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    Introduction 
 A ubiquitous feature of eukaryotes is the presence of interven-

ing sequences that interrupt coding regions of genes. Nuclear 

pre-mRNA splicing is the process by which these intervening 

sequences (introns) in mRNAs are precisely removed and the 

functional coding sequences (exons) ligated. Pre-mRNA splic-

ing occurs in the spliceosome, a large RNP complex consisting 

of the small RNP particles (U1, U2, U4/U6, and U5 small nu-

clear RNPs [snRNPs]) and numerous non-snRNP splicing fac-

tors (for review see  Kramer, 1996 ). 

 The spliceosome assembles de novo on the pre-mRNA in a 

carefully orchestrated pathway. This assembly is initiated by rec-

ognition of the 5 �  and 3 �  splice sites by the U1 snRNP and the 

heterodimeric U2 snRNP auxiliary factor (U2AF), respectively, 

to form the E complex (for review see  Will and Luhrmann, 2001 ). 

Binding of the U2 snRNP particle to the branch point in an ATP-

dependent manner requires the auxiliary factors SF1 and U2AF 

and forms the A complex. U2AF65 binds to the polypyrimi-

dine tract and contacts the branch point via its arginine/serine-

rich (RS) domain ( Valcarcel et al., 1996 ), whereas U2AF35 

binds to the AG dinucleotide at the 3 �  splice site ( Merendino 

et al., 1999 ;  Wu et al., 1999 ;  Zorio and Blumenthal, 1999 ). 

Subsequently, recruitment of the U4/U6.U5 tri-snRNP forms the 

B complex, which is resolved to the catalytic C complex. 

 Yeast genes have very small introns, and recognition of 

exons seems to occur by interactions mediated across the intron 

itself, in a process known as intron defi nition ( Romfo et al., 

2000 ). The correct identifi cation of exons is a complex problem 

in vertebrate genes, which have small exons separated by large 

introns. In this case, exon defi nition is facilitated by interactions 

between the upstream 3 �  splice site and the downstream 5 �  

splice site ( Robberson et al., 1990 ). 

 The serine/arginine-rich (SR) proteins are a highly conserved 

family of structurally and functionally related non-snRNP splicing 

factors with key roles in constitutive and alternative splicing. They 

have a modular domain structure consisting of one or two RNA 

recognition motifs (RRMs) and a C-terminal RS domain rich 

in arginine and serine residues (for reviews see  Graveley, 2000 ; 

 Sanford et al., 2005 ). The RRMs determine RNA binding specifi c-

ity, whereas the RS domain mediates protein – protein interactions 

W
e have analyzed the interaction between 

serine/arginine-rich (SR) proteins and splicing 

components that recognize either the 5 �  or 3 �  

splice site. Previously, these interactions have been exten-

sively characterized biochemically and are critical for 

both intron and exon defi nition. We use fl uorescence 

resonance energy transfer (FRET) microscopy to identify 

interactions of individual SR proteins with the U1 small 

nuclear ribonucleoprotein (snRNP) – associated 70-kD pro-

tein (U1 70K) and with the small subunit of the U2 snRNP 

auxiliary factor (U2AF35) in live-cell nuclei. We fi nd that 

these interactions occur in the presence of RNA polymer-

ase II inhibitors, demonstrating that they are not exclu-

sively cotranscriptional. Using FRET imaging by means of 

fl uorescence lifetime imaging microscopy (FLIM), we map 

these interactions to specifi c sites in the nucleus. The FLIM 

data also reveal a previously unknown interaction be-

tween HCC1, a factor related to U2AF65, with both sub-

units of U2AF. Spatial mapping using FLIM-FRET reveals 

differences in splicing factors interactions within com-

plexes located in separate subnuclear domains.
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disruption of transcription or splicing ( O ’ Keefe et al., 1994 ; 

 Misteli et al., 1997 ). 

 Recent advances in imaging techniques have offered new 

insights into the dynamic nature of gene expression. However, 

because typical globular proteins are  � 5 – 10 nm in diameter, 

many such molecules can reside within the same voxel but not 

directly interact. To provide evidence of protein – protein inter-

action, it is therefore essential to measure the proximity of 

proteins with a resolution of  � 1 – 10 nm, which is simply not 

possible by colocalization using conventional fl uorescence 

microscopy. This limitation imposed by the resolution of visible 

light can be overcome by the fl uorescence resonance energy 

transfer (FRET) technique (or F ö rster resonance energy trans-

fer;  F ö rster, 1948 ). FRET is based on the ability of a donor fl uor-

ophore to transfer some of the energy from its excited state to an 

adjacent acceptor fl uorophore, thereby reducing the amount 

of energy that the donor releases as fl uorescence. Because the 

FRET energy transfer is highly distance-dependent, detection 

of FRET requires that the two fl uorophores must be within 

 � 1 – 10 nm, i.e., the distance typically found for directly interact-

ing proteins and consistent with being in molecular contact 

( Lakowicz, 1999 ). Thus, normally a positive FRET signal is 

taken to indicate a direct intermolecular interaction. In addition, 

for FRET to occur the donor fl uorophore must have an emission 

spectrum overlapping the excitation spectrum of the acceptor 

fl uorophore and the two fl uorophores must be not only in close 

proximity but also correctly oriented. FRET can be monitored 

in several ways, for example, either by measuring the donor in-

tensity (before and after acceptor photobleaching) or by measur-

ing the decrease of donor fl uorescence lifetime by fl uorescence 

lifetime imaging microscopy (FLIM) in the presence of an ac-

ceptor (for reviews see  Day et al., 2001 ;  Wouters et al., 2001 ). 

 Many of the interactions between components of the splice-

osome have been studied using in vitro techniques that per-

turb the temporal and spatial regulation of gene expression. 

FRET, detected by FLIM, allows protein – protein interactions to 

be studied in living cells with spatial (nanometer) and temporal 

resolution (for review see  Wouters et al., 2001 ). Furthermore, 

FLIM-FRET can be used to quantify the percentage of interact-

ing and noninteracting populations on a point-by-point basis at 

each resolved voxel within a cell. 

 In this paper, we use two different techniques, FRET 

acceptor photobleaching and FLIM-FRET to map interactions 

between splicing factors within living human cells with nano-

meter resolution. We have used this approach to demonstrate 

that the interactions of SR proteins with U2AF35 and U1 70K 

that are involved in intron and exon defi nition in vitro also occur 

in living human cells. Importantly, these interactions are main-

tained even in the presence of different RNA polymerase II in-

hibitors, such as 5,6-dichloro-1- b -d-ribofuranosylbenzimidazole 

(DRB),  � -amanitin, or Actinomycin D, demonstrating that they 

are not exclusively cotranscriptional. In addition, we report 

novel interactions between HCC1 with both U2AF35 and 

U2AF65, suggesting a role for HCC1 in 3 �  splice site selection. 

Importantly, use of FLIM-FRET has allowed us to identify dif-

ferences in protein – protein interactions between these splicing 

factors in different regions of the nucleus. 

and has also been shown to contact the pre-mRNA at several stages 

during spliceosome assembly ( Shen and Green, 2004 ). The RS 

domain of SR proteins is also an important determinant of sub-

cellular localization and nucleocytoplasmic shuttling ( Caceres et al., 

1997, 1998 ). The SR proteins are involved in multiple steps of the 

constitutive splicing reaction, such as promoting the recruitment of 

the U1 snRNP particle to the 5 �  splice site ( Eperon et al., 1993 ; 

 Kohtz et al., 1994 ). They also bridge the 5 �  and 3 �  splice sites via 

RS domain – mediated interactions with the U1 70K protein (U1 

snRNP-associated 70-kD protein) at the 5 �  splice site and with the 

small subunit of the U2AF35 (U2 snRNP auxiliary factor) at the 3 �  

splice site ( Wu and Maniatis, 1993 ). SR protein family members 

also infl uence splice site selection, and their activity in alternative 

splicing is antagonized by members of the heterogeneous nuclear 

RNP A/B family of proteins in a concentration-dependent manner 

(for review see  Hastings and Krainer, 2001 ). 

 A class of related RS domain – containing proteins, termed 

SR-related proteins, do not always contain RRMs but are 

also involved in splicing regulation. This group of proteins in-

cludes the splicing coactivators SRm160/300, the U1 snRNP-

associated protein U1 70K, both subunits of the U2AF splicing 

factor, and several tri-snRNP – specific proteins (for review 

see  Blencowe et al., 1999 ). HCC1, a protein factor that is highly 

homologous to U2AF65, was originally identifi ed and cloned 

as an autoantigen from a patient with hepatocellular carcinoma 

( Imai et al., 1993 ). It comprises two alternatively spliced iso-

forms termed HCC1.3 and HCC1.4, and it has been demon-

strated that HCC1.3 functions as both a hormone-dependent 

transcriptional and splicing cofactor for steroid receptors 

( Dowhan et al., 2005 ). 

 There is extensive coupling among different steps in eu-

karyotic gene expression (for review see  Maniatis and Reed, 

2002 ). Splicing is frequently cotranscriptional and recent evi-

dence demonstrated that the rate of transcriptional elongation 

affects spliceosome formation ( Listerman et al., 2006 ) and 

alternative splicing ( de la Mata et al., 2003 ). Splicing factors are 

distributed nonrandomly within the nucleus and are organized 

in the interphase nucleus in a characteristic speckled pattern 

(for review see  Lamond and Spector, 2003 ). Morphological ex-

amination of speckles by electron microscopy revealed two dis-

tinct structures: granules 20 – 25 nm in diameter clustered in the 

interchromatin space, termed interchromatin granule clusters 

(IGCs), and fi brils  � 5 nm in diameter, termed perichromatin fi -

brils, which often extend from IGCs and are dispersed through-

out the nucleoplasm ( Spector et al., 1983 ). Speckles are often 

observed close to highly active transcription sites and specifi c 

highly active genes have been shown to localize preferentially 

with the periphery of speckles ( Xing et al., 1993 ;  Moen et al., 

2004 ). Nucleotide incorporation experiments demonstrated that 

active sites of transcription are dispersed throughout the nucleo-

plasm and that the majority of actively transcribing genes are 

excluded from IGCs ( Cmarko et al., 1999 ;  Wei et al., 1999 ). 

Further evidence that speckles are not active sites of cotran-

scriptional splicing but act as storage or assembly sites for splic-

ing factors comes from the observations that the recruitment of 

splicing factors to active sites of transcription can be visualized 

in vivo and speckles become rounded up and enlarged upon 
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 Next, we used FRET acceptor photobleaching to study the 

interactions of SF2/ASF with U1 70K in living HeLa cells. 

In these experiments, ECFP and EYFP serve as the donor and accep-

tor pair for FRET, respectively. Because these experiments rely on 

the transient expression of epitope-tagged proteins, we fi rst sought 

to determine the functionality of these fusions. There is already a 

large body of evidence in the literature showing that transiently 

expressed epitope-tagged splicing factors are indeed functional 

( Misteli et al., 1997 ;  Sleeman et al., 1998 ;  Chusainow et al., 2005 ). 

Importantly, we were able to show that the transiently expressed 

epitope-tagged U170K and SF2/ASF were not signifi cantly over-

expressed, with the relative abundance of the epitope-tagged pro-

teins being similar to the level of the respective endogenous 

protein (Fig. S1 A, available at http://www.jcb.org/cgi/content/

full/jcb.200710051/DC1). We showed that mCherry-SF2/ASF 

colocalizes with endogenous snRNP proteins like Sm and U2B 

 Results 
 Splicing factor 2/alternative splicing factor 
(SF2/ASF) interacts with U1 70K in 
live cells 
 SF2/ASF promotes U1 snRNP recruitment to the 5 �  splice 

site, and this effect is mediated by an interaction with the U1 

snRNP-specifi c protein, U1 70K, that was demonstrated in 

far-Western and yeast two-hybrid analysis ( Wu and Maniatis, 

1993 ). First, we performed coimmunoprecipitation (co-IP) 

experiments of endogenous proteins to confi rm their inter-

action in 293T cells ( Fig. 1 A ). Cell extracts that were immuno-

precipitated with an antibody against U1 70K were probed 

with a monoclonal anti-SF2/ASF antibody. As shown in  Fig. 1 A  

(compare lanes 2 and 3), U1 70K was able to pull down SF2/ASF 

independently of the presence of RNA. 

 Figure 1.    U1 70K interacts with SF2/ASF in 
vitro and in vivo.  (A) Cell extracts prepared 
from 293T cells were incubated with either 
a mouse monoclonal anti – U1 70K antibody 
bound to Sepharose beads (lanes 2 and 3) or 
Sepharose beads alone (lanes 4 and 5). The 
bound proteins were analyzed by Western blot-
ting with anti-SF2/ASF antibody. Alternatively, 
the assay was performed in the presence of 
RNase (lanes 3 and 5). (B)   In vivo detection of 
protein – protein interactions between ECFP-U1 
70K and EYFP-SF2/ASF by FRET acceptor photo-
bleaching microscopy. HeLa cells coexpress-
ing ECFP-U1 70K and EYFP-SF2/ASF were 
analyzed on a wide-fi eld fl uorescent micro-
scope. Images were acquired before and after 
photobleaching. A nonbleached region similar 
to the bleached region (arrows) was included 
in the data analysis for comparison. Bars, 
15  μ m. (C) Donor and acceptor mean fl uores-
cence intensities monitored in the bleached 
and nonbleached regions were plotted over 
time. (D) FRET effi ciencies for the interaction 
between ECFP-U1 70K and EYFP-SF2/ASF in 
the presence and absence of DRB. A FRET ef-
fi ciency for these interactions was calculated 
as described in Materials and methods and, 
when  > 5%, was considered signifi cant. Plot 
is of FRET effi ciencies  ±  SD (mean for 8 – 27 
cells) between ECFP + EYFP pairs before and 
after DRB treatment. P-values were obtained 
from the two-tailed homoscedastic  t  test com-
paring the FRET effi ciencies with and without 
DRB treatment.   
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were considered signifi cant. Cotransfection of EGFP – U1 70K 

and mCherry-SF2/ASF resulted in a reduction of the mean do-

nor lifetime, which is indicative of FRET. The images have been 

pseudocolored to show the mean fl uorescence lifetime for each 

pixel within the cell and the percentage of FRET effi ciency 

( Fig. 2 A ). It can be seen that FRET between EGFP – U1 70K 

and mCherry-SF2/ASF occurs to a greater extent in the speckles 

( Fig. 2, A  [arrowheads]  and C ) than in the nucleoplasm ( Fig. 2, 

A  [arrows]  and C ). 

 In addition, we resolved the fractional contribution of 

the FRET species for each pixel through the nuclei by cal-

culating the FRET amplitude percentage (see Materials and 

methods). A higher FRET population of EGFP – U1 70K was 

observed in the nuclear speckles as compared with the nucleo-

plasm compartment ( Fig. 2 A , FRET amplitude %). It was also 

important to demonstrate that a higher abundance of splicing 

factors in the speckles did not lead to false positives. There has 

been no prior biochemical evidence to suggest a direct inter-

action between U1 70K and U2AF35. Instead, it was proposed 

that SR proteins bridge these factors ( Wu and Maniatis, 1993 ). 

This provided a negative control that could be analyzed by 

FLIM-FRET. As expected, cotransfection of EGFP-U1 70K 

and mCherry-U2AF35 resulted in no signifi cant FRET ( Fig. 2 C  

and Fig. S3, available at http://www.jcb.org/cgi/content/full/

jcb.200710051/DC1). These data demonstrate that there is a 

greater interaction between the U1 70K and SF2/ASF proteins 

within the speckles than in the diffuse nucleoplasmic pool and 

that the proportion of complexes containing U1 70K inter-

acting with SF2/ASF is higher within the speckles. We further 

demonstrated that the high local concentration of fl uo rescently 

tagged proteins in the speckles is not alone suffi cient to in-

duce FRET. 

 The localization of the U1 70K – SF2/ASF 
interaction in transcriptionally 
repressed cells 
 Several lines of evidence point to speckles functioning as stor-

age/assembly/modifi cation compartments that can supply splic-

ing factors to active transcription sites ( Misteli, 2000 ). Therefore, 

we determined whether treatment with the transcriptional inhibi-

tor DRB affected the localization of the interaction between 

EGFP – U1 70K and mCherry-SF2/ASF. Upon cotransfection of 

EGFP – U1 70K and mCherry-SF2/ASF and subsequent treat-

ment with DRB, images captured by FLIM microscopy revealed 

a strong FRET signal, which was stronger in the enlarged and 

rounded speckles ( Fig. 2 B , arrowheads). The fl uorescence life-

time and the FRET effi ciency variations between the speckles 

and nucleoplasm compartments were also analyzed for a popula-

tion of DRB-treated cells and compared with untreated cells. 

From this analysis, we concluded that there was not a major 

change in the total nuclear FRET effi ciency between EGFP – U1 

70K and mCherry-SF2/ASF after DRB treatment as measured 

by FLIM. Similar results were obtained upon inhibition of RNA 

polymerase II transcription with other inhibitors, including 

 � -amanitin and Actinomycin D (Fig. S4, available at http://www

.jcb.org/cgi/content/full/jcb.200710051/DC1). However, from the 

spatiotemporal resolution of the interactions revealed by using 

splicing factors in nuclear speckles (Fig. S2 A). Furthermore, we 

showed that both EGFP-SF2/ASF and mCherry-SF2/ASF are 

functional in vivo in an alternative splicing assay, as demonstrated 

by the fact that exogenous expression of epitope-tagged SF2/ASF 

caused a switch to the use of the most proximal 5 �  splice site in the 

E1A adenoviral reporter, giving rise to the 13S isoform, as previ-

ously described (Fig. S2 B;  Caceres et al., 1994 ). 

 To measure FRET by acceptor photobleaching, the donor 

fl uorescence emission is measured, comparing the quenched 

with the unquenched donor emission after specifi c photobleach-

ing of the acceptor fl uorophore. This dequenching effect indi-

cates an abolishment of FRET caused by photobleaching of the 

acceptor fl uorophore, and thus confi rms that the two proteins 

interact directly in vivo. A strong FRET signal was observed in 

live HeLa cells transiently coexpressing ECFP-U1 70K and 

EYFP-SF2/ASF after photobleaching of the acceptor (EYFP-

SF2/ASF) in nuclear speckles ( Fig. 1 B , arrows). This is most 

evident by a transient enhancement in the donor fl uorescence 

(ECFP-U1 70K;  Fig. 1, B and C ) and demonstrates that these 

two proteins can interact in vivo. Importantly, this effect 

was specifi c because ECFP-U1 70K does not interact with an 

EYFP- tagged version of the second step splicing factor SRrp53 

( Cazalla et al., 2005 ). In addition, FRET was not observed be-

tween either ECFP-U1 70K and EYFP-Luc7, a component of the 

U1 snRNP with a role in 5 �  splice site recognition in yeast ( Fortes 

et al., 1999 ), or between ECFP-U1 70K and an EYFP-tagged 

nuclear localization signal (EYFP-NLS;  Fig. 1 D ). 

 The interaction between U1 70K and 
SF2/ASF does not require ongoing 
transcription 
 Next, HeLa cells coexpressing ECFP-U1 70K and EYFP-SF2/

ASF were treated with DRB to inhibit transcription and, conse-

quently, splicing activity before analyzing the protein – protein 

interactions by acceptor photobleaching. DRB has been shown 

to interrupt the elongation step of RNA polymerase II transcrip-

tion by promoting premature termination ( Chodosh et al., 1989 ). 

We found that upon DRB treatment, splicing factors localized 

to nuclear speckles that had become enlarged and rounded 

(Fig. S1 C), as previously described ( O ’ Keefe et al., 1994 ). 

Interestingly, the FRET effi ciency for the interaction between 

ECFP-U1 70K and EYFP-SF2/ASF was similar inside the nu-

clear speckles after treatment with DRB ( Fig. 1 D ). Pulse label-

ing of nascent RNA with 5-Fluorouracil (5-FU) confi rmed that 

the DRB treatment was inhibiting transcription (Fig. S1 C). 

Thus, the interaction of U1 70K and SF2/ASF still occurs in live 

cells when transcription is inhibited. 

 Mapping the interaction between U1 70K 
and SF2/ASF using FLIM 
 To map the localization of the U1 70K – SF2/ASF interaction 

within the nucleus of HeLa cells, we used FLIM. The fl uores-

cence lifetime of EGFP – U1 70K in HeLa cells was measured, 

either in the presence of mCherry-C1 (negative control) or 

mCherry-SF2/ASF ( Fig. 2 A ). A FRET effi ciency for the inter-

action of EGFP – U1 70K with mCherry-SF2/ASF was calcu-

lated as described in Materials and methods, and values  > 5% 
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U2AF35 to promote complex assembly at the 3 �  splice site 

( Zuo and Maniatis, 1996 ;  Graveley et al., 2001 ). Second, it 

has been proposed that SR proteins can interact simultane-

ously with U2AF35 and U1 70K, thereby bridging factors as-

sembled on both 5 �  and 3 �  splice sites ( Wu and Maniatis, 

1993 ). This bridging can occur either across the exon or the 

intron and is therefore proposed to play a role in exon and in-

tron defi nition. 

 First, we performed Co-IP experiments of 293T cells 

transiently expressing EGFP-U2AF35 to confi rm this biochem-

ical interaction. Cell extracts that were immunoprecipitated 

with an antibody against EGFP were revealed with a monoclonal 

anti-SFS/ASF antibody. As shown in  Fig. 3 A  (lanes 3 and 4), 

the FLIM-FRET technique, a decrease in the FRET effi ciency 

specifi cally in the nucleoplasm was observed in the presence of 

DRB (P = 0.018;  Fig. 2, B  [arrows]  and C ). Furthermore, the 

proportion of interacting EGFP – U1 70K was also signifi cantly 

reduced in the nucleoplasm. This suggests that upon inhibition of 

transcription, the interactions between splicing factors may be 

inhibited at nucleoplasmic sites of transcription and splicing. 

 SF2/ASF interacts with U2AF35 in 
live cells 
 The interaction between U2AF35 and individual SR proteins 

is proposed to play two important roles in the cell. First, 

SR proteins bound to exonic splicing enhancers interact with 

 Figure 2.    Spatial mapping of the interaction 
of U1 70K with SF2/ASF in vivo.  (A) HeLa 
cells were transfected with EGFP – U1 70K 
and cotransfected with either mCherry-C1 or 
mCherry-SF2/ASF. Shown are confocal im-
ages of transfected cells and FLIM images of 
the same cells, in which mean fl uorescence 
lifetime is shown in pseudocolor. The color 
scale with the respective lifetimes (in pico-
seconds [ps]) is indicated. The percentage of 
FRET effi ciencies and FRET amplitude are shown 
in continuous pseudocolor. The color scale with 
the respective FRET effi ciencies (percentage) 
is indicated. The FRET amplitude % represents 
the fraction of interacting donor molecules, 
also defi ned as the FRET population % (or 
concentration of FRET species). (B) FRET be-
tween U1 70K and SF2/ASF, in the presence 
of DRB, measured by FLIM. Experiments were 
performed exactly as described for A, except 
cells were treated with 25  μ g/ml of DRB for 
2 h before images were taken. Bars, 10  μ m. 
(C) FRET effi ciencies calculated from FLIM 
measurements for the interaction of SF2/ASF 
with U1 70K in the presence and absence of 
DRB. Plot is of mean FRET effi ciencies  ±  SD for 
9 – 20 cells. To measure the FRET effi ciency in 
the speckles and nucleoplasm, a region char-
acteristic of each was selected for each cell. 
P-values were obtained as described in the  Fig. 1  
legend. *, P  <  0.1.   
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the FRET amplitude percentage (see Materials and methods), we 

also found that the concentration of EGFP-U2AF35 proteins 

interacting with mCherry-SF2/ASF is much higher inside the 

nuclear speckles ( � 80%) than in the nucleoplasm ( � 50%) in 

untreated cells ( Fig. 4 A , middle, FRET amplitude %). 

 Upon inhibition of transcription with DRB,  � -amanitin, 

or Actinomycin D (Fig. S4), the FRET effi ciency between 

EGFP-U2AF35 and mCherry-SF2/ASF measured in nuclear 

speckles by FLIM was not signifi cantly affected ( Fig. 4 A , 

bottom, arrowheads). In contrast, a decrease of FRET was 

observed in the nucleoplasmic compartment surrounding the 

speckles after inhibition of the transcription ( Fig. 4 A , bottom, 

arrows;  Fig. 4 B , P = 0.047). Furthermore, the fraction 

of EGFP-U2AF35 interacting with mCherry-SF2/ASF and 

present in the nucleoplasm after treatment was signifi cantly 

reduced ( � 20%). 

 Several SR proteins interact with 
U1 70K and U2AF35 
 In vitro experiments have previously shown that both SF2/ASF 

and SC35 are capable of interacting with U1 70K and U2AF35 

( Wu and Maniatis, 1993 ). We have extended these observations 

to show that both SC35 and SRp20 interact with U1 70K and 

U2AF35 in live HeLa cells. The FRET effi ciencies obtained 

from the acceptor photobleaching analysis of these interactions 

are shown in  Fig. 5 A . We also found that DRB does not reduce 

the FRET effi ciencies for the interaction of SC35 with U1 70K 

or U2AF35. 

EGFP-U2AF35 was able to pull down SF2/ASF independently 

of the presence of RNA. 

 Next, we analyzed the interaction between U2AF35 and 

SF2/ASF by FRET acceptor photobleaching. HeLa cells were 

cotransfected with ECFP-U2AF35 and EYFP-SF2/ASF and the 

donor intensities were monitored before and after photobleaching 

of the acceptor to calculate a FRET effi ciency for this interaction. 

FRET between ECFP-U2AF35 and EYFP-SF2/ASF was ob-

served and this interaction was not prevented by DRB treatment 

( Fig. 3 B ). Importantly, this interaction was specifi c because little 

or no FRET was observed either between U2AF35 and U1 70K 

or upon cotransfection with EYFP_NLS ( Fig. 3 B ). 

 The interaction between U2AF35 and 
SF2/ASF occurs predominantly in speckles 
 The intracellular distribution of the interactions between EGFP-

U2AF35 and mCherry-SF2/ASF was mapped using FLIM-

FRET. Cotransfection of EGFP-U2AF35 and mCherry-SF2/

ASF resulted in a reduction of the mean donor fl uorescence life-

time. The pseudocolored images depicting the FRET effi ciencies 

in continuous color demonstrated that mCherry-SF2/ASF inter-

acts with EGFP-U2AF35 in a similar pattern to that observed 

for its interaction with EGFP-U1 70K ( Fig. 4 A ). Indeed, 

although a signifi cant FRET signal was observed in the nucleo-

plasm ( Fig. 4 A , arrows), the strongest regions of FRET were 

observed locally in speckles ( Fig. 4 A , arrowheads). These ob-

servations were confi rmed when the FRET effi ciencies were 

averaged over a population of cells ( Fig. 4 B ). By calculating 

 Figure 3.    EGFP-U2AF35 interacts with SF2/ASF in cultured 
mammalian cells . (A) Cell extracts prepared from 293T cells 
either transiently transfected with EGFP-U2AF35 (lanes 3 and 4) 
or mock transfected (lanes 5 and 6) were incubated with anti-
GFP antibody bound to Sepharose beads. The bound proteins 
were analyzed by Western blotting with an anti-SF2/ASF anti-
body. Alternatively, the assay was performed in the pres-
ence of RNase (lanes 4 and 6). NTC, nontransfected cells. 
(B) Effect of DRB on the interaction between ECFP-U2AF35 
and EYFP-SF2/ASF. Plot is of FRET effi ciencies  ±  SD (mean 
for 9 – 27 cells) between ECFP + EYFP fusion pairs before and 
after DRB treatment. P-values were obtained as described in 
the  Fig. 1  legend.   
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 HCC1 interacts with both U2AF35 
and U2AF65 
 HCC1 is an SR-related protein that is highly similar to U2AF65, 

although its possible role in constitutive splicing is unclear 

( Dowhan et al., 2005 ). We previously found that HCC1 inter-

acts with the second step splicing factor SRrp53 ( Cazalla et al., 

2005 ). It has been proposed that HCC1 interacts with compo-

nents at the 3 �  splice site, possibly replacing U2AF65 at the 

polypyrimidine tract and forming a U2AF-like complex with 

U2AF35. Moreover, several factors related to U2AF35 have 

been characterized in mammalian cells, suggesting the exis-

tence of multiple U2AF-like complexes ( Tronchere et al., 1997 ; 

 Shepard et al., 2002 ). 

 We have characterized the protein interaction partners 

of HCC1 by Co-IP experiments and subsequently by FRET 

 FLIM-FRET was used to map the protein – protein inter-

action sites of mCherry-SC35 with EGFP-U1 70K and EGFP-

U2AF35. We observed that the highest FRET effi ciencies do 

not correspond only with regions of speckles, as was the case 

with SF2/ASF, but are instead also observed in areas of the 

nucleoplasm adjacent to the nuclear speckles ( Fig. 5 B , mid-

dle, arrowheads). Interestingly, these areas where the stron-

gest FRET is taking place are not identical to the regions 

showing the highest population of EGFP-U1 70K interacting 

with mCherry-SF2/ASF ( Fig. 5 B , middle, FRET amplitude %), 

but likely represent a subpopulation of proteins involved 

in these interactions. A similar pattern was observed upon 

treatment with DRB, making it unlikely that these regions of 

high FRET correspond to major sites of ongoing transcription 

and splicing. 

 Figure 4.    FRET between U2AF35 and SF2/
ASF measured by FLIM.  (A) HeLa cells were 
cotransfected with EGFP-U2AF35 and either 
mCherry-C1 or mCherry-SF2/ASF. Confocal 
images are of transfected cells and FLIM images 
of the same cells, in which FRET effi ciency and 
FRET amplitude are shown in pseudocolor. The 
color scale with the respective effi ciency (%) is 
indicated. Top, EGFP-U2AF35 + mCherry-C1; 
Middle, EGFP-U2AF35 + mCherry-SF2/ASF; 
Bottom, EGFP-U2AF35 + mCherry-SF2/ASF 
in the presence of DRB. Bars, 10  μ m. (B) FRET 
effi ciencies determined by FLIM for inter-
action of SF2/ASF with U2AF35 in the presence 
and absence of DRB. Plot is of mean FRET effi -
ciencies  ±  SD for seven to nine cells. To mea-
sure the FRET effi ciency in the speckles and 
nucleoplasm, a region characteristic of each 
was selected for each cell. P-values were ob-
tained as described in the  Fig. 1  legend. *, 
P  <  0.1.   
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 Figure 5.    SRp20 and SC35 interact with U1 70K and U2AF35.  (A) Plot 
of FRET effi ciencies  ±  SD (mean for 7 – 14 cells) between ECFP and EYFP 
fusion proteins measured by FRET acceptor photobleaching. P-values were 
obtained from the  t  test comparing the FRET effi ciencies with and without 
DRB treatment. (B) FRET between U1 70K and SC35 measured by FLIM. 
HeLa cells were transfected with EGFP-U1 70K and cotransfected with ei-
ther mCherry-C1 or mCherry-SC35. Confocal images are of transfected 
cells and FLIM images are of the same cells, in which FRET effi ciency and 
FRET amplitude are shown in pseudocolor. The color scale with the respec-
tive effi ciency (%) is indicated. Top, EGFP-U1 70K + mCherry-C1; Middle, 
EGFP-U1 70K + mCherry-SC35; Bottom, EGFP-U1 70K + mCherry-SC35 

in the presence of DRB. Arrowheads indicate high FRET within the nucleo-
plasm. Bars, 10  μ m. (C) FRET effi ciencies determined by FLIM for inter-
action of SC35 with U1 70K and U2AF35 in the presence and absence of 
DRB. Plot is of mean FRET effi ciencies  ±  SD for 8 – 11 cells. P-values were 
obtained as described in A.   

 

microscopy. First, EGFP-U2AF35 was shown to be capable of 

pulling down T7-tagged HCC1.4 in Co-IP assays performed in 

293T cells ( Fig. 6 A ). The hypothesis that HCC1 may form an 

alternative U2AF-like complex with U2AF35 was challenged by 

the observation that HCC1 can pull down both U2AF35 and 

U2AF65 in Co-IP assays ( Fig. 6, A and B ). Furthermore, this 

interaction addressed by Co-IP remains after Rnase treatment 

( Fig. 6, A  [lanes 3 and 4]  and B  [lanes 2 and 4]).These data sug-

gest that HCC1 interacts with the U2AF heterodimer in an RNA-

independent manner, although it is still possible that HCC1-

U2AF35 and HCC1-U2AF65 complexes exist within the cell. 

 We have further characterized the protein – protein inter-

actions of HCC1 by FRET acceptor photobleaching. Cotransfec-

tion of ECFP-HCC1 and either EYFP-U2AF35, or EYFP-U2AF65 

resulted in a FRET signal that was not signifi cantly altered upon 

DRB treatment ( Fig. 6 C ). As previously demonstrated by accep-

tor photobleaching assays ( Chusainow et al., 2005 ), we did not 

observe any self-interaction of U2AF65 ( Fig. 6 C ). 

 The subnuclear localization of protein – protein interactions 

between EGFP-HCC1 and either mCherry-U2AF35 or mCherry-

U2AF65 was mapped using FLIM-FRET. The regions of highest 

FRET for the interaction of EGFP-HCC1 with mCherry-U2AF35 

were not confi ned to speckles, as was previously observed for 

the interactions involving SF2/ASF ( Fig. 7 A , middle, arrows). 

For the interaction of EGFP-HCC1 with mCherry-U2AF65, the 

regions of highest FRET occurred within discrete domains within 

the nucleoplasm rather than within speckles ( Fig. 7 B , middle). 

Interestingly, these regions of high FRET persisted within the 

nucleoplasm upon treatment with DRB ( Fig. 7 B , bottom, arrow-

heads [high FRET domain] and arrows [splicing speckles]). 

In contrast, no signifi cant FRET was observed between EGFP-

U2AF65 and mCherry-U2AF65 as judged by FLIM (unpub-

lished data). Collectively, these results show that HCC1 can 

interact with both subunits of the U2AF heterodimer and strongly 

suggest that distinct complexes of splicing factors accumulate in 

different regions within the nucleus. 

 Discussion 
 Protein – protein interactions involved in spliceosome assembly 

have been studied extensively in the past, mainly using in vitro 

techniques and yeast two-hybrid analysis. However, the advent of 

FRET microscopy has made it possible to study molecular inter-

actions between splicing factors in live cells, thereby avoiding 

perturbing the highly structured dynamic nature of the nucleus 

or introducing artifi cial salt concentrations, as is common with 

in vitro approaches. The importance of studying protein – protein 

interactions in live cells is self-evident and is demonstrated by previ-

ous work that showed that co-IP does not always recapitulate the 

in vivo state of ribonucleoprotein complexes because of reassocia-

tion of molecules subsequent to cell lysis ( Mili and Steitz, 2004 ). 
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It remains to be determined how the distribution and formation 

of splicing factor complexes are regulated within the cell. In this 

paper, we demonstrate for the fi rst time that different complexes of 

splicing factors show differential distributions in live cell nuclei. 

 FRAP analysis has shown that splicing factors are highly dy-

namic and shuttle rapidly between speckles and the nucleoplasm 

on a time scale of seconds ( Phair and Misteli, 2000 ). Therefore, 

these highly dynamic and abundant factors may be constantly 

associating and disassociating with each other within the nucleus. 

 Figure 6.    HCC1 interacts with both subunits of the U2AF heterodimer 
in vitro and in vivo.  (A) Extracts prepared from 293T cells transiently trans-
fected with either EGFP-U2AF35 and pCG-T7-HCC1.4 (lanes 3 and 4) 
or EGFP-U2AF35 (lanes 5 and 6) were incubated with anti-T7 antibody 
bound to Sepharose beads. The bound proteins were analyzed by West-
ern blotting with anti-GFP antibody. Alternatively, the assay was performed 
in the presence of RNase (lanes 4 and 6). (B) U2AF65 interacts with HCC1 
in cultured mammalian cells. Extracts prepared from 293T were incubated 
with either anti-HCC1 antibody bound to Sepharose beads (lanes 2 and 4) 
or Sepharose beads alone (lanes 3 and 5). The bound proteins were ana-
lyzed by Western blotting with anti-U2AF65 antibody. Alternatively, the 
immunoprecipitate was treated with RNase (lanes 4 and 5). (C) Effect of 
DRB on interactions of HCC1 with U2AF35 and U2AF65. Plot is of FRET 
effi ciencies  ±  SD (mean for 8 – 18 cells) between ECFP and EYFP fusion pro-
teins measured by FRET acceptor photobleaching. P-values were obtained 
as described in the  Fig. 5  legend.   

 Figure 7.    FRET between HCC1 and both subunits of the U2AF heterodimer 
measured by FLIM.  (A) HeLa cells were cotransfected with EGFP-HCC1 and 
either mCherry-C1 or mCherry-U2AF35. Confocal images are of transfected 
cells and FLIM images are of the same cells. The color scale with the respective 
effi ciency (%) is indicated. The FRET effi ciencies are shown in continuous pseudo-
color. Top, EGFP-HCC1 + mCherry-C1; Middle, EGFP-HCC1 + mCherry-
U2AF35; Bottom, EGFP-HCC1 + mCherry-U2AF35 in the presence of DRB. 
Arrows indicate high FRET within the nucleoplasm and arrowheads indicate 
nuclear speckles. (B) FRET between HCC1 and U2AF65 measured by FLIM. 
HeLa cells were transfected with EGFP-HCC1 and cotransfected with either 
mCherry-C1 or mCherry-U2AF65. Confocal images are of transfected cells 
and FLIM images are of same cells, in which the percentage of FRET Effi ciency 
and FRET amplitude are shown in pseudocolor. The color scale with the re-
spective effi ciency (%) is indicated. Top, EGFP-HCC1 + mCherry-C1; Middle, 
EGFP-HCC1 + mCherry-U2AF65; Bottom, EGFP-HCC1 + mCherry-U2AF65 in 
the presence of DRB. Arrowheads indicate high FRET within the nucleoplasm 
and arrowheads indicate nuclear speckles. Bars, 10  μ m.   
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interact with both U1 70K and U2AF35. We have also extended 

the original in vitro studies to show that another SR protein 

family member, SRp20, also interacts with U1 70K and U2AF35. 

Thus, the ability of SR proteins to interact with components at 

the 5 �  and 3 �  splice site in live HeLa cells is not confi ned to 

SF2/ASF. These FLIM/FRET results were also re capitulated in 

cells after 3.7% PFA fi xation (Fig. S5, available at http://www

.jcb.org/cgi/content/full/jcb.200710051/DC1). 

 Subcellular distribution of splicing 
complexes 
 The subcellular distribution of protein – protein interactions has 

been mapped at nanometer resolution using a FLIM-FRET 

approach. Interestingly, we found that these protein – protein inter-

actions have a differential distribution within the nucleus. 

Although interactions involving SF2/ASF localized preferentially 

to the nuclear speckles, those involving SC35 preferentially lo-

calized to the nucleoplasm ( Table I ). We observed that most of the 

interactions of SR proteins with either U1 70K or U2AF35 occur 

in both the nuclear speckles and the nucleoplasm, even in tran-

scriptionally repressed cells. The protein – protein interactions be-

tween U2AF35 and U2AF65 have previously been studied by 

FRET acceptor photobleaching ( Chusainow et al., 2005 ), and 

also, in this case, inhibition of transcription by DRB had little or 

no effect on the FRET effi ciency observed for this interaction. 

The fact that inhibition of transcription, which removes produc-

tion of new splicing substrates, did not prevent the observed inter-

actions suggests that they are not exclusively cotranscriptional 

or at least do not strictly require ongoing nascent transcription. 

Interestingly, a FRET microscopy approach has revealed that the 

splicing factors SF1 and U2AF, which participate in the recogni-

tion of the 3 �  splice site, associate in extraspliceosomal complexes 

that persist upon inhibition of transcription ( Rino et al., 2008 ). 

 Numerous pieces of evidence suggest that speckles are 

not major active sites of splicing but may act as either storage or 

assembly sites for splicing factors. The increased FRET effi -

ciency observed in speckles upon treatment with either DRB or 

other transcriptional inhibitors is consistent with the idea that 

splicing factors involved in intron and exon defi nition associate 

together in a complex before being recruited cotranscriptionally 

to the spliceosome. Furthermore, when FRET effi ciencies were 

measured in the nucleoplasm by FLIM-FRET, a signifi cant de-

crease in the FRET effi ciency for SF2/ASF with U1 70K and 

 FRET analysis of splicing factor complexes 
 The role of different subnuclear compartments within the mam-

malian cell nucleus has been investigated previously by study-

ing the colocalization of protein factors with a variety of nuclear 

bodies. For example, splicing snRNPs associate with Cajal bod-

ies, likely as part of a nuclear snRNP assembly pathway ( Lamond 

and Sleeman, 2003 ). Both snRNPs and protein splicing factors 

also concentrate in speckles and the nucleoplasm, and these re-

gions are differentially affected upon inhibition of transcription. 

Thus, blocking transcription causes splicing factors to relocate 

from the nucleoplasm and concentrate in enlarged speckles (for 

review see  Lamond and Spector, 2003 ). FRET microscopy 

makes it possible to distinguish between factors that simply re-

side in the same compartments and those that directly interact 

with each other. The FRET interaction is strongly distance de-

pendent. Thus, FRET reveals direct intermolecular interactions. 

( Patterson et al., 2000 ). However, FRET also is highly depen-

dent on fl uorophore orientation. Thus, absence of FRET could 

mean either that no direct interaction occurs or that some re-

modeling event of the protein complex occurs that alters the 

protein orientation. In the case of FRET measurements by 

FLIM, as used in this study, individual interactions are detected 

on a nanosecond time scale using a pulsed laser source. Typi-

cally, interactions are recorded for  � 120 s, and all the separate 

interactions detected during this period are integrated to provide 

a map of the steady-state distribution of protein interactions in a 

pixel-by-pixel basis throughout the 2D area of the cell. Further-

more, the FLIM data also allow details of the fraction of protein 

involved in FRET interactions to be calculated. This approach 

thus provides a highly detailed view on the spatial organization 

of protein – protein interactions within live cells. 

 In this paper, we have used FRET acceptor photobleach-

ing and FLIM-FRET to study a variety of splicing factor com-

plexes. The existence of splicing complexes previously isolated 

in vitro has been confi rmed in living cells, and we have also 

used this technique to identify novel splicing complexes. The 

SR proteins SF2/ASF and SC35 have previously been shown 

to interact with U1 70K and U2AF35 by in vitro approaches 

( Wu and Maniatis, 1993 ;  Kohtz et al., 1994 ). Therefore, it was 

proposed that SR proteins play a role in exon and intron defi ni-

tion by interacting with U1 70K bound at the 5 �  splice site and 

U2AF35 bound at the 3 �  splice site. We have used FRET micros-

copy to demonstrate that the SR proteins SF2/ASF and SC35 

 Table I. Summary of protein interactions and FRET effi ciencies analyzed by FLIM in nucleoplasm and nuclear speckles in the absence or 
presence of an inhibitor of transcription 

Transcription Transcription inhibition

Interaction partners Nucleoplasm Speckles Nucleoplasm Speckles

U1 70K – SF2/ASF ++ +++  � +++

U1 70K – SC35 +++ ++ ++ +++

U1 70K – U2AF35  �  �  �  � 

U2AF 35 – SF2/ASF ++ +++  � +++

U2AF 35 – SC35 +++ ++ ++ +++

HCC1 – U2AF35 ++ + ++ ++

HCC1 – U2AF65 ++ + +++ ++

The + and  �  represent the strength of the protein interactions. +++, strong interaction; ++, moderate interaction; +, weak interaction;  � , no interaction.
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assembly. Further investigation will be required to determine 

whether HCC1 interacts directly with U2AF26, U2AF35, U2AF65, 

or Urp. It also remains to be determined whether HCC1 plays a 

role in binding to the polypyrimidine tract and whether it is re-

cruited to a subset of pre-mRNA substrates. 

 In vitro experiments have shown that the phosphorylation 

status of splicing factors is important for regulating the 

assembly and disassembly of the spliceosome ( Tazi et al., 1993 ; 

 Mermoud et al., 1994 ). Furthermore, phosphorylation of SF2/

ASF has been shown to increase its affi nity for U1 70K ( Xiao 

and Manley, 1997 ). Future FRET analyses could be used to 

determine the effects of modulating either signaling pathways 

and/or kinase activity on the regulation of interactions be-

tween splicing factors in live cells. 

 In summary, we have used FRET acceptor photobleach-

ing and FLIM-FRET to characterize the interactions involved in 

exon and intron defi nition in living HeLa cells, to quantify the 

fraction of splicing factors proteins involved in these inter-

actions, and to map their subnuclear distribution. FLIM data dem-

onstrates that the formation of splicing factor complexes is not 

exclusively regulated by the abundance of individual compo-

nents, as the highest FRET effi ciencies did not always occur in 

regions where splicing factors concentrate. 

 Materials and methods 
 Plasmid constructs 
 Human U1 70K and Luc7A were cloned by reverse transcription from total 
RNA from HeLa cells. Total RNA was prepared using TriReagent (Sigma-
Aldrich) according to the manufacturer ’ s specifi cations. 5  μ g of total RNA was 
used for synthesis of fi rst-strand cDNA with Super Script II RNase H  �   reverse 
transcription (Invitrogen) according to the manufacturer ’ s protocol, and 10% 
of the cDNA obtained in each case was used for PCR amplifi cation. Frag-
ments corresponding to full-length coding sequence of human U1 70K or 
Luc7A were amplifi ed using specifi c primers that introduce EcoR1 and 
BamH1 restriction sites, ligated into the corresponding sites of ECFP-C1 or 
EYFP-C1 (Clontech Laboratories, Inc.). Alternatively, Xba1 and BamH1 re-
striction sites were introduced for ligation of U1 70K into the mammalian ex-
pression vector pCG-T7. Human HCC1.4, SRp20, and SC35 were cloned 
by using the cDNA cloned into the mammalian expression vector pCG-T7 as 
a template for PCR. Specifi c primers introduced BglII and BamH1 restriction 
sites for subsequent ligation of HCC1 into ECFP-C1 and EYFP-C1. EcoR1 
and BamH1 sites were introduced for the ligation of the other constructs. 
SF2/ASF EGFP-C1 (a gift from G. Biamonti, Istituto di Genetica Molecolare, 
Pavia, Italy) was subsequently subcloned into ECFP-C1 and EYFP-C1. EGFP-
SRp53 has been described previously ( Cazalla et al., 2005 ) and was subse-
quently subcloned into ECFP-C1 and EYFP-C1. U2AF35 and U2AF65 in 
ECFP-C1 and EYFP-C1 were previously described ( Chusainow et al., 2005 ). 
All constructs generated in ECFP-C1 and EYFP-C1 vectors were subcloned 
into EGFP-C1 (Clontech Laboratories, Inc.) and mCherry-C1 ( Shaner et al., 
2004 ). The mCherry-C1 vector was a gift from the R.Y. Tsien laboratory 
(University of California, San Diego, La Jolla, CA). 

 Cell culture and transfections 
 HeLa and 293T HEK cell lines were grown in DME (Invitrogen) supple-
mented with 10% FCS and 100 U/ml each of penicillin and streptomycin 
(Invitrogen) and incubated at 37 ° C in the presence of 5% CO 2 . HeLa and 
293T HEK cells were transfected with Lipofectamine 2000 (Invitrogen) ac-
cording to the manufacturer ’ s instructions. 

 Cell fi xation and immunofl uorescence microscopy 
 HeLa cells grown on glass coverslips were washed with PBS and fi xed 
for 5 min in freshly prepared PBS/3.7% PFA at RT. Permeabilization was 
performed with PBS/1% Triton X-100 for 10 min at RT. After extensive 
washing, samples were blocked with 0.05% Tween 20/PBS containing 1% 
goat serum (Sigma-Aldrich) for at least 30 min at RT and then incubated for 
1 h with the primary anti-BrdU antibody (B2531; 1:500; Sigma-Aldrich). 

U2AF35 was observed. This is particularly interesting, as it 

suggests that the interactions between splicing factors are re-

duced, but not abolished, at active sites of splicing upon in-

hibition of transcription. Another interesting possibility is that 

the reduced FRET effi ciency refl ects structural remodeling of 

the splicing complexes at these sites, which affects the protein 

orientation geometry. 

 Further evidence that SR proteins and U1 70K associate 

with each other before they are recruited cotranscriptionally to 

the spliceosome has come from studies of factors associated with 

RNA polymerase II. A comprehensive proteomic analysis of 

immunopurifi ed human RNA polymerase II identifi ed  > 100 spe-

cifi cally associated proteins ( Das et al., 2007 ). Among these are 

the SR proteins and all the components of the U1 snRNP but no 

other snRNP proteins or splicing factors. This has led to a model 

being proposed whereby the association of U1 snRNP and SR 

proteins with RNA polymerase II results in their cotranscrip-

tional recruitment to nascent transcripts to promote spliceosome 

assembly ( Das et al., 2007 ). Moreover, splicing effi ciency is 

strongly enhanced if SR proteins are available during transcrip-

tion but not if they are added immediately after transcription. 

Our in vivo FRET studies are consistent with this model. 

 Splicing factors involved in recognition of 
the 3 �  splice site 
 The role of HCC1, a factor highly related to U2AF65, in consti-

tutive splicing is poorly understood. An alternatively spliced 

isoform of HCC1, termed HCC1.3, was purifi ed as a spliceo-

some component capable of affecting the splicing reaction 

( Rappsilber et al., 2002 ) and has been shown to regulate both tran-

scription and alternative splicing in a steroid hormone – dependent 

manner ( Dowhan et al., 2005 ). An alternative isoform of HCC1, 

termed HCC1.4, interacts with an SR-related protein, SRrp53, 

which can activate weak 3 �  splice sites ( Cazalla et al., 2005 ). 

A second U2AF65-like component, PUF60, which binds to the 

polypyrimidine tract and regulates the alternative splicing of 

a subset of exons, has been identifi ed ( Page-McCaw et al., 1999 ; 

 Hastings et al., 2007 ). All three proteins, i.e., U2AF65, PUF60, 

and HCC1, have been shown to interact with SRp54, which has 

been implicated in early 3 �  splice site recognition ( Zhang and Wu, 

1996 ). This has led to the proposal that U2AF65-like factors can 

interact with components required for the early recognition of the 

3 �  splice site and infl uence the commitment to splicing. 

 A U2AF35-related protein, termed Urp, interacts with 

U2AF65 through a U2AF35 homologous region and with SR pro-

teins through its RS domain ( Tronchere et al., 1997 ). Coimmuno-

depletion showed that Urp is associated with the U2AF heterodimer 

and does not form an alternative U2AF-like complex with 

U2AF65. It has been proposed that Urp and U2AF35 inde-

pendently position RS domain – containing factors within spliceo-

somes. In contrast, a second U2AF35-like factor, U2AF26, 

interacts with U2AF65 and can functionally substitute for U2AF35 

in both constitutive and enhancer-dependent splicing ( Shepard 

et al., 2002 ). Therefore, distinct U2AF-like complexes can function 

in pre-mRNA splicing. The observation that HCC1 can interact 

both with the U2AF heterodimer and with SR-related proteins 

suggests that HCC1 may play a similar role to Urp in spliceosome 
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software and the biostatistics program Prism (GraphPad Software, Inc.). 
In addition to the bleached region, a similar nonbleached nuclear region 
in the same cell was included in the data analysis as a control. A region of 
background fl uorescence was defi ned outside the cell and subtracted from 
both the bleached and control regions. The data were normalized against 
the mean intensity of the whole image over time to account for any fl uctua-
tions and normal photobleaching that occur during image acquisition 
throughout the course of the experiment. FRET effi ciency was calculated by 
the following formula: FRET Effi ciency = I D(post)   –  I D(pre)  / I D(post) , where I D(pre)  
and I D(post)  are donor intensity before and after photobleaching, respec-
tively. A FRET effi ciency of  > 5% is considered a signifi cant protein – protein 
interaction. For inhibition of transcriptional activity, cells were treated for 
2 h with 25  μ g/ml DRB before carrying out FRET analyses by acceptor 
photobleaching. 

 Fluorescence lifetime measurements by time-correlated single-photon 
counting (TCSPC) for FRET experiments 
 The fl uorescence of organic molecules can be characterized by their ex-
citation and emission spectra and also by the time it takes for the ener-
gized electron to return to the ground state. This is called fl uorescence 
lifetime. When a fl uorophore absorbs a photon, it enters an excited state 
and returns to the ground state by emitting a lower energy photon, with 
the energy difference between the absorbed and emitted photon trans-
ferred to the environment. One of the many factors and reactions occur-
ring at the excited state level that can infl uence the measured fl uorescence 
lifetime of a population of fl uorophores is the close proximity of a sec-
ond fl uorescent molecule with the appropriate spectral properties to al-
low it to absorb energy from the fi rst molecule through FRET ( Lakowicz, 
1999 ). Thus, FRET is a very effi cient fl uorescence quencher, and a de-
crease in the lifetime of the fi rst (donor) fl uorophore can be used to mea-
sure a FRET interaction with the second (acceptor) fl uorophore. Based on 
these properties, FLIM provides an excellent tool for measuring differ-
ences in the lifetime of the fl uorescence donor and, hence, for calculat-
ing FRET effi ciencies. Furthermore, by applying a biexponential decay 
model we were able to resolve the fraction of the protein population that 
undergoes FRET (see subsequent equations in the Materials and methods 
and Fig. S3). 

 FLIM was performed using an inverted laser scanning multiphoton 
microscope (TE2000 [Nikon] or Radiance 2100MP [Bio-Rad Labor atories]) 
with a 60 ×  oil immersion (1.4 NA). Two-photon excitation was achieved 
using a Chameleon Verdi-pumped ultrafast tunable (720 – 930 nm) laser 
(Coherent) to pump a mode-locked frequency-doubled Ti:Sapphire laser 
(Coherent) that provided sub-200-femtosecond pulses at a 90-Mhz repeti-
tion rate with an output power of  � 1.4W at the peak of the tuning curve 
(800 nm). Enhanced detection of the scattered component of the emitted 
(fl uorescence) photons was afforded by the use of fast single-photon re-
sponse (5783P; Hamamatsu Photonics) direct detectors. The fl uorescence 
lifetime imaging capability was provided by TCSPC electronics (SPC-830; 
Becker  &  Hickl GmbH). TCSPC measures the time elapsed between laser 
pulses and the fl uorescence photons. Indeed, when fl uorophore molecules 
absorb a quantum of light, a valence electron is boosted up into a higher 
energy orbit, creating an excited state. When this electron returns to its 
original lower energy orbit (the ground state level), a quantum of light may 
be emitted. By consequence, the fl uorescence lifetime occurs on the nano-
second time scale, and FLIM measurements refl ected events occurring at an 
extremely short period of time. The TCSPC method used in this study is 
based on the detection of single photons, the measurement of the detection 
times of the individual photons, and the reconstruction of the waveform 
from the individual time measurements. Over this integration time (120 s), 
the waveform of the optical pulse builds up and corresponds to a histo-
gram presenting the number of photons recorded for each nanosecond ’ s 
detection time interval. Therefore, the FLIM technique provides us with the 
spatial map distribution of the variations of the fl uorescence lifetimes and, 
indirectly, of the FRET effi ciencies at each pixel throughout the nucleus. 
EGFP/mCherry was used as a FRET pair for all the FLIM measurements. 
The optimal two-photon excitation wavelength to excite the donor (EGFP) 
was determined to be 890 nm. Fluorescence emission of EGFP fusion pro-
teins was collected using a bandpass fi lter (528  ±  25 nm) to limit detection 
to only the donor fl uorophore (EGFP) and prevent contamination from the 
acceptor (mCherry) emission ( Ll è res et al., 2007 ). Laser power was ad-
justed to give a mean photon count rate of the order 10 4  – 10 5  photons/s, 
and fl uorescence lifetime images were acquired over 120 s. Fluorescence 
lifetimes were calculated for all pixels in the fi eld of view (256  ×  256 pixels) 
using SPCImage software (Becker  &  Hickl GmbH). A biexponential fl uores-
cence decay model was applied to the data to determine the fl uorescence 
lifetime of noninteracting and interacting subpopulations. 

AMCA-conjugated goat anti – mouse secondary antibody was used at 
1:500 (Jackson ImmunoResearch Laboratories) for 45 min at RT. Coverslips 
were then mounted in Vectashield medium (Vector Laboratories). The sam-
ples were observed on a microscope (Zeiss Axiovert-DeltaVision Image 
Restoration; Applied Precision, LLC). 

 5-FU incorporation assay 
 24 h after transfection, HeLa cells, either mock treated or treated with DRB 
for the indicated length of time, were incubated with 2 mM 5-FU (F5130) 
for 30 min at 37 ° C. Subsequently, cells were fi xed, permeabilized, and in-
cubated with primary anti-BrdU antibody (B2531; 1:500). Immunofl uores-
cence microscopy was performed as indicated. 

 Western blot analysis 
 Samples were separated by SDS-PAGE and electroblotted Protan BA85 
Nitrocellulose (Whatman) in 25 mM Tris-base, 40 mM glycine, and 20% meth-
anol in a Genie Blotter unit (Idea Scientifi c Company) at 12 V for 1 h. 
The membranes were blocked with 1:10 Western blotting reagent (Roche) 
in TBST (20 mM Tris, pH 7.5, 137 mM NaCl, and 0.1% Tween 20) for 1 h 
at RT. Incubations with primary and secondary antibodies were performed 
for 1 h at RT in TBST containing 1:20 Western Blotting reagent (Roche). 
Four washes with TBST were done after incubations with each antibody 
and immunoreactive bands were detected with SuperSignal system (Thermo 
Fisher Scientifi c) according to the manufacturer ’ s instructions. The following 
primary antibodies were used: mouse anti-GFP at 1:1,000 (Roche), mouse 
monoclonal anti-U1-70K at 1:1,000 (Synaptic Systems GmbH), rabbit anti-
HCC1 at 1:5,000 (Bethyl Laboratories), mouse anti-U2AF65 at 1:200 (gift 
from J. Valcarcel, Centre de Regulaci ó  Gen ò mica, Barcelona, Spain), mAb 
96 at 1:500 (for detection of SF2/ASF;  Hanamura et al., 1998 ), and 
sheep anti-U2AF35 at 1:500. The appropriate secondary antibodies (HRP 
conjugated to IgG) were used at 1:10,000. 

 IP 
 For IP, 293T cells that were transfected with a construct expressing the pro-
tein of interest or mock transfected were resuspended in 400  μ l of lysis buf-
fer (50 mM Tris, pH 7.5, 250 mM NaCl, 5 mM EDTA, 0.5% Triton X-100, 
0.3% NP-40, and 1 mM PMSF) and incubated for 10 min at 4 ° C. The ex-
tract was centrifuged at 12,000  g  for 20 min at 4 ° C, after which the pellet 
was discarded. The extract was incubated with the antibody of choice 
bound to 20  μ l of protein A (GE Healthcare) at 4 ° C for 2 h with continuous 
rotations. The IP reactions were then washed four times with lysis buffer. 
In some cases beads were treated with 50  μ g/ml of RNase A/T1 cocktail 
(Ambion) for 10 min at 4 ° C after the fi rst wash. After the washes, beads 
were resuspended in 30  μ l of loading buffer (50 mM Tris, pH 7.5, 10% 
glycerol, 0.05% SDS, and 2.5%  � -mercaptoethanol) and boiled for 3 min. 
For Western blot analysis of immunoprecipitated proteins, 10  μ l of sample 
was used. 

 FRET acceptor photobleaching 
 HeLa cells grown on glass coverslips were cotransfected with a FRET pair 
of choice. 12 h after transfection, cells were mounted in Hepes-buffered 
Phenol red – free medium (Invitrogen) in a closed heated chamber (Ba-
chofer). Measurements were conducted on an image restoration micro-
scope (DeltaVision Spectris; Applied Precision) fi tted with a quantifi able 
laser module, including a 20-mW 532-nm CW laser, suitable for photo-
bleaching YFP without cobleaching CFP. Images were collected using a 
60 ×  1.4 NA Plan-Apochromat lens (Olympus), a cooled charge-coupled 
device camera (CoolSnap HQ; Photometrics) and SoftWorx imaging soft-
ware (Applied Precision, LLC). The following specifi c CFP/YFP fi lter sets 
were used to resolve the ECFP and EYFP signals: excitation, 436/10 nm 
and emission, 480/40 nm for ECFP; excitation, 525/20 nm and emission, 
580/70 nm for EYFP. The dichroics used were custom built by Applied Pre-
cision, LLC and Chroma Technology, Corp. The set is modifi ed from the 
normal CFP/YFP JP4 set such that the dichroic refl ects and the emission fi l-
ter rejects light at 532 nm, allowing this wavelength to be used for selec-
tively photobleaching YFP. After obtaining fi ve prebleach images, a defi ned 
region of the cell nucleus was spot photobleached with a single 150-ms 
stationary pulse at 90% laser power. The fi rst image was acquired 2 ms af-
ter the bleach event. For the fi rst second, images were acquired approx-
imately every 200 ms, for the subsequent 1.7 s, every 335 ms, and then 
at 830-ms intervals in the subsequent 5 s, after which images were ac-
quired every 1.6 s for the remainder of the experiment. A total of 20 im-
ages were acquired after the bleach event. Images of donor (ECFP) and 
acceptor (EYFP) were taken in separate subsequent measurements, bleach-
ing exactly the same spot before collecting postbleach images. Obtained 
data were analyzed using the image analysis tools included in the SoftWorx 
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 Analysis of the fl uorescence lifetime measurements for FRET experiments 
 In the analysis of the FRET data, two elements must be considered: the FRET 
effi ciency and the interacting fl uorophore population. Measurements of 
FRET based on the analysis of the fl uorescence lifetime of the donor by 
FLIM approach can resolve the FRET effi ciency (i.e., coupling effi ciency) 
and the FRET population (concentration of FRET species) when analyzed 
using biexponential decays model. The assumption that noninteracting and 
interacting fractions are present allows us to determine both the effi ciency 
of the interaction and the fractional population of interacting proteins. 

 By applying a biexponential fl uorescence decay model to fi t the ex-
perimental decay curves (f(t) =  a 0   e -t/ �   +  a ̀FRET   e -t/ �   FRET ) we obtain information 
about the lifetimes of two populations of molecules, i.e., the noninteracting 
donor population (lifetime  � ) and the donor population that is interacting 
with the acceptor (lifetime  �  FRET ), as well as the intensity factors,  a 0   and 
 a ̀FRET  , of the two decay components. 

 By fi xing the noninteracting proteins lifetime ( � ) using data from con-
trol experiments (in the absence of FRET) and by assuming invariance in the 
effi ciency of interaction ( �  FRET ) between pixels throughout a same nuclear 
compartment measured (nucleoplasm or nuclear speckles domains in our 
study), the fraction of FRET species (i.e., population of interacting proteins) 
can be estimated. From this model, the FRET effi ciency, E FRET , can be de-
rived from the following equation: E FRET  = 1  �  ( �   FRET  / � ). A FRET effi ciency 
of  > 5% is considered a signifi cant protein – protein interaction. 

 Online supplemental material 
 Five supplemental fi gures are provided. They show the level of expression 
of the fusion proteins and their activity in alternative splicing (Figs. S1 and 
S2). Furthermore, use of different transcriptional inhibitors confi rmed that 
the interactions detected by FRET/FLIM microscopy persist in the absence 
of transcription. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200710051/DC1. 
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