whether the poles have just arisen (top, arrows) or are more established (bottom, arrows). (d) Mitotic spindles in water-injected 
and Myo10 morphant embryos immunostained for  � -tubulin (red) and TPX2 (green). TPX2 localization is diffuse in the Myo10 morphant compared with 
the more focused pole localization in controls. (e) Western blot of GST pull-down assay showing that full-length TPX2 pulls down with GST-Myo10-MyTH4/
FERM (GST-Myo10-M/F) but not GST alone.   
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 F-actin and Myo10 function 
antagonistically to maintain spindle length 
 The involvement of an actin-based motor in mitosis led us to 

consider whether actin might be required for mitotic spindle 

functions. To explore this possibility, morphant and water-

injected embryos were treated with low concentrations of latrun-

culin B (LatB) for 30 min to disrupt F-actin and then immediately 

fi xed and stained for  � -tubulin. Treatment of water-injected em-

bryos with LatB caused cells of the epithelium to round up but 

did not increase the number of bipolar spindles, promote spindle 

pole fragmentation, or signifi cantly affect mean spindle length 

( Fig. 6, a, c, and d ). However, LatB treatment resulted in im-

paired anchoring such that spindles oriented perpendicular to the 

plane of the epithelium, unlike the parallel arrangement in con-

trols ( Fig. 6 a ). Treatment of Myo10 morphant embryos with 

LatB had no signifi cant effect on the number of bipolar or multi-

polar spindles ( Fig. 6 c ). However, a startling affect on spindle 

length was seen when Myo10 morphants were treated with LatB: 

the longer spindles seen in the morphant were rescued by dis-

rupting F-actin ( Fig. 6, b and d ), which suggests that Myo10 and 

F-actin function antagonistically to maintain spindle length. 

 Live imaging reveals actin cables in and 
around the mitotic spindle 
 The role and distribution of F-actin in the mitotic spindle has 

long been controversial (see Introduction), but the fi nding that 

F-actin and Myo10 together played a role in controlling spindle 

length prompted us to reinvestigate F-actin distribution in mitotic 

cells. To visualize F-actin in living embryos, we used a recently 

 The head and tail of Myo10 have distinct 
mitotic roles 
 The N-terminal head domain of Myo10 binds to F-actin 

( Homma et al., 2001 ), whereas the C-terminal tail contains 

a MyTH4/FERM domain cassette that binds microtubules 

( Weber et al., 2004 ). To determine if the different mitotic func-

tions of Myo10 were mediated through different regions of the 

myosin, rescue experiments were performed (see  Fig. 5 a  for 

schematics of rescue constructs). Microinjection of full-length 

Myo10 (GFP-Myo10) into morphants gave a strong rescue of 

the key mitotic phenotypes: GFP-Myo10 reduced the increased 

number of bipolar spindles seen in the morphant ( Fig. 5, b and c ), 

reduced spindle pole fragmentation ( Fig. 5, b and c ), and re-

duced spindle length ( Fig. 5 d ). In contrast the GFP – Myo10 –

 heavy meromyosin (HMM) construct, an HMM-like fragment 

that contains the myosin motor, regulatory IQ domains, and 

coiled coil domains of Myo10, reduced the number of bipolar 

spindles ( Fig. 5 c ) and shortened spindle length ( Fig. 5 d ) but 

did not rescue the multipolar phenotype ( Fig. 5 c ). Remark-

ably, the GFP-Myo10-IQT construct, which lacks the motor 

domain but contains the tail, IQ, and coiled coil domains, gave 

the opposite result: the multipolar phenotype was signifi cantly 

rescued but bipolar spindle numbers were not reduced ( Fig. 5 c ) 

and the spindle length phenotype was only partially rescued 

( Fig. 5 d ). These results indicated that the actin-binding head 

was required for proper progression through mitosis and for 

maintaining spindle length, two functions that may be linked, 

whereas the microtubule-binding tail was required for spindle 

pole integrity. 

 Figure 4.    Spindle movement is attenuated 
in Myo10 morphants.  (a) Stills taken from a 
short section of a confocal movie of GFP –  
� -tubulin in a control embryo (Video 1, available 
at http://www.jcb.org/cgi/content/full/jcb
.200804062/DC1). Time stamps indicate time 
in minutes and seconds. The metaphase spin-
dle undergoes a sudden movement between 
t = 1:00 and t = 2:00; this  “ jerky ”  rotational 
movement is characteristic of metaphase spin-
dles in control embryos at embryonic stages 9 
and 10. (b) Stills taken from confocal movie of 
GFP –  � -tubulin in a Myo10 morphant (Video 2) 
at the same embryonic stage as the control 
embryo in panel a. The morphant spindle, 
even while still bipolar, displays a much more 
gradual rotational movement than the control 
spindle. (c) A graph displaying the rotational 
movement of a control spindle compared with 
a Myo10 morphant spindle. The time at which 
spindles enter metaphase and anaphase or 
undergo pole fragmentation are indicated by 
arrows and accompanying labels.   
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Myo10 morphants, although it is possible that there are subtle 

changes to F-actin organization that are beyond the sensitivity of 

our current imaging methods. In particular, F-actin cables could 

still be seen surrounding the morphant spindle as it assembled, 

just as was observed in controls ( Fig. 7 d  and Video 9, available 

at http://www.jcb.org/cgi/content/full/jcb.200804062/DC1). 

In multipolar morphant spindles, F-actin was concentrated around 

all the poles, including supernumerary poles, and tracked with the 

movement of the spindle ( Fig. 7 e  and Video 9). 

 Discussion 
 In this study, we show that Myo10 localizes to the mitotic spindle 

pole and plays several important roles in mitosis: spindle anchor-

ing, maintenance of spindle pole integrity, spindle length control, 

and mitotic progression. Surprisingly, the relationship between 

Myo10 and F-actin varies depending on the role in question, with 

Myo10 and F-actin playing similar roles in spindle anchoring/

positioning, Myo10 functioning independently of F-actin to 

maintain spindle pole integrity, and Myo10 and F-actin working 

antagonistically to control spindle length. 

developed probe consisting of GFP fused to the calponin homol-

ogy domain of utrophin (GFP-Utr-CH), which labels F-actin 

with low background and no apparent effect on F-actin dynamics 

( Burkel et al., 2007 ). Live imaging of embryos microinjected 

with GFP-Utr-CH and mCherry –  � -tubulin revealed that F-actin 

was present in control mitotic spindles. Dynamic actin cables 

were seen surrounding and running the length of the spindle as it 

assembled, and these cables remained associated with the spindle 

through early mitosis ( Fig. 7 a , arrows; and Video 7, available at 

http://www.jcb.org/cgi/content/full/jcb.200804062/DC1). Many 

F-actin cables were also concentrated around the spindle poles, 

with some cables extending between the poles and the cell cortex 

( Fig. 7 b  and Video 7). As spindles rotated during metaphase, the 

arrangement of F-actin cables mirrored this movement, as if the 

cables helped to determine the direction of spindle motion ( Fig. 7 c  

and Video 8). As spindles entered anaphase, F-actin remained 

concentrated around the poles ( Fig. 7 a  and Video 8). 

 A previous study indicated that Myo10 has the ability to or-

ganize F-actin ( Tokuo et al., 2007 ), and to explore this possibility, 

we imaged F-actin live in Myo10 morphants. However, we saw 

no obvious change in cortical or spindle-associated F-actin in the 

 Figure 5.    Rescue experiments reveal that the head and tail of Myo10 mediate different aspects of Myo10 function in mitosis.  (a) Schematic diagram of 
the constructs used in Myo10 morphant rescue experiments. (b) Low-magnifi cation images of  � -tubulin staining in rescue experiment embryos. For these 
experiments, embryos were microinjected with water or Myo10 MO along with RNA encoding each of the Myo10 constructs shown in panel a. (c) Quan-
tifi cation of bipolar and multipolar spindles in rescue experiment embryos.  n  = 18, 47, 22, 16, and 12 embryos for water, MO, MO + GFP-Myo10, MO + 
GFP-Myo10-HMM, and MO + GFP-Myo10-IQT, respectively. Error bars represent the standard error of the mean. (d) Box and whisker plots of spindle length 
measurements in rescue experiment samples. Spindle length was calculated as a percentage of total cell length to allow for variation in cell size.  n  = 109, 
141, 136, 115, and 87 spindles for water, MO, MO + GFP-Myo10, MO + GFP-Myo10-HMM, and MO + GFP-Myo10-IQT, respectively. For signifi cance 
testing, unpaired Student ’ s  t  tests were performed: *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001; ****, P  <  0.0001.   
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the spindle through interactions with F-actin fi ts well with the 

fact that actin is known to play a vital role in positioning the 

spindle during oriented cell division ( Gundersen and Bretscher, 

2003 ;  Rodriguez et al., 2003 ;  Gundersen et al., 2004 ) and the re-

cent fi nding that Myo10 is required for spindle orientation in 

cultured mammalian cells ( Toyoshima and Nishida, 2007 ). 

 A second function of Myo10 during mitosis is to main-

tain spindle pole integrity, as disrupting Myo10 either in vitro 

or in vivo leads to the formation of multipolar spindles. 

An unusual aspect of this phenotype is that spindle poles fi rst 

appear to assemble normally and only fragment subsequently. 

This suggests that Myo10 is not required to establish bipolar-

ity during spindle assembly but instead acts to stabilize spin-

dle poles as mitosis progresses, although it is also possible 

that the late onset of the multipolar phenotype simply refl ects 

a slow loss of Myo10 protein in morphant cells. It is interest-

ing to note that a similar late-onset pole fragmentation pheno-

type is seen when Borealin, a member of the chromosomal 

passenger complex, is depleted in mammalian cells ( Gassmann 

et al., 2004 ). Exploring a link between Myo10 and this com-

plex could be a fruitful area for further study. Strikingly, the 

function of Myo10 in the spindle pole is independent of F-actin, 

as LatB treatment has no effect on spindle pole integrity ei-

ther in control or morphant embryos. Furthermore, injection 

 Our fi ndings indicate that Myo10 and F-actin both help to 

anchor the spindle during mitosis. First, spindles in Myo10 mor-

phants undergo strikingly different movements to controls, with 

morphant spindles moving smoothly compared with the rapid 

changes in rotation rate displayed by control metaphase spin-

dles. Second, disrupting F-actin in embryos leads to spindle po-

sitioning defects, with spindles orienting perpendicular, rather 

than parallel, to the cortex. The fact that knocking down Myo10 

eliminates jerky spindle movement suggests that Myo10 func-

tions in spindle anchoring by providing transient links between 

the spindle and the cortex through brief, high-affi nity inter-

actions with F-actin, generating a stop-start movement. It may 

seem counterintuitive that disrupting anchoring would lead to a 

reduction in rotation rate, but this phenomenon has also been 

seen in the  Caenorhabditis elegans  embryo, where knockdown 

of dynein, a microtubule motor that is located at the cell cortex 

and pulls on spindle microtubules, leads to an attenuation of 

spindle oscillation ( Pecreaux et al., 2006 ). It is unclear whether 

Myo10 ’ s spindle anchoring capacity is mediated through corti-

cally localized Myo10, possibly functioning in concert with cor-

tical dynein, or through Myo10 associated with the spindle. 

However, it is interesting to note that because we see actin cables 

extending between the cortex and the spindle pole, the latter pos-

sibility is highly plausible. The notion that Myo10 acts to anchor 

 Figure 6.    Depolymerizing F-actin rescues spindle length but not multipolarity in Myo10 morphants.  (a) Low-magnifi cation confocal micrographs of mitotic 
spindles in untreated embryos (control and MO) or embryos incubated in 2.5  μ M LatB (MO + LatB). In LatB-treated embryos, some spindles were improperly 
oriented perpendicular to the plane of the epithelium (arrows). Insets show z projection cross sections of a control spindle, oriented parallel to the plane of 
the epithelium, and a LatB spindle in the improper perpendicular orientation (the outermost cell cortex is indicated by a broken line in each inset). (b) High-
magnifi cation confocal micrographs of  � -tubulin – stained spindles in Myo10 morphants either untreated (MO) or incubated in 2.5  μ M LatB (MO + LatB). 
(c) Quantifi cation of spindles in LatB experiment embryos shows that treatment with LatB does not signifi cantly affect the number of bipolar or multipolar 
spindles ( n  = 11, 11, 17, and 15 embryos for control, LatB, MO, and MO + LatB, respectively). Error bars represent standard error of the mean. (d) Box 
and whisker plots of spindle length measurements in the LatB experiment; spindle length was calculated as a percentage of total cell length to allow for 
changes in cell size. Treatment with LatB signifi cantly rescues the increased spindle length seen in Myo10 morphants ( n  = 82, 104, 86, and 59 spindles 
for control, LatB, MO, and MO + LatB, respectively). For signifi cance testing, unpaired Student ’ s  t  tests were performed: ****, P  <  0.0001.   
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ther investigation. The upstream control of TPX2 is much bet-

ter understood, as, like other spindle assembly factors, TPX2 

is held at the nucleus during interphase through an interaction 

with the nuclear importins and is released from this by Ran 

GTPase as mitosis begins ( Gruss and Vernos, 2004 ). It is inter-

esting to note the similarities between the localization patterns 

of Myo10 and TPX2 and consider if Myo10 localization may 

also be regulated by the Ran GTPase pathway. Previous work 

has shown that the tail of Myo15, a MyTH4/FERM myosin, 

binds to the nuclear importin, importin- �  ( Liu et al., 2008 ), 

and, intriguingly, we also fi nd by yeast two-hybrid assay that 

the MyTH4/FERM domain cassette of Myo10 interacts with 

importin- �  (unpublished data), which suggests that the local-

ization of Myo10 may be controlled in a similar manner to 

spindle assembly factors. 

of GFP-Myo10-IQT, a Myo10 tail construct that lacks the 

actin-binding myosin head, specifi cally rescues the pole frag-

mentation phenotype in Myo10 morphants. A possible expla-

nation for Myo10 tail function in spindle pole integrity is that 

domains in the tail act to recruit and/or retain pole proteins 

such as TPX2, NuMA, or  � -tubulin at the pole. Consistent 

with this idea, disruption of TPX2 has been previously shown 

to generate multipolar spindles ( Garrett et al., 2002 ), and we 

fi nd that TPX2 fails to localize properly to the spindle pole in 

Myo10 morphants. In addition, Myo10 can interact directly 

with TPX2 via its MyTH4/FERM domain cassette. However, 

it remains unclear how TPX2 functions in spindle pole focus-

ing, and our data do not rule out the possibility that TPX2 is 

instead required to recruit Myo10 to the pole to ensure pole 

integrity; resolving this issue will be an important line of fur-

 Figure 7.    Live imaging in  X. laevis  embryos 
reveals actin cables around the mitotic spindle, 
which are unaffected in Myo10 morphants.  
(a) Images taken from a video showing F-actin 
organization in a control mitotic spindle (see 
Video 7, available at http://www.jcb.org/
cgi/content/full/jcb.200804062/DC1) using 
mCherry –  � -tubulin (red) to visualize the spindle 
and the GFP-Utr-CH probe (green) to visualize 
F-actin. Highly dynamic F-actin cables surround 
the spindle as it assembles (t = 0:00 – 2:00, 
arrows) and are concentrated around the poles 
later in mitosis, especially during anaphase 
(t = 11:00 and 13:00, arrows). (b) An enlarged 
view of the uppermost spindle pole from panel 
a showing that F-actin (GFP-Utr-CH, green) is 
concentrated around the pole, with some F-actin 
cables appearing to emanate from the pole 
(t = 0:00 and 0:06, arrows) and others from 
the cortex (t = 0:12, arrows). (c) Stills taken 
from a video of a second control spindle (see 
Video 8) demonstrating that the assembly of 
F-actin cables between the spindle and the 
cell cortex coincide with spindle movement 
(t = 0:00 – 0:18, arrows) and concentrate as a 
pole is drawn toward the cortex (t = 0:24 and 
0:30, arrows). (d) Images taken from a video 
showing F-actin (GFP-Utr-CH, green) organiza-
tion during Myo10 morphant spindle assembly 
(see Video 9). F-actin cables associate with the 
morphant spindle as it assembles (arrow), just 
as occurs in controls. (e) Stills of a multipolar 
spindle in a Myo10 morphant (see Video 9) 
demonstrating that F-actin associates with 
each of the poles and follows the motion of the 
spindle (arrows). In each panel, time stamps 
indicate time in minutes and seconds.   
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direct manner, with the lengthening mechanism being under-

pinned by pulling forces on the poles via F-actin and dynein 

( Sharp et al., 2000 ) and/or myosin-2 ( Rosenblatt et al., 2004 ), 

whereas the poles are pulled together by Myo10 acting on the 

spindle-associated F-actin described here. Alternatively, as con-

siderable evidence links spindle length control to tubulin turnover 

within the spindle ( Goshima et al., 2005 ;  Mitchison et al., 2005 ), 

it is also possible that the F-actin – dependent spindle length con-

trol mechanisms function more indirectly, by modulating micro-

tubule assembly and disassembly within the spindle. The F-actin 

cables that we see associated with the mitotic spindle could con-

tribute to either of these mechanisms, and this will be an impor-

tant area for further investigation. 

 The extent to which the various Myo10 roles described 

above are interrelated must be considered. The differential depen-

dence on F-actin indicates that at least some aspects of the pheno-

types can be considered separately. However, it is also likely that 

some of them are coupled. For example, it seems plausible 

that the metaphase delay is related to the spindle length defect, in 

that it is not hard to imagine that improper length control, and any 

subsequent loss of tension, would elicit the spindle assembly 

checkpoint ( Nicklas et al., 1995 ;  Zhou et al., 2002 ). Further, it is 

also probable that at least some of the defi cits that result from 

Myo10 depletion feed back on each other. That is, in videos 

where the phenotype is just starting to become manifest, exces-

sive spindle length and metaphase delay are apparent before ex-

cessive spindle pole fragmentation (e.g., Video 2). However, at 

least some of the cells with elongate spindles fail to complete 

 cytokinesis without having obviously fragmented their poles (e.g., 

Video 5). Such cells would thus start the subsequent mitosis with 

additional poles. This condition would, presumably, further delay 

metaphase, provide additional material for pole fragmentation, 

and increase the probability of another failed cytokinesis. Conse-

quently, in just one or two cell cycles, cells could go from an 

 A third role for Myo10 in mitosis is regulation of spindle 

length. Specifi cally, Myo10 depletion results in spindles that are 

signifi cantly longer than controls, both in absolute terms and as 

a function of cell size. Remarkably, this increased spindle length 

is rescued by disruption of F-actin with LatB, indicating that 

Myo10 and F-actin somehow play opposing roles in mitotic 

spindle length control. How can these fi ndings be reconciled? 

The simplest explanation is that actin fi laments participate in 

mutually opposing mechanisms that control spindle length: one 

mechanism that lengthens spindles and is independent of Myo10 

and one that shortens spindles and is dependent on Myo10 ( Fig. 8 ). 

When Myo10 is depleted, the former predominates, causing 

spindle lengthening; when F-actin is disrupted by latrunculin 

treatment either with or without Myo10 depletion, both mecha-

nisms are neutralized, so spindle lengths are similar to controls. 

This model is attractive not only because it explains the results 

of the current study, but also because it might account for previ-

ous fi ndings in  X. laevis  egg extracts showing that F-actin dis-

ruption has no obvious effect on spindle length ( Mitchison 

et al., 2005 ). Curiously, in the current study, addition of Myo10 

antibodies to extracts resulted in spindles that appeared longer 

than controls, in spite of the fact that cytochalasin D was pres-

ent. Although this might simply refl ect the apparent fragmenta-

tion of the poles, there is another potential explanation. That is, 

previously, we have shown that microtubules in extracts interact 

with dynein immobilized on the glass substrate ( Waterman-

Storer et al., 2000 ), and it may be that this interaction produces 

an outward pulling force in the extract spindles, which is exag-

gerated when Myo10 is depleted. 

 Assuming one or more aspects of the above model are cor-

rect, it will be essential in future studies to determine how exactly 

the F-actin – dependent lengthening and shortening mechanisms 

work. Two general, nonexclusive possibilities should be consid-

ered. First, it is possible that the mechanisms work in a relatively 

 Figure 8.    Model for spindle length regula-
tion by F-actin and Myo10.  F-actin and Myo10 
function antagonistically to contribute to spin-
dle length control. F-actin promotes spindle 
lengthening, perhaps through interactions with 
astral microtubules at the cell cortex, whereas 
Myo10 provides a counteracting spindle short-
ening function. The F-actin spindle lengthening 
is independent of Myo10, as knockdown of 
Myo10 results in longer spindles. In contrast, 
the shortening function of Myo10 requires 
F-actin because disrupting both F-actin and 
Myo10 gives normal length spindles.   
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 Confocal imaging 
 For fi xed tissue analysis, samples were mounted in Murray ’ s Clear (benzyl 
benzoate/benzyl alcohol, 2:1) and imaged at room temperature using a 
microscope (Axiovert 100M ; Carl Zeiss, Inc.) with Lasersharp confocal 
software (Bio-Rad Laboratories) using 0.8 NA 25 ×  or 1.4 NA 63 ×  oil immer-
sion objectives (Carl Zeiss, Inc.). Z series were acquired using step sizes of 
0.25 – 1  μ m and were reconstructed using Volocity software (PerkinElmer). 
For live imaging, embryos were mounted in 0.1 ×  MMR (see  “ Egg procure-
ment and in vitro fertilization ” ) and imaged at room temperature using the 
Axiovert 100M microscope with a 1.4 NA 63 ×  oil immersion objective. 
Single-plane time series were collected with intervals of 6 s and were pro-
cessed using Volocity or ImageJ software. 

 Embryo lysates and immunoblotting 
 Embryo lysates were prepared from embryos microinjected with nuclease-
free water, Myo10 MO (needle concentration, 1 mM), or 5-mispair control 
MO (1 mM), which had been incubated for 24 h after injection at 17 ° C. 
Embryos were homogenized in 7.5  μ l of homogenization buffer (10 mM 
imidazol, 50 mM KCl, 2.5 mM MgCl 2 , 1 mM EGTA, 2.5 mM ATP, 1 mM 
dithiothreitol, 10 mM EDTA, 0.5% Triton X-100, and protease inhibitors) 
per embryo on ice using a tight dounce homogenizer. Homogenized em-
bryos were centrifuged briefl y at 4 ° C to remove lipids and cell debris, and 
lysate supernatants were transferred to fresh Eppendorf tubes and boiled 
with 6 ×  SDS sample buffer. Samples were then separated by 8% SDS-
PAGE, transferred to nitrocellulose, and analyzed by Western blot accord-
ing to standard protocols using 1  μ g/ml anti-Myo10 and anti –  � -tubulin 
(DM1A; 1:5,000 dilution; Sigma-Aldrich). 

 Protein expression and in vitro binding 
 GST-MyTH4-FERM was expressed in  Escherichia coli  strain C41(DE3) 
and purifi ed on glutathione-agarose beads (Sigma-Aldrich) using stan-
dard protocols. TPX2 was purifi ed and the tag was removed as described 
previously ( O ’ Brien and Wiese, 2006 ). Purifi ed proteins were concen-
trated to  � 5 mg/ml, dialyzed against a buffer containing 20 mM Tris-
HCl, pH 7.5, 150 mM NaCl, and 1 mM DTT, fl ash frozen in small 
aliquots, and stored at  � 80 ° C. For the in vitro binding assay,  � 2  μ M of 
each protein (GST-MyTH4-FERM, TPX2, or GST as indicated) in a total 
volume of 50  μ l was incubated with 25  μ l of glutathione-agarose beads 
at 4 ° C on a rotator for 1 h. The beads were retrieved by a brief spin, 
washed three times with H100 ( O ’ Brien and Wiese, 2006 ), and eluted 
with 1 ×  SDS sample buffer. Supernatants were brought to 1 ×  with 4 ×  
SDS sample buffer. Samples were boiled and subsequently loaded and 
separated by 10% SDS-PAGE, transferred to nitrocellulose, and Western 
blotted according to standard protocols. 

 Quantifi cation and statistical analysis 
 To quantify spindle phenotypes in embryos, the number of bipolar meta-
phase spindles, multipolar spindles, and total cells were counted in low 
magnifi cation confocal micrographs of  � -tubulin staining;  > 10 embryos 
were analyzed for each sample ( n  values are given in relevant fi gure leg-
ends). To determine mitotic spindle length in embryonic cells, two measure-
ments were taken: pole-to-pole distance and total cell length, and spindle 
length was represented as a percentage of total cell length to allow for dif-
ferences in cell size ( > 10 embryos and  > 50 spindles were analyzed for 
each sample). To test for a statistically signifi cant difference between sam-
ples, unpaired Student ’ s  t  tests were performed. 

 Online supplemental material 
 Fig. S1 shows cell cortex and spindle localization of Myo10. Fig. S2 shows 
quantifi cation of spindles assembled in vitro in the presence of control or 
Myo10 antibody. Video 1 shows mitotic spindles in control embryonic 
epithelium. Video 2 shows mitotic spindles in Myo10 morphant epithelium. 
Video 3 shows mitotic spindles in Myo10 morphant epithelium. Video 4 
shows spindle pole fragmentation in the Myo10 morphant. Video 5 shows 
failed cytokinesis in the Myo10 morphant. Video 6 shows multipolar spin-
dle assembly in a binucleate cell in the Myo10 morphant. Video 7 shows 
that F-actin cables surround the mitotic spindle during assembly. Video 8 
shows that F-actin cables extend between the cell cortex and the mitotic 
spindle during spindle rotation. Video 9 shows that F-actin organization 
is unaffected in Myo10 morphants. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200804062/DC1. 

 Thanks to A.L. Miller, B.M. Burkel, and R.E.  “ Dick ”  Cheney for helpful advice, 
the organizers of the 2007 Gordon Research Conference on  “ Motile and 
Contractile Systems, ”  which provided an extremely useful forum to discuss 

initially modest phenotype, wherein spindles have just two extra 

poles, to the severe phenotype in which upwards of 15 extra poles 

are apparent (e.g.,  Fig. 2, b and e ). 

 Materials and methods 
 Egg procurement and in vitro fertilization 
 Adult  X. laevis  females were fi rst primed for ovulation by injection with 
50 units of human chorionic gonadotrophin (HCG; MP Biomedicals) into the 
dorsal lymph sac 4 – 7 d before use and then injected with an additional 800 
units of HCG 18 h before use. Eggs were laid into 1 ×  MMR (100 mM NaCl, 
2 mM KCl, 1 mM MgCl 2 , and 5 mM Hepes, pH 7.4) and fertilized by add-
ing macerated testes. 30 min after fertilization, embryos were dejellied in 
2% cysteine (in 1 ×  MMR, pH 7.8) and rinsed fi ve times with 1 ×  MMR and 
fi ve times with 0.1 ×  MMR. Embryos were cultured in 0.1 ×  MMR at 17 ° C. 

 Embryo microinjection 
 RNA for microinjection was made as described previously using pCS2-
EGFP, pCS2-mCherry, or pStain vectors ( Sokac et al., 2003 ). Microinjec-
tions were delivered using a PLI-100 picoinjector (Medical Systems), with 
embryos submerged in 0.1 ×  MMR + 5% Ficoll. Myo10 MO (MO 
sequence: 5 � -TATTCCTCCATGTCTCCCTCTGCTC-3 � ; Gene Tools, LLC) or 
5-mispair control MO (5 � -TATTCgTCgATcTCTCgCTCTcCTC-3 � , lowercase 
letters indicate mispairing nucleotides) were heated for 5 min at 65 ° C be-
fore microinjection and microinjected into two- or four-cell embryos at a 
needle concentration of 0.5 – 1 mM. For live imaging of mitotic spindles, 
both cells of two-cell embryos were microinjected with 5 nl of RNA for 
EGFP –  � -tubulin (needle concentration of 0.5 mg/ml) or mCherry –  � -tubulin 
(0.5 mg/ml) and EGFP-Utr-CH (0.125 mg/ml), and embryos were subse-
quently microinjected at the four-cell stage in all cells with 2.5 nl of Myo10 
MO (0.5 mM) or nuclease-free water. For morphant rescue experiments, 
both cells of two-cell embryos were microinjected with 5 nl of RNA for the 
GFP-tagged Myo10 constructs (0.5 mg/ml) and then subsequently micro-
injected at the four-cell stage with 2.5 nl of Myo10 MO (0.5 mM) or nucle-
ase-free water. After microinjection, embryos were incubated at 17 ° C for 
12 – 24 h in 0.1 ×  MMR before processing for live imaging, fi xation, or 
Western blot analysis. 

 In vitro spindle assembly 
 Cytostatic factor (CSF)-arrested  X. laevis  egg extracts were prepared as 
described previously ( Murray, 1991 ).  X. laevis  sperm chromatin was 
added and the extracts were subsequently cycled into interphase by the 
addition of 400  μ M Ca 2+ . After 60 min, an equal volume of mitotic extract 
supplemented with  � 90 cyclin B (1:20) was added to induce spindle as-
sembly. Samples were fi xed 45 min after extract addition, spun onto cover-
slips, subsequently processed for immunofl uorescence with the Myo10 
antibody (1:100), and visualized, all as described previously ( O ’ Brien 
et al., 2005 ). For Myo10 antibody addition experiments, Myo10 antibody 
(1:10) or a nonspecifi c rabbit IgG (1:20) was added just before mitotic ex-
tract addition. 

 Immunofl uorescence 
 For immunofl uorescent analysis of microtubules only, embryos were pro-
cessed as described previously ( Danilchik et al., 1998 ). For all other stain-
ing, the methanol postfi x step was omitted from this protocol. Antibodies 
used were: anti –  � -tubulin (DM1A; 1:200 dilution; Sigma-Aldrich), 5  μ g/ml 
anti-Myo10 ( Weber et al., 2004 ), anti-TPX2 (1:800;  O ’ Brien and Wiese, 
2006 ), mouse anti –  � -tubulin (GTU88; 1:200; Sigma-Aldrich), and 10  μ g/ml 
rabbit anti –  � -tubulin ( Keating and Borisy, 2000 ). To visualize chromo-
somes, embryos were fi rst fi xed and processed as above, omitting the 
methanol postfi xation, and then permeabilized for 5 min at room tempera-
ture in PBS + 0.5% Triton X-100, equilibrated in 2 ×  SSC (0.3 M NaCl 2  and 
0.03 M sodium citrate, pH 7), treated with 100  μ g/ml DNase-free RNase 
in 2 ×  SSC for 20 min at 37 ° C, and then incubated with 5  μ M propidium 
iodide (Invitrogen) in 2 ×  SSC for 5 min at room temperature. 

 LatB treatment of embryos 
 Embryos were microinjected with nuclease-free water or Myo10 MO (nee-
dle concentration, 1 mM) into both cells at the two-cell stage and incubated 
at 17 ° C for 20 h. Embryos were then incubated for 30 min at room 
temperature in 0.1% DMSO or 2.5  μ M LatB in 1 ×  MMR. All embryos were 
fi xed immediately after treatment and stained for  � -tubulin as described in 
the previous paragraph. 
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