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    Introduction 
 There is now considerable evidence indicating that reactive 

 oxygen species (ROS) are involved in signal transduction. These 

species include the three successive reduction products of molec-

ular oxygen such as superoxide (  •  O 2  � ), hydrogen peroxide 

(H 2 O 2 ), and hydroxyl radical (  •  OH). Each of these species pos-

sesses chemical properties that potentially impact their signal-

ing function. For example, OH •  is the most unstable ROS with 

a half-life of 10  � 9  s ( Pryor, 1986 ), indicating that it will react 

with any species within a radius of  � 30  Å , thereby limiting 

its ability to transmit signals across any signifi cant distance. 

Superoxide carries a negative charge that limits its membrane 

permeability to anion channels. In contrast, H 2 O 2  is thought to 

be freely permeable and, thus, could react with several intra- 

and extracellular targets, limiting its specifi city; however, this 

concept has recently been challenged ( Branco et al., 2004 ). 

Thus, the chemical properties of ROS suggest signifi cant limi-

tations toward the production of specifi c cellular responses. 

 The prototypical NADPH oxidase (Nox) family member 

is Nox2 (also known as gp91 phox ), which was initially found in 

phagocytes and plays a role in host defense by giving an outward 

burst of ROS ( Cheng et al., 2001 ). Over the last several years, 

Nox2 along with its homologues, including Nox1, Nox3, Nox4, 

Nox5, Duox1, and Duox2, have been identifi ed in nonphago-

cytes. It now appears that Noxs in nonphagocytes serve as a major 

source of intracellular ROS that play important signaling roles. 

However, the complexity of these isoforms in controlling ROS 

production is increasingly apparent because each isoform has its 

unique expression pattern, subcellular localization, and subunits 

requirement. The specifi c mechanisms for specifi c cell signaling 

responses are not known; therefore, the goal of this study is to 

examine the mechanisms of ROS signaling specifi city. 

 Results 
 Exogenous versus endogenous sources of 
ROS initiate distinct signaling responses 
 ROS are known to mediate a variety of cellular signaling path-

ways, and experiments in vitro typically use an exogenous 

source of ROS such as H 2 O 2  to directly initiate signaling re-

sponses. However, one must consider that exogenous applica-

tion of H 2 O 2  may not adequately refl ect authentic endogenous 

ROS signaling. Indeed, exogenous H 2 O 2  produces broad signal-

ing responses, including the activation of extracellular signal-

regulated kinase (ERK), JNK, p38 MAPKs ( Fig. 1 A ), and Akt 

( Thomas et al., 2002 ). In contrast, the EGF-stimulated signaling 

response, which is known to be mediated by ROS in epithelial 

cells ( Bae et al., 1997 ), was restricted to the mitogenic ERK path-

way ( Fig. 1 B ) in endothelial cells. We found that EGF-induced 

R
eactive oxygen species (ROS) function as intracellu-

lar signaling molecules in a diverse range of bio-

logical processes. However, it is unclear how freely 

diffusible ROS dictate specifi c cellular responses. In this 

study, we demonstrate that nicotinamide adenine dinucle-

otide phosphate reduced oxidase 4 (Nox4), a major Nox 

isoform expressed in nonphagocytic cells, including vascu-

lar endothelium, is localized to the endoplasmic reticulum 

(ER). ER localization of Nox4 is critical for the regulation 

of protein tyrosine phosphatase (PTP) 1B, also an ER resi-

dent, through redox-mediated signaling. Nox4-mediated 

oxidation and inactivation of PTP1B in the ER serves as a 

regulatory switch for epidermal growth factor (EGF) re-

ceptor traffi cking and specifi cally acts to terminate EGF 

signaling. Consistent with this notion, PTP1B oxidation 

could also be modulated by ER targeting of antioxidant 

enzymes but not their untargeted counterparts. These data 

indicate that the specifi city of intracellular ROS-mediated 

signal transduction may be modulated by the localization 

of Nox isoforms within specifi c subcellular compartments.
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lation induced by EGF, whereas Nox2 suppression had no mate-

rial impact ( Fig. 1 F ). Together, these data implicate endothelial 

Nox4 as an endogenous source of ROS in mediating EGF-

 induced signaling responses. 

 Nox4 is an ER-residing protein 
 To gain insight into the nature of Nox4, we examined its sub-

cellular localization. The topography of Nox4 was examined in 

silico initially using PredictProtein (Columbia University), and 

it possesses six putative membrane-spanning regions,  predicting 

ERK activation was attenuated by catalase overexpression ( Fig. 1, 

C and D ), indicating a role for ROS and a distinction between 

endogenous and exogenous ROS signaling. 

 To examine endogenous ROS responses in the endothe-

lium, we suppressed the expression of Nox4 and Nox2, the two 

major Nox isoforms present in endothelial cells ( Sorescu et al., 

2002 ), using RNAi. As shown in  Fig. 1 E , both Nox4 and Nox2 

siRNA substantially reduced their respective mRNA and protein 

levels without cross-reactivity by  > 75% and 60%, respectively. 

We found that suppression of Nox4 attenuated ERK phosphory-

 Figure 1.    A different source of ROS initiates distinct signaling responses in endothelial cells.  (A) HAECs were treated with 100  μ M H 2 O 2  for the indicated 
times, and total cell lysates were subjected to antibodies specifi c for pERK, ERK, pcJun, cJun, pp38, or p38. (B) HAECs were treated with 50 ng/ml EGF for the 
indicated times followed by immunoblotting with antibodies as in A. (C and D) Cells were treated with control adenovirus (Ad-LacZ) or catalase-overexpressing 
adenovirus (Ad-Cat) for 24 h before treatment with EGF followed by immunoblotting as in A. Error bars represent SD. *, P  <  0.05. (E and F) HAECs were trans-
fected with siRNA against nontargeting control (NT), Nox4, or Nox2 for 48 h before extraction of total RNA for RT-PCR and Western blotting (E) or treatment with 
EGF for 15 min followed by immunoblotting with pERK, ERK, Nox4, and Nox2 antibodies (F). Results are representative of four independent experiments.   
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when COS-7 cells were examined after transfection with either 

V5- or myc-tagged Nox4, identical results were obtained regard-

less of whether the tag was C or N terminal (unpublished data). 

Finally, using immunogold electron microscopy in HAECs trans-

fected with adenoviral V5-tagged Nox4 ( Fig. 2 C ), we observed 

gold particles predominantly in the ER membrane. To confi rm 

the aforementioned results, a biochemical analysis of sub-

cellular fractionation was performed in Nox4-V5 – overexpressing 

cells and revealed that Nox4-V5 was mainly detected in the frac-

tion of membrane/organelle that coincides with the ER marker 

GRP78 ( Fig. 2 D ) but not with other intracellular markers, in-

cluding SHP-2 as a cytoplasmic marker, histone H4 as a nuclear 

marker, and vimentin as a cytoskeletal marker ( Higashi et al., 2002 ). 

Similarly, analysis by nonlinear Nycodenz density gradient 

an integral membrane protein similar to Nox2. Further in silico 

analysis based on the Nox4 amino acid sequence using the 

PSORT II program (Human Genome Center, Tokyo University) 

and the  k -nearest neighbor algorithm placed the probability of 

Nox4 localizing to the ER at 67%, whereas the probability 

of localization in plasma membrane, mitochondria, or the Golgi 

was only 11% each. Consistent with this prediction, confocal 

microscopy revealed a perinuclear distribution of endogenous 

Nox4 with colocalization with the ER marker protein GRP78 

( Fig. 2 A ). These data were confi rmed using transfection with 

V5-tagged Nox4 by adenoviral vector in human aortic endo-

thelial cells (HAECs;  Fig. 2 B ). There was no localization to 

the plasma membrane, as evident by staining for the plasma 

membrane marker vascular endothelial (VE) cadherin. Moreover, 

 Figure 2.    Nox4 is localized to the ER.  
(A) HAECs cultured in EBM2 medium were fi xed 
and subjected to immunostaining with anti-
Nox4 (AlexaFluor488; green) and anti-GRP78 
(AlexaFluor594; red) followed by two-photon 
confocal microscopy. (B) HAECs were trans-
fected with adenoviral vector expressing Nox4-V5 
(AdNox4-V5). After 24 h, cells were probed 
with anti-V5 and VE-cadherin antibodies and 
visualized with AlexaFluor594 (red) and Alexa-
Fluor488 (green), respectively. (C) Cells were 
transfected with AdNox4-V5 as in B followed 
by immunogold staining and were visualized by 
electron microscopy. (D and E) Similarly, HAECs 
with overexpression of Nox4-V5 were fraction-
ated by biochemical detergent method (D) or 
Nycodenz gradient centrifugation (E). The ob-
tained fractions cytosolic (Cyto), membrane/
organelle (MO), nuclear (Nuc), and cytoskeletal/
matrix (CSK/MAT) in D or fractions from top to 
bottom in E were subjected to immunoblotting 
with antibodies. Bars: (A) 5  μ m; (B) 10  μ m.   
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tyrosine phosphatases (PTPs). Because PTP1B is an ER-resident 

protein and its C-terminal 35 amino acid residues are critical for 

ER targeting ( Frangioni et al., 1992 ;  Salmeen et al., 2003 ;  van 

Montfort et al., 2003 ), we fi rst overexpressed PTP1B wild type 

(PTP1B) and a mutant lacking the C-terminal 35 amino acids 

(PTP1B- � 35) in COS-7 cells and observed their distinct cellular 

localization. Although the wild-type PTP1B shows strong peri-

nuclear colocalization with Nox4, the mutant PTP1B exhibits 

diffuse cytoplasmic distribution ( Fig. 3 A ) and predominant 

centrifugation revealed that Nox4-V5 is present in fractions that 

are enriched with the ER marker GRP78 but not the Golgi marker 

GS-28 ( Fig. 2 E ). Collectively, these data establish that Nox4 is 

localized to the ER of endothelial cells. 

 Nox4-dependent redox regulation of 
PTP1B requires colocalization 
 Signaling via ROS is thought to be mediated by regulation of 

the redox-sensitive cysteine of target proteins, including protein 

 Figure 3.    PTP1B oxidation by Nox4 is spatially dependent.  (A) COS7 cells were transfected with pcDNA3.1/PTP1B wild type or pcDNA3.1/PTP1B- Δ 35 
in addition to pcDNA3.1/Nox4-V5. After 24 h, cells were fi xed and immunostained with anti-V5 (green) for Nox4-V5 and anti-PTP1B for PTP1B wild 
type and C-terminal deleted PTP1B- Δ 35 (red). (B) Cells transfected as in A were also subjected to detergent fractionation followed by immunoblotting with 
anti-PTP1B and anti-GRP78. Fractions include cytosolic (Cyto), membrane/organelle (MO), nuclear (Nuc), and cytoskeletal/matrix (CSK/MAT). (C) COS-7 
cells treated as in A were lysed and labeled with biotin polyethylene oxide maleimide. Subsequent immunoprecipitation with avidin followed by immuno-
blotting with anti-PTP1B yields a band that represents the reduced, active form of PTP1B. (D) COS-7 cells were transfected with pcDNA3.1/Nox4-V5 or its 
Nox4i-resistant version pcDNA3.1/Nox4-R in combination with/without pQ/Nox4i. PTP1B oxidation was assessed as in C, and the effi ciency of Nox4 
knockdown was probed by V5. Total cellular PTP1B is shown in the bottom panel. (E and F) HAECs were transfected with Ad-control siRNA (Ad-Ctli) or 
Ad-Nox4i for 48 h before lysis and labeling with biotin polyethylene oxide maleimide. Treatment of cells with H 2 O 2  at 100  μ M for 5 min served as a 
 positive control. Blots are representative of three independent experiments. Error bars represent SD. *, P  <  0.05. Bar, 10  μ m.   
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suggesting an involvement of Nox4 in EGFR signaling at the late 

phase. To determine whether the regulation of EGFR phosphory-

lation by Nox4 is mediated by PTP1B, we transfected COS-7 

cells with PTP1B in the presence or absence of Nox4. Over-

expression of PTP1B enhanced EGFR dephosphorylation at 

30 min after EGF treatment. In contrast, the late component 

of EGFR ( Fig. 4 B ) and ERK ( Fig. 4 C ) phosphorylation was 

enhanced in cells with Nox4 overexpression compared with 

PTP1B alone. Concerning the presence of endogenous PTP1B 

in COS-7 cells, we further used immortalized PTP1B  � / �   mouse 

embryonic fi broblasts (MEFs) along with PTP1B  � / � (+WT)  MEFs 

in which PTP1B has been reconstituted in PTP1B  � / �   MEFs. 

Consistent with the fi ndings in COS-7 cells, Nox4 overexpres-

sion prolonged EGFR phosphorylation in PTP1B  � / � (+WT)  MEFs 

( Fig. 4 D ). These results suggest Nox4-mediated regulation of 

EGFR dephosphorylation via PTP1B. 

 To address the spatial requirements of Nox4 in regulating 

EGFR signaling, we overexpressed PTP1B- Δ 35 ( Frangioni et al., 

1993 ) and observed reduced EGFR phosphorylation ( Fig. 4 B ). 

However, Nox4 overexpression did not modify the effect of 

PTP1B- Δ 35 on EGFR dephosphorylation and subsequent ERK 

activation status ( Fig. 4 C ). Further study with the cotransfec-

tion of Nox4 and PTP1B wild type/PTP1B- Δ 35 in PTP1B  � / �   

MEFs supported PTP1B wild type being the target of Nox4 in 

regulation of EGFR dephosphorylation ( Fig. 4 E ). In contrast, 

Nox4 was not effective in modulating the effect of PTP1B- Δ 35 

( Fig. 4 B ). Thus, these data support the notion that colocalization 

of PTP1B and Nox4 in the ER is essential for redox regulation 

of EGFR signaling in various cell types, including endothelial 

cells ( Fig. 4 F ). 

 Oxidation of PTP1B trapping mutant 
by Nox4 attenuates its substrate-
binding capacity 
 To gain insight into the mechanism of Nox4-mediated modu-

lation of PTP1B activity, we used substrate-trapping PTP1B 

mutant that retains substrate-binding activity but cannot com-

plete the catalytic cycle and release the substrate ( Tonks, 2003 ). 

Indeed, COS-7 cell transfection with the PTPT1B trapping mu-

tant (D181A/Q262A) produces an increase in phosphorylation of 

the EGFR that is enhanced after treatment with EGF ( Fig. 5 A ). 

Because the mutant PTP1B(D181A/Q262A) features disrupted 

trapping ability upon oxidation ( Salmeen et al., 2003 ), we then 

sought to evaluate the involvement of Nox4-derived ROS in this 

setting. Overexpression of Nox4 in this system attenuated EGFR 

tyrosine phosphorylation at basal condition and after EGF 

stimulation ( Fig. 5 A ). The localization of EGFR visualized by 

using an enhanced GFP-EGFR expression vector was consistent 

with EGFR mobilization to the ER induced by PTP1B(D181A/

Q262A) as a result of substrate trapping, which was reversed 

by Nox4 overexpression ( Fig. 5 B ). In agreement with this 

 observation, the interaction between EGFR and PTP1B(D181A/

Q262A) was evident but greatly attenuated by the presence of 

Nox4 as determined by pull-down assay ( Fig. 5 C ). Thus, these 

data suggest that Nox4-derived ROS mediate the oxidation 

 status/trapping ability of PTP1B(D181A/Q262A) in relation 

to EGFR. 

 relocation to the cytosol by detergent fractionation ( Fig. 3 B ). 

Other than the location, PTP1B- � 35 has retained its enzymatic 

activity and indeed has shown a slightly higher activity compared 

with wild-type PTP1B ( Frangioni et al., 1992 ). This property 

prompted us to determine whether PTP1B is subject to oxida-

tive modifi cation by Nox4 in a spatially dependent manner. 

 Using the preceding cotransfection system, we assessed the 

PTP1B oxidation status with biotin maleimide as a function of co-

overexpressed Nox4 level. Biotin maleimide irreversibly alkylates 

SH �  groups on the active cysteine of PTP1B, and, therefore, 

its PTP1B incorporation refl ects the amount of reduced PTP1B. 

As shown in  Fig. 3 C , coexpression of Nox4 with both PTP1B 

wild type and PTP1B- � 35 led to less reduced PTP1B (PTP1B-S  �  ) 

only in wild-type PTP1B, which is consistent with more oxi-

dation. However, there was no material change in PTP1B- � 35 

oxidation with or without Nox4 overexpression ( Fig. 3 C ), 

suggesting that cytosolic PTP1B is not subject to oxidation 

by Nox4. 

 To further validate the Nox4-dependent PTP1B oxidation 

by rescue experiment, we constructed an RNAi-producing vec-

tor targeting wild-type Nox4 (pQ/Nox4i) and an RNAi-resistant 

Nox4 overexpression vector (pcDNA3.1/Nox4-R) containing 

silent mutations in the RNAi target region but encoding wild-

type Nox4 protein. Immunoblot analysis verifi ed that Nox4 from 

pcDNA3.1/Nox4-V5 could be effi ciently knocked down by 

pQ/Nox4i, whereas pcDNA3.1/Nox4-R was indeed resistant to 

Nox4i. Further examination of PTP1B wild-type redox status 

revealed increased oxidation (less reduced form) in association 

with Nox4 overexpression, which was attenuated by the pres-

ence of Nox4i. In contrast, the effect of Nox4-R, the Nox4i-

 resistant version of wild-type Nox4, on PTP1B oxidation was 

equivalent to that of the wild-type Nox4 but was unaltered by 

Nox4i ( Fig. 3 D ), suggesting the specifi city of Nox4i and con-

sistency of Nox4-dependent PTP1B oxidation. To recapitulate 

this interaction in HAECs, we used Ad-Nox4i originated from 

pQ/Nox4i and found that suppression of Nox4 by RNAi in 

HAECs was associated with more of the reduced form of PTP1B 

(PTP1B-S  �  ), whereas H 2 O 2  treatment attenuated the band inten-

sity ( Fig. 3, E and F ), indicating the Nox4-dependent oxidation 

of PTP1B in endothelial cells. Together, these results further 

support the notion that colocalization is essential for redox-

 dependent regulation. 

 Nox4-dependent PTP1B oxidation is 
involved in EGFR dephosphorylation 
 One action of PTP1B is the negative regulation of multiple 

receptor tyrosine kinases, including the EGF receptor (EGFR; 

 Flint et al., 1997 ;  Liu and Chernoff, 1997 ), in part through re-

ceptor endocytosis to a dephosphorylation compartment within 

the ER ( Haj et al., 2002 ). To probe Nox4 involvement in regu-

lating EGFR phosphorylation, we initially transfected COS-7 

cells with Nox4 and examined EGF-stimulated EGFR tyrosine 

phosphorylation. As shown in  Fig. 4 A , EGF treatment pro-

duced early robust EGFR phosphorylation at 5 min, which was 

attenuated at 30 min. Overexpression of Nox4 enhanced the 

phosphorylation of both EGFR and downstream ERK at 30 min 

after EGF treatment with little impact on the early response, 
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 Figure 4.    Nox4-dependent PTP1B oxidation regulates EGF signaling.  (A) COS-7 cells were transfected with pcDNA3.1/Nox4-V5 for 24 h followed by 
50 ng/ml EGF treatment for the indicated times. The lysates were probed for phosphorylated and total EGFR and ERK. *, P  <  0.05 compared with the 
respective control. (B) COS-7 cells were transfected with pcDNA3.1/PTP1B or pcDNA3.1/PTP1B- Δ 35 in addition to pcDNA3.1/Nox4-V5 and treated as 
in A. Phosphorylation of EGFR was determined by immunoprecipitation with anti-EGFR followed by immunoblotting with antiphosphotyrosine. Total PTP1B 
and Nox4 levels were examined by using anti-PTP1B and anti-V5, respectively. (C) ERK phosphorylation was measured at 30 min after EGF treatment by 
immunoblotting with antiphospho-ERK. (D) PTP1B  � / �   and PTP1B  � / � (+WT)  MEFs were transfected with or without pcDNA3.1/Nox4 followed by treatment and 
detection as in B. (B – D) *, P  <  0.05. (E) PTP1B  � / �   MEFs were transfected with pcDNA3.1/PTP1B or pcDNA3.1/PTP1B- Δ 35 in addition to pcDNA3.1/Nox4. 
Cells were collected for assay as in B. *, P  <  0.05 compared with the respective control. (F) HAECs were transfected with Ad-control siRNA (Ad-Ctli) or 
Ad-Nox4i for 48 h and were treated with EGF for the indicated times. Phospho-ERK, total ERK, and Nox4 were determined. *, P  <  0.05 compared with 
the respective Ad-Ctli. The blots are representative of three independent experiments. Error bars represent SD.   
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 ER-targeting antioxidants attenuate 
Nox4-derived ROS signaling 
 If ER localization is critical for Nox4 to modulate EGFR signal-

ing, one might expect that ER targeting of antioxidants could 

attenuate the effect of Nox4. To test this hypothesis, we used the 

N-terminal 35 amino acid residues (N35) of Nox4 that confer 

ER localization ( Fig. 6 A ) to target catalase (N35-Cat) to the 

ER. N35-Cat exhibits perinuclear ER distribution distinct from 

its original peroxisomal sites ( Fig. 6 B ). We chose to use intra-

cellular organelles targeting catalases for spatial-dependent 

 manipulation because overexpression of wild-type catalase might 

leak into other intracellular compartments, including the ER, 

that might not be clean systems. We found that COS-7 cells 

transfected with catalase targeted to the ER (N35-Cat) or mito-

chondria (mitochondrial signal peptide [MSP] – Cat;  Fig. 6 B ; 

 Bai et al., 1999 ) exhibited increased catalase activity ( Fig. 6 C ), 

but only N35-Cat and not MSP-Cat attenuated Nox4 modula-

tion of EGFR signaling ( Fig. 6 D ). These results demonstrated 

the effectiveness of ER-targeting antioxidants in regulating 

ER-localized Nox4 ROS signaling. 

 Figure 5.    Oxidation of PTP1B trapping mutant by Nox4 attenuates 
its substrate-binding capacity.  (A) COS-7 cells were transfected with ex-
pression vectors as indicated for 24 h followed by treatment with or with-
out 50 ng/ml EGF for 30 min. Cell lysates were immunoprecipitated 
with EGFR antibody and immunoblotted with antiphosphotyrosine. Total 
cell lysates were also immunoblotted with anti-EGFR as shown in the 
bottom panel. (B) COS-7 cells were cultured on the glass coverslips 
and transfected with expression vectors as indicated for 24 h. Imaging 
was visualized with a two-photon confocal microscope. (C) COS-7 cells 
were treated as in B, and cell lysates were immunoprecipitated with PTP1B 
antibody followed by immunoblotting with anti-EGFR and anti-PTP1B. 
Bar, 10  μ m.   

 Figure 6.    ER-targeting antioxidant attenuates Nox4-dependent ROS 
 signaling.  (A) COS-7 cells on coverslips were transfected with pcDNA3.1/
Nox4-V5 or pcDNA3.1/N35-V5. After 24 h, cells were fi xed and immuno-
stained with anti-V5 (green) for fusion proteins and anti-GRP78 (red). (B) COS-7 
cells were transfected with overexpression vectors as indicated and were 
immunostained with anticatalase antibodies. (C) COS-7 cells were transfected 
with mitochondrial-targeting catalase (MSP-Cat) or ER-targeting catalase 
(N35-Cat) as indicated for 24 h. Catalase activity was measured in cell 
lysates using the Amplex red catalase kit. Error bars represent SD. *, P  <  
0.05 versus control. (D) The Nox4-overexpressing COS-7 cell line was 
transfected with pcDNA3.1/PTP1B in combination with either MSP-catalase 
or N35-catalase. After 24 h, cells were treated with 50 ng/ml EGF, and 
phosphorylation of EGFR and ERK and PTP1B oxidation status were deter-
mined as described in Materials and methods. The blots are representative 
of three independent experiments. Bars, 10  μ m.    
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 The notion that ROS are involved in cell signaling is not 

new ( Finkel and Holbrook, 2000 ), and the diffusible nature of 

H 2 O 2  is thought to be consistent with this role. In this regard, 

previous experience with nitric oxide (NO) merits particular at-

tention. For example, NO was thought to readily diffuse to its 

effector site, making its site of generation irrelevant. However, 

it is now clear that cell responses vary dramatically depending 

on the site of the NO synthase (NOS) enzymes. For example, 

NOS1 in the sarcoplasmic reticulum of cardiomyocytes regu-

lates ryanodine receptor Ca 2+  release, whereas NOS3 in caveo-

lae regulates L-type Ca 2+  channels ( Barouch et al., 2002 ). The ER 

localization of Nox4 may have some advantages for redox-

 related signal transduction as a result of the relatively oxidized 

state of the ER ( Tu and Weissman, 2004 ). The low antioxidative 

capacity in the region may allow Nox4 to initiate signaling more 

effi ciently or cause pathological events while dysregulated. Con-

sistent with this notion, Nox4 has recently been related to ER 

stress and apoptosis in 7-ketocholesterol – treated human aortic 

smooth muscle cells ( Pedruzzi et al., 2004 ). The data presented 

here underlines the importance of subcellular localization as a 

regulatory theme in redox signaling. 

 PTP1B is localized exclusively on the cytoplasmic face 

of the ER and contains a small hydrophobic C-terminal anchor 

 sequence that is necessary and suffi cient to localize the enzyme 

to the ER ( Frangioni et al., 1992 ).  Haj et al. (2002 ) demonstrated 

that the activated EGFR is internalized and transported to the 

ER, where it is subject to dephosphorylation by PTP1B. The cata-

lytic activity of PTPs is dependent on a reduced active site Cys 

residue, and the catalytic Cys is extremely susceptible to oxida-

tion by H 2 O 2  ( Meng et al., 2002 ). Here, we demonstrate that Nox4 

is a source of H 2 O 2  that modulates the PTP1B redox state and, 

as a consequence, the duration of EGFR signaling. Modulating 

the duration of EGFR signaling had functional consequences, as 

 EGF-induced endothelial proliferation is 
mediated by Nox4-dependent 
PTP1B oxidation 
 To examine the functional implications of Nox4 in EGF-dependent 

endothelial cell responses, we manipulated the endothelial Nox4 

levels using adenoviral overexpression and RNAi. Both strategies 

resulted in signifi cant changes in Nox4 expression at the mRNA 

level ( Fig. 7 A ), and EGF-induced ROS production in these cells 

was correlated with Nox4 expression ( Fig. 7 B ). Furthermore, 

EGF-stimulated endothelial cell proliferation as determined by 

either BrdU incorporation ( Fig. 7 C ) or cell counting ( Fig. 7 D ) 

was consistently enhanced by the overexpression of Nox4. Con-

versely, RNAi-mediated suppression of Nox4 attenuated cell pro-

liferation. Collectively, these data indicate that Nox4-derived ROS 

play an important role in regulating PTP1B oxidation and EGF sig-

naling in a manner that modulates cell proliferation. 

 Discussion 
 The principal fi nding of this study is that endothelial Nox4, an 

endogenous source of ROS in HAECs, is localized to the ER and 

appears involved in the regulation of another ER-residing pro-

tein, PTP1B, in a spatially dependent manner. Despite the diffus-

ible nature of H 2 O 2 , Nox4-dependent oxidative modifi cation 

of PTP1B requires colocalization of both proteins in the ER. 

We found that cytosolic PTP1B prevented its oxidation by Nox4. 

Furthermore, we found that Nox4-mediated PTP1B oxidation 

was relevant to EGF signaling and was associated with reduced 

dephosphorylation of EGFR in proximity to the ER. We were 

able to confi rm the importance of ER localization using ER tar-

geting of antioxidant enzymes such as catalase. Collectively, these 

data provide a paradigm for Nox4-dependent redox signaling 

that highlights spatial specifi city within the cell. 

 Figure 7.    EGF-induced endothelial proliferation is 
mediated by Nox4-dependent PTP1B oxidation.  HAECs 
were transfected with Ad-control siRNA (Ad-Ctli) or 
Ad-Nox4i for 48 h or adenoviral vectors expressing 
LacZ (AdLacZ)/Nox4 (AdNox4) for 24 h. (A and B) 
Total RNA was extracted followed by RT-PCR for mea-
surement of Nox4 mRNA (A) and dichlorofl uorescein 
assay for ROS production in response to 50 ng/ml 
EGF for 15 min (B). For proliferation assay, HAECs 
were transfected with adenoviral vectors as in A for 
24 h and were seeded into 24-well plates at 2.5  ×  10 4  
cells/well. (C and D) Proliferation was measured by 
BrdU incorporation (C), and cell number was counted 
at 24 and 48 h after plating (D). Data are shown 
as representative (gel picture) or statistics of three 
independent experiments. Error bars represent SD. 
*, P  <  0.05.   
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 The intracellular localization of Nox4 remains controversial. 

 Hilenski et al. (2004)  reported Nox4 in the nucleus and focal 

adhesion sites in rat vascular smooth muscle cells, whereas 

other studies revealed perinuclear or nuclear distribution in COS-7, 

HEK293, and endothelial cells ( Kuroda et al., 2005 ;  Martyn 

et al., 2006 ;  Petry et al., 2006 ). It may not be surprising if different 

cell types display distinct intracellular localization of the same 

protein. However, a recent study that showed nuclear localiza-

tion of Nox4 in human VE cells ( Kuroda et al., 2005 ) confl icts 

with the results here. Although the reason for the discrepancy 

remains unclear, one explanation may be related to the anti-

bodies used in the study by  Kuroda et al. (2005) , in which anti-

bodies were generated solely targeting the C terminus of Nox4. 

It is plausible that these antibodies may recognize certain splice 

variants of Nox4 because two out of four different splice vari-

ants have been found to be predom inantly C-terminal truncated 

forms ( Goyal et al., 2005 ). Of note, we have constructed such a 

truncated form of Nox4 (amino acids 418 – 578) and observed 

a nuclear localization (unpublished data). 

 The current fi ndings demonstrate a new biological para-

digm for ROS signaling whereby the spatial confi nement of ROS 

with redox-sensitive targets in proximity allows ROS signals to 

keep targeting selectivity. As such, ROS oxidatively fi ne-tune the 

PTP1B activity in this system that subsequently regulates recep-

tor traffi cking. In addition, we have shown the effectiveness of 

ER-targeting catalase in the regulation of Nox4, a fi nding that 

implicates the importance of manipulating ROS within specifi c 

intracellular microdomains to ensure the effects. This may par-

tially explain the failure of antioxidants as therapeutic agents in a 

series of clinical trials and points out the relevance of manipulation 

at the subcellular level. ROS signaling appears to be operated in 

a spatially restricted microenvironment with substrate specifi city. 

It is worth noting that the Nox4-dependent PTP oxidative modi-

fi cation was evident across multiple cell types and held true for 

the regulatory mechanism of other different receptors, including 

the insulin receptor. Our data may provide a model for numerous 

redox-sensitive signaling systems and have broad-ranging impli-

cations in cardiovascular diseases and cancer. 

 Materials and methods 
 Materials 
 A rabbit polyclonal antibody was raised against human Nox4 in our labo-
ratory ( Wendt et al., 2005 ). Anti-EGFR, GS-28, SHP-2, and VE-cadherin 
were purchased from Santa Cruz Biotechnology, Inc. Anti-GRP78 was ob-
tained from BD Biosciences, anticatalase and anti – histone H4 were ob-
tained from Abcam, antivimentin was purchased from NeoMarkers, and 
anti-V5, AlexaFluor488-, and AlexaFluor594-conjugated secondary anti-
bodies were obtained from Invitrogen. Phosphotyrosine antibody (4G10) 
was obtained from Millipore, and all MAPK antibodies were purchased 
from Cell Signaling Technology. Human recombinant EGF, anti-PTP1B, and 
a BrdU cell proliferation assay kit were purchased from EMD. All other re-
agents were obtained from Sigma-Aldrich. Double-stranded siRNAs for 
Nox4, Nox2, and nontargeting control were obtained from Dharmacon. 

 Cell culture 
 HAECs were obtained and cultured in EGM-2 (Cambrex) as described 
previously ( Chen et al., 2001 ). COS-7 cells were purchased from the 
American Type Culture Collection and maintained in DME supplemented 
with 10% FBS. The COS-Nox4 cell line was established by transfection 
of pcDNA3.1/Nox4-V5 in COS-7 cells followed by G418 selection. Im-
mortalized PTP1B  � / �   primary MEFs (PTP1B  � / �   MEFs) and PTP1B  � / �   MEFs 

both downstream ERK signaling and endothelial cell prolifera-

tion were subject to Nox4-mediated control. Insofar as receptor 

tyrosine kinase transport to sites of dephosphorylation is shared 

among receptors, one might speculate that our observations 

 represent a general mechanism for regulating the duration of 

 receptor tyrosine kinase activity. Indeed, most studies of ROS 

signaling have found only partial modulation of signaling rather 

than a strict dependence of responses by manipulating ROS. 

For example, a previous study demonstrated limited inhibition 

of angiotensin-induced ERK activation by antioxidants tempol 

or tiron in vascular smooth muscle cells exposed to angiotensin 

for 5 min ( Touyz et al., 2004 ). Nevertheless, tempol has shown 

signifi cant reduction in angiotensin-induced aortic vascular hyper-

trophy in mouse models, which tends to support the new para-

digm ( Dikalova et al., 2005 ). 

 The data presented here indicate that ROS-mediated sig-

naling responses are compartmentalized. Consistent with this 

notion, EGF treatment has been shown to cause only selective 

oxidation of the subcellularly localized thioredoxin pool but has 

no material impact on the intracellular glutathione/glutathione 

disulfi de redox pool ( Halvey et al., 2005 ). The precise mecha-

nisms of this signaling compartmentalization are not yet known 

but may be maintained through either membrane barrier func-

tion and/or localization of antioxidant capacity close to the ROS 

source. Indeed, our observations with ER-targeted antioxidants 

tend to support the latter possibility. This contention is consistent 

with the observation that compared with cytosol or mitochondria-

targeting peroxiredoxin 5, only nucleus-targeting peroxiredoxin 5 

confers DNA protection from oxidative injury ( Banmeyer et al., 

2004 ). However, it remains unknown which intracellular anti-

oxidants might perform this function in the context of the 

Nox4 system. 

 The functional implications of Nox4 have been diverse, in-

cluding antiproliferative effects in NIH3T3 cells ( Geiszt et al., 

2000 ;  Shiose et al., 2001 ), proliferative effects in smooth muscle 

cells ( Menshikov et al., 2006 ), maintenance of a differentiated 

smooth muscle cell phenotype ( Clempus et al., 2007 ), and modu-

lation of insulin signaling in adipocytes ( Mahadev et al., 2004 ). 

The proliferative effect of Nox4 in endothelial cells suggests a 

common signaling role of intracellular ROS in nonphagocytic 

cells. This fi nding is in agreement with previous studies indicat-

ing that ROS mediates peptide growth factor – induced signaling 

and increased cell growth ( Sundaresan et al., 1995; Bae et al., 

1997 ). As an important intracellular ROS source, Nox1 was the 

fi rst enzyme among the members of the Nox family found to par-

ticipate in physiological mitogenesis in response to growth factors 

(such as platelet-derived growth factor) as well as pathological 

hyperproliferation (such as cancer and atherosclerosis;  Suh et al., 

1999 ). However, the assumption of Nox4 being proliferative 

turned out to be untrue in early studies using overexpression 

strategy in NIH3T3 fi broblasts ( Shiose et al., 2001 ). In agreement 

with our results, the depletion of Nox4 resulted in a signifi cantly 

decreased rate of proliferation in melanoma, pancreatic cancer, 

and vascular smooth muscle cells ( Brar et al., 2002 ;  Vaquero 

et al., 2004;   Djordjevic et al., 2005 ). Although the reasons for the 

difference from these studies are not clear, an important clue to 

the biological function of Nox4 links to its subcellular location. 
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Fluor488 or -594 goat anti – rabbit or mouse IgG (Invitrogen) at 1:200 
dilution. Fluorescence images were obtained using a 40 ×  1.30 oil objective 
(Nikon) on an inverted microscope (TE-2000; Nikon) with a camera (Cool-
SNAP HQ; Photometrics). Images were captured using NIS-Elements software 
(Nikon) and processed with a 3D deconvolution plug-in (MediaCybernetics). 

 Immunogold electron microscopy 
 HAECs were transfected with adenoviral vector expressing Nox4-V5 for 
24 h and were removed from the dish with 0.5 mM EDTA in PBS. The cell 
suspension was layered on top of a cushion of 4% PFA and pelleted for 3 min 
at 3,000 rpm. The pellet was further fi xed in fresh 4% PFA for 2 h followed 
by wash with PBS containing 0.2 M glycine and infi ltration with 2.3 M 
 sucrose. Frozen samples were sectioned and subjected to anti-V5 (1:100) 
followed by protein A gold labeling. The grids were examined in a transmission 
electron microscope (Harvard Medical School EM Facility; 1200EX; JEOL). 

 Detection of PTP1B redox state 
 For detection of PTP1B at a reduced form (SH-PTP1B), cells were lysed on 
ice for 10 min in lysis buffer containing 1 mM biotin polyethylene oxide 
maleimide (Thermo Fisher Scientifi c) followed by precipitation with Ultra-
Link Immobilized NeutrAvidin (Thermo Fisher Scientifi c) and Western blot 
analysis with PTP1B antibody ( Lee et al., 2002 ). The band detected here 
represents the amount of PTP1B at a reduced form. 

 RT-PCR analysis 
 Extraction of total RNA and RT-PCR was performed as previously described 
( Chen et al., 2003 ). The forward and reverse primers corresponding to Nox4, 
Nox2, and glyceraldehyde-3-phosphate dehydrogenase were 5 � -AAGCC-
GGAGAACCAGAAGAT-3 �  and 5 � -GCTGCATTCAGTTCGACAAA-3 �  for 
Nox4, 5 � -GCTTGTGGCTGTGATAAGCA-3 �  and 5 � -TCCCTGCTCCCACTAA-
CATC-3 �  for Nox2, and 5 � -ACCCAGAAGACTGTGGATGG-3 �  and 5 � -AGGC-
CATGCCAGTGAGCTT-3 �  for glyceraldehyde-3-phosphate dehydrogenase. 

 Measurement of ROS 
 Intracellular ROS production was measured by dichlorofl uorescein fl uo-
rescence as described previously ( Chen et al., 2000 ). Cells cultured in 
6-well plates were changed to Hepes-buffered physiological saline solution 
followed by the addition of 5  μ M H2DCFH-DA with/without EGF treatment 
and further incubation for 20 min at 37 ° C. After treatment and wash, fl uo-
rescence intensity was quantifi ed by using a fl uorescence plate reader 
(SpectraMax GeminMPS; MDS Analytical Technologies). 

 Catalase activity assay 
 Cells were transfected with control vector or catalase expression vectors for 
24 h and lysed in 0.1 M Tris buffer, pH 7.4. Cell lysates were used for 
measurement of catalase activity by using the Amplex Red Catalase Assay 
kit (Invitrogen). The decomposition of hydrogen peroxide by catalase was 
followed by reaction with 50  μ M Amplex red reagent in the presence of 
0.2 U/ml horseradish peroxidase. Fluorescence was measured in a fl uo-
rescence microplate reader (MDS Analytical Technologies) using excitation 
at 530 nm and emission at 590 nm. 

 Statistical analysis 
 All numerical data are presented as means  ±  SD. The Western blots 
shown are representative of three or more independent experiments. For 
parametric data, comparisons among treatment groups were performed 
with one-way analysis of variance and an appropriate posthoc compari-
son. Instances involving only two comparisons were evaluated with a  t  test. 
Instances involving more than two comparisons were evaluated using 
analysis of variance. Statistical signifi cance was accepted if the null hypo-
thesis was rejected with P  <  0.05. 
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