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    Introduction 
 During development, Schwann cells proliferate, migrate, sort, 

and ensheath individual axons, all of which contributes to 

the proper formation of myelin. Throughout these events, 

Schwann cells are in constant contact with axons, suggesting 

that glial-neuronal communication is essential for regulating 

these processes ( Bunge, 1993 ). One such factor involved in 

Schwann cell proliferation and migration is neuregulin-1 

(NRG1), which is expressed primarily by neurons and signals 

through the cognate ErbB family of receptors expressed by 

Schwann cells ( Bunge, 1993 ;  Mahanthappa et al., 1996 ;  Garratt 

et al., 2000 ;  Citri et al., 2003 ). Additionally, growing evi-

dence clearly illustrates that NRG1 type III, a membrane-bound 

form, plays a critical role in the ensheathment and myelin-

ation of axons ( Nave and Salzer, 2006 ). Although all of these 

processes are clearly distinct, they all require rapid and dy-

namic morphological changes in the Schwann cell, initiated 

by the activation of the ErbB2 and ErbB3 heterodimer of the 

receptor tyrosine kinase family ( Garratt et al., 2000 ;  Citri 

et al., 2003 ). How can the same ligand and receptor complex, 

namely NRG1 via ErbB2/3, regulate multiple cellular pro-

cesses that are thought to be distinct and highly controlled in 

a temporal and spatial manner? How is specifi city conferred 

to generate the proper number of Schwann cells to appropri-

ately match the number of axons and then to determine which 

axons should be myelinated? 

 It is well established that the ability of cells to respond 

to extracellular signals to change cell morphology is con-

trolled in part by the Rho family of small GTPases, including 

Rac1, Cdc42, and RhoA ( Schmidt and Hall, 2002 ). In fact, 

recent studies identify Rac1 as the downstream effector mol-

ecule responsible for process extension and lamellipodia for-

mation in Schwann cells, allowing for proper radial sorting 

and myelination ( Benninger et al., 2007 ;  Nodari et al., 2007 ). 

The Rho GTPases are active when bound to GTP and are in-

active when bound to GDP. Guanine nucleotide exchange 

factors (GEFs) catalyze the replacement of GDP with free cyto-

plasmic GTP to generate active GTPases, whereas GTPase-

activating proteins (GAPs) accelerate the intrinsic GTPase 

activity to inactivate the GTPases. Therefore, the rate-limiting 

step and the specifi city in the activation of the distinct 

GTPases lie in the expression and activation of both the GEFs 

and GAPs. 

T
he cellular events that precede myelination in the 

peripheral nervous system require rapid and dy-

namic morphological changes in the Schwann cell. 

These events are thought to be mainly controlled by axo-

nal signals. But how signals on the axons are coordinately 

organized and transduced to promote proliferation, 

migration, radial sorting, and myelination is unknown. 

We describe that the axonal signal neuregulin-1 (NRG1) 

controls Schwann cell migration via activation of the atyp-

ical Dock180-related guanine nucleotide exchange factor 

(GEF) Dock7 and subsequent activation of the Rho gua-

nine triphosphatases (GTPases) Rac1 and Cdc42 and the 

downstream c-Jun N-terminal kinase. We show that the 

NRG1 receptor ErbB2 directly binds and activates Dock7 

by phosphorylating Tyr-1118. Dock7 knockdown, or ex-

pression of Dock7 harboring the Tyr-1118 – to – Phe muta-

tion in Schwann cells, attenuates the effects of NRG1. 

Thus, Dock7 functions as an intracellular substrate for 

ErbB2 to promote Schwann cell migration. This provides 

an unanticipated mechanism through which ligand-

dependent tyrosine phosphorylation can trigger the acti-

vation of Rho GTPase-GEFs of the Dock180 family.

 ErbB2 directly activates the exchange factor Dock7 
to promote Schwann cell migration 

  Junji   Yamauchi ,  1    Yuki   Miyamoto ,  1    Jonah R.   Chan ,  2   and  Akito   Tanoue   1   

  1 Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan 
  2 Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033   

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/181/2/351/1884148/jcb_200709033.pdf by guest on 08 February 2026



JCB • VOLUME 181 • NUMBER 2 • 2008 352 

cifi cally inhibits migration induced by NRG1 but not by NT3 or 

insulin-like growth factor (IGF)-I, which stimulates Schwann 

cell migration ( Cheng et al., 2000   Yamauchi et al., 2004 ). These re-

sults again suggest that the DRG conditioned medium contains 

NRG1-like activity, which can enhance Schwann cell migra-

tion. We further investigated the effect of the NRG1-like activ-

ity on migration of reaggregated Schwann cells on live DRG 

axons to mimic physiological conditions. The Schwann cell re-

aggregates initially spread out slowly and then begin to migrate 

out of the reaggregates along axons. Addition of ErbB3-Fc to 

the culture medium of the DRG neurons inhibits Schwann cell 

migration from the reaggregates ( Fig. 1, H and I ). This observa-

tion is consistent with the results from our Boyden chamber as-

say and, in fact, ErbB3-Fc has a greater initial inhibitory effect 

on migration from the reaggregates. It is important to note that 

after a longer time course the effects on migration distances in 

the presence or absence of ErbB3-Fc were diminished. Thus, it 

is likely that the effect of ErbB3-Fc delays migration rather than 

completely inhibiting it. 

 We examined whether migration of Schwann cells re-

quires the tyrosine kinase activity of ErbB2. Pretreatment with 

AG825, an inhibitor of the ErbB2 tyrosine kinase ( Tsai et al., 

1996 ), reduced NRG1-induced migration by  � 80% ( Fig. 1, 

J and K ). In addition, we transfected siRNA oligonucleotides 

for both ErbB2 and 3 in Schwann cells. Expression of ErbB2 

and 3 was specifi cally down-regulated after transfection with 

the siRNA, whereas expression of control proteins was un-

affected, as revealed by immunoblotting ( Fig. 1 M ). Knockdown 

of ErbB2 or ErbB3 attenuated migration induced by NRG1. 

Collectively, the ErbB2 and 3 heterodimer responds to NRG1, and 

the tyrosine kinase activity of ErbB2 is important for Schwann 

cell migration. 

 Next, we tested whether the Rho GTPases Rac1 and 

Cdc42 are involved in the NRG1-induced migration of Schwann 

cells, as previously seen in NT3-induced migration ( Yamauchi 

et al., 2004 ). Pretreatment of  Clostridium difficile  Toxin B, 

which glycosylates and blocks the functions of Rho GTPases 

such as RhoA, Rac1, and Cdc42 ( Just et al., 1995 ), inhibited the 

NRG1 effect by  � 70% ( Fig. 2 A ). In contrast, C3 exoenzyme, 

which ADP ribosylates RhoA and blocks its function ( Hirose 

et al., 1998 ), did not have any obvious effect. Furthermore, we 

transfected a siRNA for Rac1 or Cdc42 into Schwann cells. 

Knockdown of Rac1 inhibited the NRG1-induced migration in 

Boyden chambers by  � 25% (Fig. S1 D, available at http://www

.jcb.org/cgi/content/full/jcb.200709033/DC1) as well as migra-

tion from reaggregates on DRG axons (compare videos 1 – 4 for 

cells transfected with control siRNA with videos 5 and 6 for 

cells transfected with Rac1 siRNA, available at http://www.jcb

.org/cgi/content/full/jcb.200709033/DC1), which is consistent 

with recent studies ( Benninger et al., 2007 ;  Nodari et al., 2007 ). 

Transfection with nonoverlapping siRNA, Cdc42-1 or Cdc42-2, 

decreased the migration in Boyden chambers by  � 15 and 25%, 

respectively (Fig. S1, E and F), as well as decreasing the migra-

tion from reaggregates on DRG axons (videos 7 and 8 for cells 

transfected with Cdc42-2 siRNA). However, because the effect 

after knockdown of Rac1 or Cdc42 is weaker than that of Toxin B, 

it is possible that Rac1 activity transduces an intracellular 

 The GEFs are largely divided into two major categories 

( Rossman et al., 2005 ). The fi rst category is composed of  � 80 

genes related to the protooncogene  Dbl . These gene products 

share a catalytic Dbl homology (DH) domain, which was fi rst 

identifi ed over a decade ago ( Schmidt and Hall, 2002 ;  Rossman 

et al., 2005 ). The second category consists of at least 11 GEFs, 

which contain a catalytic domain that is structurally distinct 

from the DH domain. This catalytic domain is named the Dock 

homology region (DHR)-2 (also called  Caenorhabditis ele-
gans   Ced-5 / mammalian Dock180 / Drosophila melanogaster  

 Mbc-zizimin homology domain  2 or Docker;  Rushton et al., 

1995 ;  Hasegawa et al., 1996 ;  Wu and Horvitz, 1998 ;  Brugnera 

et al., 2002 ;  C ô t é  and Vuori, 2002 ;  Meller et al., 2002 ;  Rossman 

et al., 2005 ) and, until recently, little was known about the 

mechanisms that regulate the activities of the Dock180 (also 

called Dock1)-related GEFs. In this paper, we report the role 

of the atypical Dock180-related GEF Dock7 and the sub-

sequent GTPase signaling cascade in NRG1-induced migra-

tion of primary Schwann cells. Furthermore, we identify 

Dock7 as the functional intracellular substrate of ErbB2, sug-

gesting the importance of Dock7 in early peripheral nervous 

system development. 

 Results 
 NRG1 activation of ErbB2 and 3 promotes 
Schwann cell migration through Rho 
GTPases Rac1 and Cdc42 and the 
downstream JNK 
 Using Boyden chambers, we previously demonstrated that dor-

sal root ganglion (DRG) neurons secrete various growth factors, 

including neurotrophin-3 (NT3) and brain-derived neurotrophic 

factor, to regulate Schwann cell migration ( Yamauchi et al., 

2004 ). We placed primary Schwann cells onto fi lters of Boyden 

chambers coated with axonal membranes from DRG neurons 

and allowed them to migrate into the lower compartment along 

a concentration gradient of the neuronal conditioned medium 

for 6 h. When we added the NRG1 scavenger ErbB3-Fc to the 

DRG conditioned medium, migration was signifi cantly dimin-

ished. Removal of the NRG1-like activity inhibited migration 

by  � 80% ( Fig. 1, A and B ), implicating NRG1 as a positive 

regulator of Schwann cell migration. We next examined the ef-

fects of extracellular matrix proteins on Schwann cell migration 

induced by the conditioned medium. Filters in the Boyden 

chambers were coated with collagen (type I or IV), fi bronectin, 

or laminin ( Fig. 1, C and D ). The conditioned medium stimu-

lated migration on any of the extracellular matrices, although fi -

bronectin and laminin enhanced Schwann cell migration in the 

absence of the conditioned medium. Therefore, it is possible 

that extracellular matrices act cooperatively with soluble factors 

to control migration. In contrast, the collagen-coated fi lters 

were similar to the fi lters coated with DRG axonal membranes. 

Because collagen modestly stimulates migration as compared 

with fi bronectin and laminin, collagen (type I)-coated fi lters 

were used in the subsequent experiments. Next, we explored 

whether ErbB3-Fc is specifi c for the NRG1-like activity in the 

conditioned medium. As shown in  Fig. 1 (E – G) , ErbB3-Fc spe-
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 Figure 1.    NRG1 promotes Schwann cell migration through the ErbB2 and 3 heterodimer.  (A and B) The migration of primary Schwann cells was measured 
by using Boyden chambers. Filters were coated with DRG axonal membranes. After incubation for 6 h with normal or conditioned medium from DRG neu-
rons containing 5  μ g/ml of control IgG or ErbB3-Fc, Schwann cells were stained with Giemsa solution and the number of migrating cells was counted (16 
independent fi elds). Bar, 50  μ m. (C and D) Filters in Boyden chambers were coated with DRG axonal membranes, collagen (type I or IV), fi bronectin, or 
laminin. Schwann cell migration was measured in the presence of normal medium or conditioned medium (eight independant fi elds). (E – G) In the presence 
of control IgG or ErbB3-Fc, Schwann cells were incubated with or without 20 ng/ml of NRG1, NT3, or IGF-I in Boyden chambers (eight independent fi elds). 
Filters were coated with collagen (type I). (H and I) Schwann cell reaggregates were placed onto DRG neurons and control IgG or ErbB3-Fc was added. 
After 6 h, DRG axons were stained with an antineurofi lament antibody (red), and Schwann cells were stained with an anti-S100 �  antibody (green). 
The distance of migration was measured ( n  = 16). Bar, 100  μ m. (J and K) Schwann cells were pretreated in the presence or absence of 10  μ M AG825 
and then incubated with or without 20 ng/ml NRG1 in Boyden chambers. The number of migrating cells was counted (16 independent fi elds). Bar, 50  μ m. 
(L and M) Schwann cells were transfected with control, ErbB2, or ErbB3 siRNA and incubated with or without NRG1 in Boyden chambers (16 independent 
fi elds). To confi rm the effects of siRNAs, the lysates of transfected cells were immunoblotted with an anti-ErbB2, ErbB3, or actin antibody. Error bars 
show  ± SD. Data were evaluated by using one-way ANOVA (*, P  <  0.01; ***, P  <  0.02).   
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2004 ) on NRG1-induced migration. SP600125 and JNK inhibi-

tor I inhibited the NRG1 effect by  � 80 and 70%, respectively 

( Fig. 3 A ). We next immunoblotted with an antiphosphorylated 

JNK antibody that recognizes the phosphorylated or active state 

of JNK. JNK phosphorylation was detected in a time-dependent 

manner, and the level of phosphorylation reached maximum 

at 120 min and gradually decreased afterward ( Fig. 3, B – E ). 

In addition,  C. diffi cile  Toxin B inhibited the JNK phosphory-

lation by  � 70% ( Fig. 3 F ), indicating that JNK is one of the 

transducers acting downstream of Rac1 and Cdc42 in Schwann 

cell migration. 

 The atypical GEF Dock7 mediates NRG1-
induced Schwann cell migration 
 To identify the specifi c GEFs involved in the NRG1 regulation 

of Rac1 and Cdc42, we designed siRNA against Tiam1 and 

Dbs, major GEFs of the Dbl family for Rac1 and Cdc42, respec-

tively, in Schwann cells ( Yamauchi et al., 2005a , b ). Neither 

Tiam1 nor Dbs knockdown had any effect on the NRG1-induced 

migration of Schwann cells (Fig. S1, A and B). Therefore, we 

examined the involvement of Dock7, a Dock180-related GEF 

signal from NRG1 together with Cdc42 and that Rac1 and Cdc42 

may share a common downstream signaling pathway. To examine 

whether NRG1 directly activates Cdc42 and Rac1, we per-

formed affi nity precipitation using the Rac1-GTP and Cdc42-

GTP binding domain of Pak1. The activities of Rac1 and Cdc42 

reached maximum levels at 60 – 120 min after stimulation with 

NRG1 and remained activated for at least 360 min ( Fig. 2, B – I ). 

Therefore, NRG1 activation of ErbB2 and 3 can stimulate the 

increase of Rac1-GTP and Cdc42-GTP to enhance Schwann 

cell migration. 

 We previously reported that JNK acts downstream of Rac1 

and Cdc42 in NT3-induced migration of Schwann cells ( Yamauchi 

et al., 2005a , b ). In addition, the JNK cascade is the direct target 

of Rho GTPases in many other types of cells ( Schmidt and Hall, 

2002 ). Therefore, we investigated the effect of structurally un-

related JNK inhibitors SP600125 and JNK inhibitor I ( Heo et al., 

 Figure 2.    NRG1-induced migration of Schwann cells is dependent on the 
activation of the Rho GTPases Rac1 and Cdc42.  (A) Schwann cells were 
pretreated with or without 2 ng/ml  C. diffi cile  Toxin B or 2  μ g/ml C3 
exoenzyme, and migration was assayed in Boyden chambers (12 indepen-
dent fi elds). (B and C) After the addition of NRG1 for 0 – 120 min, endog-
enous Rac1-GTP in the lysates of Schwann cells was affi nity precipitated 
with GST-Pak1-CRIB and immunoblotted with an anti-Rac1 antibody. 
The levels of Rac1-GTP were normalized to the amount of total Rac1 ( n  = 3). 
(D and E) The Rac1 activities were measured at 0 – 360 min ( n  = 5). (F – I) Endog-
enous Cdc42-GTP in the cell lysates was affi nity precipitated with GST-Pak1-
CRIB. The Cdc42-GTP levels were normalized to the amount of total Cdc42 
( n  = 3). Error bars show  ± SD. Data were evaluated by using one-way 
ANOVA (*, P  <  0.01).   

 Figure 3.    JNK acts downstream of Rho GTPases to promote Schwann cell 
migration.  (A) Schwann cells were pretreated in the presence or absence 
of 10  μ M SP600125 or 20  μ M JNK inhibitor I and incubated with or 
without 20 ng/ml NRG1 in Boyden chambers (12 independent fi elds). 
(B and C) Schwann cells were stimulated with NRG1 for 0 – 120 min. The cell 
lysates were immunoblotted with an anti-(pThr 183 /pTyr 185 ) JNK antibody 
that recognizes active JNK. The cell lysates were also immunoblotted with 
an anti-JNK antibody. The levels of phosphorylated forms were normalized 
to the amount of total JNK ( n  = 3). (D and E) JNK phosphorylation was 
measured at 0 – 360 min ( n  = 3). (F) Cells were pretreated with or without 
2 ng/ml  C. diffi cile  Toxin B. After incubation with NRG1 for 120 min, JNK 
phosphorylation was assayed ( n  = 5). Error bars show  ± SD. Data were 
evaluated by using one-way ANOVA (*, P  <  0.01).   
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and 3 heterodimer and apparently possesses various tyrosine 

phosphorylation sites. The recombinant intracellular kinase 

domain of ErbB2 (HTScan ErbB2 kinase) phosphorylated the 

purifi ed wild-type Dock7 protein (Fig. S3 B) and coprecipitated 

with Dock7 in vitro ( Fig. 6 A ). To investigate the potential sites 

on Dock7 that could be tyrosine phosphorylated by ErbB2, we 

transfected a plasmid encoding the N-terminal region containing 

DHR-1 (aa 1 – 691), middle region 1 (aa 692 – 1110), middle region 2 

(aa 1111 – 1431), or DHR-2 (aa 1432 – 1992) into 293T cells 

( Fig. 6 B ). Because the amino acid sequence positioned between 

DHR-1 and -2 is quite extensive, it was divided into two regions. 

The ErbB2 kinase coprecipitated with both middle regions 

expressed abundantly in Schwann cells (Fig. S1 C). Transfection 

of nonoverlapping siRNA, Dock7-1 or Dock7-2, into Schwann 

cells knocked down the expression of endogenous Dock7, as re-

vealed by immunoblotting with an anti-Dock7 antibody (Fig. S2, 

A – C). Dock7-1 or -2 siRNA inhibited the NRG1-induced mi-

gration in Boyden chambers by  � 70 and 50%, respectively 

( Fig. 4, A and B ) , as well as inhibiting migration from reaggre-

gates on DRG axons (videos 9 and 10 for cells transfected with 

Dock7-1 siRNA, available at http://www.jcb.org/cgi/content/

full/jcb.200709033/DC1). Similarly, knockdown of Dock7 by 

Dock7-1 siRNA reduced the NRG1 activation of Rac1 by  � 80%, 

Cdc42 by 80%, and JNK phosphorylation by 60% ( Fig. 4, C – E ). 

Despite the potential involvement of other GEFs in these signal-

ing pathways, our results hint at the possible role for Dock7 in 

Schwann cell migration and provide the rationale and impetus 

for the subsequent experiments. 

 ErbB2 directly binds and activates Dock7 
by phosphorylating Tyr-1118 to regulate 
Schwann cell migration 
 Because the DHR-2 domain of the Dock180-related GEFs shows 

catalytic activity ( Brugnera et al., 2002 ;  C ô t é  and Vuori, 2002 ; 

 Meller et al., 2002 ), we tested whether Rho GTPases could be 

activated by the DHR-2 domain of Dock7. The purifi ed DHR-2 

domain (Fig. S3 A, available at http://www.jcb.org/cgi/content/

full/jcb.200709033/DC1) promoted the exchange, binding, and 

release of the guanine nucleotide for Rac1 and Cdc42 in a time-

dependent manner ( Fig. 5, A, B, D, and E ), whereas no effect 

was observed for RhoA ( Fig. 5, C and F ). Catalytically active 

GEFs preferentially interact with guanine nucleotide – free forms 

of the small GTPases ( Arthur et al., 2002 ;  Schmidt and Hall, 

2002 ;  Rossman et al., 2005 ). A Gly-to-Ala mutation in the P loop 

of the small GTPases decreases their guanine nucleotide binding 

activities ( Arthur et al., 2002 ). We performed an affi nity precipi-

tation of the DHR-2 domain of Dock7 with guanine nucleotide –

 free Rac1G15A, Cdc42G15A, or RhoAG17A as well as wild-type 

Rac1, Cdc42, or RhoA. DHR-2 specifi cally coprecipitated with 

Rac1G15A ( Fig. 5 G ) and Cdc42G15A ( Fig. 5 I ) but not with 

RhoAG17A ( Fig. 5 K ), which is consistent with the results 

from the guanine nucleotide exchange assays. In contrast, the 

DH and pleckstrin homology (PH) domains of Dbs affi nity 

preci pitated with Rac1G15A ( Fig. 5 H ) or Cdc42G15A ( Fig. 5 J ) 

as well as with RhoAG17A ( Fig. 5 L ). Similarly, the affinity 

precipitation with wild-type Rac1 or Cdc42 also showed bind-

ing to DHR-2 but was slightly weaker than the precipitation 

with each GTPase harboring the Gly-to-Ala mutation. To inves-

tigate whether NRG1 activation of the ErbB2 and 3 heterodimer 

stimulates the GEF activity of Dock7, we cotransfected the 

plasmids encoding wild-type Dock7, ErbB2, and ErbB3 into 

293T cells and measured the exchange of the guanine nucle-

otide from immunoprecipitated Dock7 for Rac1 and Cdc42. 

The activity of wild-type Dock7 was signifi cantly increased af-

ter stimulation with NRG1 ( Fig. 5, M and O ). Similarly, NRG1 

promoted the affi nity-precipitation of Dock7 with Rac1G15A 

or Cdc42G15A ( Fig. 5, N and P ). 

 We asked if ErbB2 could directly phosphorylate Dock7 

because Dock7 is stimulated after the activation of the ErbB2 

 Figure 4.    Dock7 is required for migration and the activation of Rac1, 
Cdc42, and JNK induced by NRG1 in Schwann cells.  (A and B) Schwann 
cells were transfected with control, Dock7-1, or Dock7-2 siRNA and incu-
bated with or without NRG1 in Boyden chambers (12 independent fi elds). 
To confi rm the effects of siRNA, the lysates of transfected cells were 
immunoblotted with an anti-Dock7, Rac1, Cdc42, or actin antibody. 
(C and D) Schwann cells were transfected with control or Dock7-1 siRNA 
and stimulated with NRG1 for 60 min. The activities of Rac1 and Cdc42 
were assayed by affi nity precipitation with GST-Pak1-CRIB ( n  = 3). (E) Cells 
were transfected with control or Dock7-1 siRNA and JNK phosphorylation 
was measured ( n  = 3). Error bars show  ± SD. Data were evaluated by us-
ing one-way ANOVA (*, P  <  0.01).   
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Y1375F, and Y1429F mutants of the full-length Dock7 and ana-

lyzed the phosphorylation by the ErbB2 kinase. In  Fig. 6 F , the 

Y1118F mutation greatly reduced the phosphorylation of Dock7 

by the ErbB2 kinase, whereas the Y1138F, Y1225F, Y1233F, 

Y1375F, and Y1429F mutations did not possess inhibitory effects 

on phosphorylation. Similarly, the purifi ed Y1118F Dock7 

(Fig. S3 C) reduced phosphorylation by the ErbB2 kinase 

( Fig. 6 G ). Amino acid sequences surrounding Tyr-1118 in 

Dock7 are uniquely conserved among mammalian Dock7 pro-

teins but not in the Dock180-related GEFs homologous to Dock7 

and those from other species ( Fig. 6 H ). 

 To clarify whether ErbB2 directly activates Dock7 and 

whether Tyr-1118 is critical for ErbB2-dependent GEF activity, 

we incubated the purifi ed wild-type or Y1118F Dock7 with 

the ErbB2 kinase and performed guanine nucleotide release 

assays in vitro. ErbB2 stimulated guanine nucleotide release 

and phosphorylated the middle region 2 ( Fig. 6 C ). These re-

sults are also supported by fi ndings that the middle region 2, 

acting as a specifi c substrate for ErbB2, has a dominant-negative 

effect on NRG1-induced migration (Fig. S4, A – D, available 

at http://www.jcb.org/cgi/content/full/jcb.200709033/DC1) and 

activation of Rac1 (Fig. S4, E, F, and I) and Cdc42 (Fig. S4, G, 

H, and J). Because the middle region 2 of Dock7 contains six 

tyrosine residues that may be phosphorylated by ErbB2 ( Fig. 6 D ), 

we made a series of constructs harboring Tyr-to-Phe mutations 

in the middle region 2. The ErbB2 kinase had the ability to 

phosphorylate the Y1138F, Y1225F, Y1233F, Y1375F, and Y1429F 

mutants but could not effectively phosphorylate the Y1118F 

mutant ( Fig. 6 E ). The Y1138F mutation of the middle region 2 

modestly inhibited phosphorylation by the ErbB2 kinase. Thus, 

to ascertain whether Tyr-1118 is the major phosphorylation site 

of Dock7, we made the Y1118F, Y1138F, Y1225F, Y1233F, 

 Figure 5.    NRG1 activation of the ErbB2 and 3 
heterodimer stimulates the GEF activity of 
Dock7.  (A – C) 125 ng of immobilized FLAG-
Dock7-DHR-2 was incubated with 16 ng/ μ l 
GST-Rac1, Cdc42, or RhoA and 3  μ M [ 3 H]GDP 
in 30  μ l of reaction buffer for 0 – 30 min, and the 
guanine nucleotide binding activities were mea-
sured ( n  = 10). (D – F) The release of [ 3 H]GDP 
from GST-Rac1-[ 3 H]GDP, Cdc42-[ 3 H]GDP, or 
GST-RhoA-[ 3 H]GDP by FLAG – Dock7 – DHR-2 
was measured ( n  = 10). Immunoprecipitated 
FLAG-Dbs-DHPH was used as the positive con-
trol for the RhoA-GEF. Dock7 – DHR-2, closed 
circle; control, open circle; Dbs-DHPH, closed 
square. (G – L) 293T cells were transfected with 
pCMV – FLAG – Dock7 – DHR-2 or pCMV-FLAG-
Dbs-DHPH. The cell lysates were affi nity pre-
cipitated with 20  μ g each of nucleotide-free 
GST-Rho GTPase (Rac1G15A, Cdc42G15A, 
or RhoAG17) or the wild type (Rac1, Cdc42, 
or RhoA) and immunoblotted with an anti-
FLAG antibody. The total FLAG – Dock7 – DHR-2 
or FLAG-Dbs-DHPH is also shown. Each GST-
Rho GTPase was immobilized in the same ex-
perimental conditions, subjected to SDS-PAGE, 
and stained with Coomassie brilliant blue. 
(M and O) 293T cells were cotransfected with 
pCMV-FLAG-Dock7, pCMV-ErbB2, and pCMV-
ErbB3 and stimulated with or without NRG1 
for 30 min. The expression of ErbB2 and 3 
in 293T cells was below the detection level of 
immunoblotting (not depicted). The release of 
[ 3 H]GDP from GST-Rac1-[ 3 H]GDP or Cdc42-
[ 3 H]GDP by immunoprecipitated FLAG-Dock7 
was measured ( n  = 3). (N and P) Cells were 
cotransfected with pCMV-FLAG-Dock7, pCMV-
ErbB2, and pCMV-ErbB3. The affi nity precipi-
tation of the cell lysates with GST-Rac1G15A 
or Cdc42G15A was performed. The total 
FLAG-Dock7 is also shown. Error bars show 
 ± SD. Data were evaluated by using one-way 
ANOVA (*, P  <  0.01).   
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 Figure 6.    ErbB2 directly binds and activates Dock7 by phosphorylating Tyr-1118.  (A) 250 ng of immobilized full-length FLAG-Dock7 protein was 
incubated in 30  μ l of reaction buffer containing 20  μ M of cold ATP in the presence or absence of 100 ng ErbB2 kinase for 30 min, washed, and immunoblotted 
with an anti-pTyr or ErbB2 antibody. Immobilized FLAG-Dock7 was also stained with Coomassie brilliant blue. (B) The schematic structures of Dock7 and 
the domains are illustrated. Red rectangle, Tyr in the middle region 2. (C) 293T cells were transfected with the plasmid encoding DHR-1, middle region 1, 
middle region 2, or DHR-2 of Dock7. The lysates of transfected cells were immunoprecipitated with an anti-FLAG antibody, incubated with ErbB2 kinase 
and ATP, and immunoblotted with an anti-pTyr or ErbB2 antibody. A shift in the mobility of the bands for the tyrosine-phosphorylated protein was observed. 
The cell lysates were also immunoblotted with an anti-FLAG antibody. (D) The amino acid sequences containing six tyrosine residues in the middle region 2 
are shown. (E) Cells were transfected with the plasmid encoding each middle region 2 containing one Tyr-to-Phe mutation. The samples, immunoprecipitated 
with the anti-FLAG antibody, were incubated with ErbB2 kinase and ATP. A shift in the mobility was observed in bands of the tyrosine-phosphorylated 
protein. The tyrosine phosphorylation of the constructs and their expression are also shown. (F) Cells were transfected with each full-length Dock7 harbor-
ing one Tyr-to-Phe mutation in the middle region 2, immunoprecipitated with anti-FLAG antibody, and incubated with ErbB2 kinase and ATP. The tyrosine 
phosphorylation of the constructs and their expression are also shown. (G) 250 ng of immobilized full-length FLAG-Dock7 or FLAG-Dock7Y1118F was 
incubated with ErbB2 kinase and ATP. (H) A comparison of the amino acid sequences surrounding the ErbB2 phosphorylation sites (red squares) of mam-
malian Dock7 with other homologous proteins is shown. Black, conserved amino acids; grey, nonconserved amino acids. (I and J) Immobilized FLAG-Dock7 
or the Y1118F mutant was incubated in 30  μ l of reaction buffer containing 20  μ M of cold ATP in the presence or absence of ErbB2 kinase and washed. 
The release of [ 3 H]GDP from GST-Rac1 – [ 3 H]GDP or Cdc42 – [ 3 H]GDP by immobilized proteins was measured ( n  = 3). Error bars show  ± SD. Data were 
evaluated by using one-way ANOVA (*, P  <  0.01).   
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of Dock7 for Rac1 and Cdc42, whereas the Y1118F mutation 

in Dock7 abolished the release ( Fig. 6, I and J ). These results pro-

vide evidence that ErbB2 directly binds to Dock7 and phos-

phorylates the Tyr-1118 position to activate Rac1 and Cdc42 

in vitro. 

 To explore whether ErbB2 phosphorylates endogenous 

Dock7 in Schwann cells, we made an antibody specifi c to phos-

phorylated Tyr-1118 of Dock7 (Fig. S2, D and E). Stimulation 

with NRG1 dramatically enhanced the phosphorylation of 

Tyr-1118, and this phosphorylation was reduced by AG825 or 

ErbB3-Fc ( Fig. 7 A ). NT3 or IGF-1 did not enhance the phos-

phorylation of Dock7, indicating that the Tyr-1118 position is 

specifi c for NRG1. In addition, Dock7 was immunoprecipitated 

with ErbB2, and this interaction was enhanced by stimulation 

with NRG1 ( Fig. 7 B ). Stimulation with NRG1 also increased 

the colocalization of Dock7 with ErbB2 ( Fig. 7 C , bottom) and 

phosphorylated Dock7 at Tyr-1118 with ErbB2 ( Fig. 7 C , mid-

dle) in cell bodies and in processes. In addition, after stimula-

tion with NRG1, colocalization of phosphorylated Dock7 with 

phosphorylated ErbB2 was observed in punctate structures 

( Fig. 7 C , top). Furthermore, NRG1 induced an affi nity precipi-

tation of Dock7 with Rac1G15A or Cdc42G15A ( Fig. 7, D and E ). 

Thus, stimulation with NRG1 can promote the binding of Dock7 

with ErbB2, phosphorylate Dock7 at the Tyr-1118 position, and 

regulate the Dock7 activity in Schwann cells. 

 Next, we investigated the role of the phosphorylation of 

Dock7 at the Tyr-1118 position in Schwann cell migration. 

We cotransfected a plasmid encoding Dock7-1 siRNA-resistant 

wild-type or Y1118F Dock7 together with a control or Dock7-1 

siRNA into Schwann cells. Expression of siRNA-resistant wild-

type Dock7 reversed the Dock7-1 siRNA-mediated inhibition of 

NRG1-induced migration in Boyden chambers, whereas Y1118F 

Dock7 failed to rescue Dock7-1 siRNA-mediated inhibition of 

migration ( Fig. 8, A and B ). Because there is the possibility that 

the Y1118F mutation has an effect on the protein conforma-

tion of Dock7, we tested the effects of the other mutants, 

Y1138F, Y1225F, Y1233F, Y1375F, and Y1429F, on migration. 

The Y1138F, Y1225F, Y1233F, or Y1375F mutant rescued 

siRNA-mediated inhibition of migration at the same level as 

that of the wild type ( Fig. 8, D and E ), indicating that the Y1118F 

mutation mimics the nonphosphorylated form and that the 

phosphorylation at the Tyr-1118 position is required for migra-

tion. The Y1429F mutant could rescue siRNA-mediated inhibi-

tion of migration but did not completely. The reason may be that 

Tyr-1429 interacts functionally with the catalytic DHR-2 be-

cause it is adjacent to DHR-2. Alternatively, because the Tyr-1429 

position is contained in the canonical phosphatidylinositol-3-

kinase binding motif Tyr-X-X-Met ( Fig. 5 D ;  Ponzetto et al., 1993 ), 

the binding may partially affect Dock7 activation ( C ô t é  et al., 

2005 ). Expression of Dock7-1 siRNA-resistant constructs was not 

down-regulated by cotransfection with Dock7-1 siRNA, which 

specifi cally reduced expression of native siRNA-sensitive nucle-

otide sequence of Dock7 ( Fig. 8 C ). 

 Consistent with the results in the previous paragraph, ex-

pression of Dock7-1 siRNA-resistant wild-type Dock7 reversed 

Dock7-1 siRNA-mediated inhibition of NRG1-induced migra-

tion from reaggregates on DRG axons ( Fig. 9, A and B ). In con-

trast, expression of siRNA-resistant Y1118F Dock7 did not 

rescue siRNA-mediated inhibition of migration. These re-

sults indicate again that the phosphorylation of Dock7 at the 

Tyr-1118 position by ErbB2 plays a key role in promoting 

Schwann cell migration. 

 Discussion 
 Each stage in Schwann cell development involves characteristic 

morphological changes regulated by reciprocal and complex 

glial – neuronal interactions. Membrane-bound NRG1, expressed 

primarily on axons, represents an essential determinant in con-

trolling myelination by Schwann cells ( Nave and Salzer, 2006 ). 

In this paper, we demonstrate that NRG1 binding to the ErbB2 

and 3 heterodimer promotes migration of premyelinating 

Schwann cells and that this effect is mediated by the direct acti-

vation of the Dock180-related GEF Dock7 and the subsequent 

Rho GTPase cascade. This conclusion is supported by the fi nd-

ings that blocking the signaling molecules coupling the ErbB 

receptor to the Rho GTPase cascade results in the attenuation of 

migration. Importantly, we identify Dock7 as the functional intra-

cellular substrate for the ErbB2 receptor. ErbB2 directly binds 

to Dock7 and promotes the GEF activities for Rho GTPases 

by phosphorylating Tyr-1118 in vitro. Stimulation with NRG1 

in Schwann cells leads to the phosphorylation of Dock7 at 

Tyr-1118 and activation. Transfection of Dock7 harboring the 

Tyr-1118 – to – Phe mutation inhibits the NRG1-induced migra-

tion. These results demonstrate that NRG1 activation of the 

ErbB2 and ErbB3 heterodimer induces Schwann cell migration 

through an unexplored mechanism, namely that a receptor-

mediated tyrosine phosphorylation event triggers the activation 

of Dock7. Dock7 has a GEF activity that is preferential for 

Cdc42 rather than Rac1; however, Schwann cell migration by 

NRG1 requires both Rac1 and Cdc42. Because Schwann cells 

modestly express Dock3, 4, and 5 of the Rac1-specifi c Dock180-

related GEFs, they may cooperatively support the remaining 

NRG1-dependent Rac1 activity. 

 Possible alternative regulation of Dock7 
in Schwann cell migration 
 It is clear that ErbB2 phosphorylates and activates Dock7 in vitro; 

however, the question of whether Dock7 can be activated by an 

alternative mechanism remains. Besides the catalytic DHR-2 do-

main, Dock180-related GEFs contain another conserved domain, 

termed DHR-1 (also called City-zizimin homology domain 1). 

The putative phospholipid-binding C2 domain is found in the 

DHR-1 domain of Dock180. Dock180 binds to phosphatidyl-

inositol-3,4,5-triphosphate, the product of phosphatidylinositol-

3-kinase ( C ô t é  et al., 2005 ). Because ErbB2 can activate 

phosphatidylinositol-3-kinase ( Garratt et al., 2000 ;  Citri et al., 

2003 ), it is possible that phosphatidylinositol-3,4,5-triphosphate 

modulates cellular functions of Dock7. Dock180 also has some 

protein – protein interactive domains. Dock180 interacts with the 

proline-rich region of engulfment and cell motility (ELMO) family 

proteins and the Src homology (SH) 3 domain of CrkII through the 

N-terminal SH3 domain and the C-terminal proline-rich sequence, 

respectively ( Hasegawa et al., 1996 ;  Brugnera et al., 2002 ). 
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GTP – ELMOs – CrkII – Dock180 complex induces morphological 

changes at the cell periphery. However, Dock7 does not interact 

with ELMO1 and CrkII (Fig. S5, available at http://www.jcb

.org/cgi/content/full/jcb.200709033/DC1) because it is unlikely 

that Dock7 contains either an SH3 domain or a proline-rich region. 

It will be of interest to examine the binding partners of Dock7 

The ELMOs – CrkII – Dock180 complex is required for acti-

vating Rac1 along the periphery of a cell, leading to lamelli-

podial formation. The activation of Rac1 through Dock180 has 

an alternative mechanism when dealing with the Rho GTPase 

RhoG. Once activated, RhoG forms a ternary complex with 

ELMOs – CrkII – Dock180 ( Katoh and Negishi, 2003 ). The RhoG-

 Figure 7.    NRG1, acting through the phosphorylation of Dock7 at Tyr-1118, regulates Schwann cell migration.  (A) After stimulation with vehicle or 
20 ng/ml of NRG1, NT3, or IGF-I for 30 min, Schwann cells were lysed, immunoprecipitated with an anti-Dock7 antibody, and immunoblotted with an anti-
(pTyr 1118 )Dock7 antibody. In some experiments, cells were treated with or without AG825 or ErbB3-Fc. The cell lysates were also immunoblotted with an 
anti-Dock7 antibody. (B) After stimulation with vehicle or NRG1, immunoprecipitated Dock7 was immunoblotted with an anti-ErbB2 antibody. Immunoblots 
for ErbB2, ErbB3, and Dock7 are shown. (C) After stimulation with vehicle or NRG1, Schwann cells were costained with the following antibodies: anti-
(pTyr 1118 )Dock7 (green; top) and anti-(pTyr 1112 )ErbB2 (red; top), anti-(pTyr 1118 )Dock7 (green; middle) and anti-ErbB2 (red; middle), and anti-Dock7 (green; 
bottom) and anti-ErbB2 (red; bottom). After stimulation with vehicle or NRG1, increased colocalization (indicated by arrows) was observed (Bar, 25  μ m). 
a – d are magnifi cations of the boxed areas as indicated (Bar, 10  μ m). Dotted lines indicate the outlines of cells. (D and E) Affi nity precipitation with GST-
Rac1G15A or Cdc42G15A was performed and immunoblotted with an anti-Dock7 antibody. Immunoblots for Dock7 are shown.   
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using yeast two-hybrid or affi nity chromatography techniques and 

to analyze various regulatory mechanisms of Dock7 in Schwann 

cells. In addition, elucidation of the 3D structures of Dock7 and 

the other Dock180-related GEFs should provide valuable in-

formation concerning how the phosphorylation by ErbB2 acti-

vates Dock7 in Schwann cells. 

 The regulation of downstream signaling 
pathways involved in Schwann cell 
morphology and function 
 Rac1 and Cdc42 control the formation of membrane protrusions, 

including lamellipodia and fi lopodia, which are essential for the 

migration of many types of cells including neurons. Rac1 and 

 Figure 8.    Effects of the Tyr-to-Phe mutations in the middle region 2 of Dock7 on NRG1-induced migration of Schwann cells.  (A and B) pEGFP, pEGFP-
siRNA – -resistant wild-type Dock7, or pEGFP-siRNA – resistant Dock7Y1118F was cotransfected with control or Dock7-1 siRNA into Schwann cells. The number 
of GFP-fl uorescent migrating Schwann cells in Boyden chambers was counted. Bar, 100  μ m. (C) Expression of GFP-tagged siRNA-sensitive wild-type Dock7 
or Dock7-1 siRNA-resistant Dock7 (wild type, Y1118F, Y1138F, Y1225F, Y1233F, Y1375F, or Y1429F) in Schwann cells are shown in the immunoblots. 
The cell lysates were immunoblotted with an anti-GFP or -actin antibody. (D and E) Schwann cells were cotransfected with pEGFP-siRNA – resistant wild-type 
or mutated Dock7 together and Dock7-1 siRNA. The number of GFP-fl uorescent migrating Schwann cells was counted. Bar, 100  μ m. Error bars show  ± SD. 
Data were evaluated by using one-way ANOVA ( n  = 16; *, P  <  0.01; ***, P  <  0.02).   
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 Figure 9.    Tyr-1118 of Dock7 is essential for NRG1-induced migration of 
reaggregated Schwann cells.  (A and B) pEGFP or pEGFP-siRNA – resistant 
wild-type Dock7 or Dock7Y1118F was cotransfected with control or Dock7-1 
siRNA into Schwann cells. Cells were fi xed with PFA, blocked, and stained 
with an anti-neurofi lament antibody (red). The immuno fl uorescence images 
were merged. Bar, 100  μ m. Error bars show  ± SD. Data were evaluated 
by using one-way ANOVA ( n  = 16; *, P  <  0.01; **, P  <  0.015; ***, 
P  <  0.02).   

Cdc42 regulate actin polymerization by activating the Arp2/3 

complex through their effectors, the Wiskott-Aldrich syndrome 

protein (WASP) and the WASP family verprolin homologous 

protein families ( Takenawa and Miki. 2001 ). In addition, the 

Rac1 and Cdc42 effector Pak family controls actin fi lament 

dynamics by phosphorylating myosin light chain kinases or LIM 

domain kinases ( Zhao and Manser, 2005 ). The JNK signal is a 

key downstream effector of the Dock7-activated Rho GTPases 

in Schwann cell migration, but it is conceivable that effector 

proteins such as WASP, WASP family verprolin homologous 

protein, and Pak families can also infl uence migration by altering 

the actin cytoskeleton. Further studies may explain how signals 

through Rho GTPases are coordinately transduced with JNK to 

induce cell migration. 

 JNK has been originally identifi ed as the kinase that phos-

phorylates the transcription factor c-Jun. Indeed, fi broblast mi-

gration likely requires c-Jun phosphorylation, but JNK has some 

key substrates that include cytoskeletal components ( Huang et al., 

2004 ). One particular JNK substrate candidate implicated in cell 

migration is the focal adhesion adaptor protein paxillin because 

JNK phosphorylates paxillin to regulate migration of bladder 

tumor epithelial NBT-II cells ( Huang et al., 2003 ). Additionally, 

another candidate molecule may be the microtubule-associated 

proteins (MAPs). Mice defi cient in JNK1, as well as pharmaco-

logical inhibition of JNK activity, exhibit a progressive morpho-

logical alteration associated with defective neuronal migration 

( Chang et al. 2003 ;  Kawauchi et al., 2003 ). Hypophosphorylation 

of MAP2 and MAP1B is also observed with an increase in micro-

tubule stability, although it is unclear whether JNK regulates 

micro tubule dynamics by phosphorylating MAP2 and MAP1B. 

Because paxillin, MAP2, and MAP1B are widely expressed and 

control various cellular functions, they may act cooperatively as 

targets of JNK to assist migration of Schwann cells. 

 In the present study, we identify Dock7 as a downstream 

effector of ErbB2. This interaction mediates NRG1-induced mi-

gration of premyelinating Schwann cells. It is noteworthy to add 

that NRG1, acting through the ErbB2 and 3 heterodimer, en-

hances myelination by Schwann cells ( Bunge, 1993 ;  Garratt 

et al., 2000 ;  Citri et al., 2003 ) as well as migration. Because migra-

tion precedes myelination, certain mechanisms may be preserved 

in both processes. Myelination by Schwann cells is mediated by 

the polarity protein Par-3, whose complex generally involves the 

Rac1 and Cdc42 effector Par-6 ( Chan et al., 2006 ). Recently, 

 Watabe-Uchida et al. (2006)  reported that Dock7 regulates the 

polarity formation of axons and dendrites through Rac1 in hippo-

campal neurons. It is possible that the Dock7-mediated Rho 

GTPase activation may lead to the formation of a polarity complex 

that will ultimately trigger myelination. The chemical compound 

NSC23766 is a fi rst generation Rac1-specifi c inhibitor identifi ed 

by a structure-based in silico screening ( Gao et al., 2004 ). It fi ts 

into a small GTPase binding groove on the Rac1-specifi c GEFs 

Tiam1 and Trio of the Dbl family. The development of chemical 

inhibitors specifi c for Dock7 and the in vivo application of siRNA 

oligonucleotides will help to elucidate the role of Dock7 in the 

myelination process both in vitro and in vivo, as well as in various 

pathological states originating from aberrant regulation of the 

ErbB receptors ( Tsai et al., 1996 ;  Citri et al., 2003 ). 
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(Invitrogen) containing 10% FBS and 100 ng/ml NGF on collagen-coated 
dishes ( Yamauchi et al., 2004 ). After 2 – 3 wk, DRG neurons were cultured 
in DME-GlutaMax containing 10% FBS and 20 ng/ml NGF. 293T and 
Cos-7 cells (Human Science Research Resource Bank) were cultured in tis-
sue culture dishes in DME containing 10% FBS, 50 U/ml penicillin, and 
50  μ g/ml streptomycin, and Cos-7 cells were plated for experiments on 
collagen-coated dishes. Before the experiments, 293T and Cos-7 cells were 
cultured in DME containing 1% FBS and 1 mg/ml BSA for 24 h. Unless 
otherwise indicated, Schwann cells and Cos-7 cells were pretreated with 
or without 2 ng/ml  C. diffi cile  Toxin B for 24 h, 2  μ g/ml C3 exoenzyme 
for 24 h, 10  μ M AG825 for 45 min, 10  μ M SP600125 for 45 min, or 20  μ M 
JNK inhibitor I for 24 h before stimulation with 20 ng/ml NRG1 (R & D 
Systems), NT3 (PeproTech), or IGF-I (Invitrogen) for 0 – 360 min. To confi rm 
cell viability under these experimental conditions, Schwann cells and Cos-7 
cells were stained with 0.4% trypan blue. Trypan blue – incorporating cells 
were  < 1% in each experiment. 

 Boyden chamber migration assay 
 Cell migration was routinely measured using a 24-well Boyden chamber, 
as previously described ( Yamauchi et al., 2004 ). In brief, in the case of as-
saying the effect of ErbB3-Fc on DRG neurons ’  conditioned medium, poly-
ethylene terephthalate (8- μ m pore size) fi lters were coated with axonal 
membranes from DRG neurons ( Grimes et al., 1996 ). In other experiments, 
fi lters were essentially coated with collagen (type I), except for the compari-
son of extracellular matrix proteins collagen (type IV), fi bronectin, and lam-
inin. Cells (0.5  ×  10 5  cells for Schwann cells or 5  ×  10 5  cells for Cos-7 
cells) in 500  μ l of normal medium per well were loaded into the upper 
chambers, which were inserted into the tissue culture wells in 750  μ l of 
conditioned medium containing 5  μ g/ml anti-NGF antibody in the pres-
ence of 5  μ g/ml of control IgG or ErbB3-Fc per well or in normal medium 
containing 50 ng/ml NRG1, NT3, or IGF-I per well. After incubation at 
37 ° C for 6 h, the fi lters were stained with Giemsa solution or fi xed with 
PFA to detect cells expressing GFP. No difference in cell number was 
observed at 6 h in the presence or absence of NRG1, NT3, or IGF-1. 
The number of stained or GFP-fl uorescent migrating cells at the bottom sur-
face of the fi lters was counted at four fi elds per fi lter in two to four indepen-
dent experiments. In the presence of 5  μ g/ml of control IgG or ErbB3-Fc for 
8 h, trypan blue – incorporating cells were  < 0.5%. 

 Migration assay using reaggregated Schwann cells 
 To mimic physiological conditions, Schwann cell migration was also mea-
sured using DRG neurons and reaggregated Schwann cells essentially as 
described previously ( Yamauchi et al., 2004 ). In brief, DRG neurons were 
plated onto the center of a collagen-coated dish and allowed to extend 
axons outwardly. Schwann cell reaggregates were formed by plating 
Schwann cells on Ultra Low Attachment dishes (Corning) for 4 h and on Pe-
tri dishes (Barloworld Scientifi c) for 20 h with gentle agitation every 3 – 4 h. 
In the case of analyzing the effect of 5  μ g/ml ErbB3-Fc, 5  μ g/ml anti-NGF 
antibody was added into culture medium of DRG neurons. For the other ex-
periments, the medium was changed into normal medium containing vehi-
cle or 20 ng/ml NRG1. Individual Schwann cells were allowed to migrate 
out of the reaggregates along the axons. After incubation at 37 ° C for 6 h, 
cells were fi xed with PFA, blocked, and immunostained. The distance of 
migration was calculated by measuring the size of the reaggregates over 
time, subtracting the mean initial size of the reaggregates, and dividing the 
remaining distance in half. Experiments were performed by measuring 
eight reaggregates per dish in two independent experiments. 

 Fluorescence images 
 Cells on collagen-coated glass coverslips or fi lters of Boyden chamber and 
reaggregated Schwann cells were air-dried, fi xed with 4% PFA, blocked 
with Immuno-Block (Dainippon Sumitomo Pharma) in phosphate-buffered 
saline – 0.1% Tween-20, incubated with primary antibodies, and treated 
with fl uorescence-labeled secondary antibodies. The coverslips and fi lters 
were mounted with Vectashield (Vector Laboratories) onto slides for obser-
vation by confocal and fl uorescence microscopy. The confocal images 
were collected with a microscope (IX81; Olympus) with a laser-scanning 
FV500 system (Olympus) and analyzed with FluoView software (Olympus). 
The primary antibodies used for confocal images were anti-Dock7, anti-
(pTyr 1118 )Dock7, anti-ErbB2, and anti-(pTyr 1112 )ErB2. The fl uorescence 
images were captured with a microscope system (TE-300; Nikon) and 
analyzed with AxioVision software (Carl Zeiss, Inc.). The primary antibodies 
used for the fl uorescence images were anti-S100 �  to identify Schwann 
cells when GFP constructs were not transfected and anti-neurofi lament to 
identify DRG axons. The live imaging was performed using a microscope 

 Materials and methods 
 Antibodies and inhibitors 
 The following antibodies were purchased: anti-ErbB2, anti-ErbB3, anti-JNK1, 
anti-Tiam1, anti-Dbs, anti-HA, and anti-MBP (Santa Cruz Biotechnology, 
Inc.); anti-autophosphorylated (Tyr 1112 ) ErbB2 (Invitrogen); anti-phosphory-
lated active (pThr 183 /pTyr 185 ) JNK (Cell Signaling Technology); antiphos-
phorylated Tyr (pTyr) and anti-NGF (Millipore); anti-Rac1, anti-Cdc42, and 
anti-actin (BD Biosciences); anti-S100 �  (Dako); antineurofi lament (Covance); 
anti-FLAG (Sigma-Aldrich); and anti-GFP (Medical  &  Biological Labora-
tories). The rabbit antiserum for Dock7 was generated against a KELFALHP-
SPDEEE peptide. The polyclonal anti-Dock7 antibody was affi nity purifi ed 
using a peptide-conjugated resin. The rabbit antiserum for phosphorylated 
(pTyr 1118 ) Dock7 was generated against a phosphorylated peptide 
ETVPQLpYDFTET. The polyclonal anti-(pTyr 1118 )Dock7 antibody was affi nity 
purifi ed using a phosphorylated peptide-conjugated resin from non adsorbed 
fractions of a nonphosphorylated peptide ETVPQLYDFTET-conjugated resin. 
Peroxidase and fl uorescence-labeled secondary antibodies were purchased 
from GE Healthcare and Invitrogen, respectively. The following inhibitors 
were purchased: ErbB3-Fc, which possesses the extracellular domain of 
ErbB3 fused to the Fc region of an IgG (R & D Systems); and  C. diffi cile  Toxin B, 
 Clostridium botulinum  C3 exoenzyme, AG825, SP600125/JNK inhibitor II, 
and JNK inhibitor I (EMD). 

 Plasmids 
 The coding regions of three alternative splicing variants of Dock7 (avail-
able from GenBank/EMBL/DDBJ under accession nos.  DQ118679 , 
 DQ118680 , and  DQ309763 ) were isolated by the method of 5 �  and 3 �  
rapid amplifi cation of cDNA from human brain (Marathon-Ready cDNA; 
Clontech Laboratories, Inc.), according to the manufacturer ’ s protocol. 
The major variant DQ118679 was ligated into the mammalian FLAG- 
and GFP-tagged expression vectors pCMV-FLAG and pEGFP-C1. The cDNA 
fragments encoding DHR-1 (aa 1 – 691), middle region 1 (aa 692 – 1110), 
middle region 2 (aa 1111 – 1431), and DHR-2 (aa 1432 – 1992) of Dock7 
were also inserted into pCMV-FLAG. The constructs of the full-length 
Dock7 harboring the Tyr-1118 – to – Phe, Tyr-1138 – to – Phe, Tyr-1225 – to –
 Phe, Tyr-1233 – to – Phe, Tyr-1375 – to – Phe, or Tyr-1429 – to – Phe mutation 
and the Y1118F, Y1138F, Y1225F, Y1233F, Y1375F, and Y1429F mu-
tants of the middle region 2 were produced by the overlapping PCR 
method and ligated into pCMV-FLAG. The wild-type and Y1118, Y1138F, 
Y1225F, Y1233F, Y1375F, and Y1429F mutants of the full-length Dock7 
were also inserted into pEGFP-C1. The wild-type and Y1118, Y1138F, 
Y1225F, Y1233F, Y1375F, and Y1429F constructs resistant to Dock7-1 
siRNA were made by replacing 5 � -AAGACGTTCAATGTCAATAGA-3 �  
with 5 � -A CGTA G A TCAATG AGT AT T GA-3 �  at nucleotides 207 – 227 with-
out amino acid mutations (underlined nucleotides indicate replacements). 
The partial nucleotide sequences of mouse and rat Dock7 (Available from 
GenBank/EMBL/DDBJ under accession nos.  DQ109674  and  DQ124295 ) 
were isolated from cDNAs of mouse brain and rat Schwann cells, respec-
tively. The regions encoding ErbB2 and ErbB3 (Available from GenBank/
EMBL/DDBJ under accession no.  AY686636 ) were isolated by 5 �  and 3 �  
rapid amplifi cation of cDNA from mouse brain Marathon-Ready cDNA 
and subcloned into pCMV. The coding region of ELMO1 was amplifi ed 
from human brain cDNA and inserted into pCMV-HA. The mammalian 
expression plasmids pCMV – FLAG – constitutively active Dbs-DHPH and 
pCMV-MBP-CrkII and the  Escherichia coli  GST-tag expression plasmids 
pET42a – Rac1-GTP and Cdc42-GTP binding domain (Cdc42/Rac inter-
active binding domain [CRIB]) of Pak1, pET42a wild-type Rho GTPases 
(Rac1, Cdc42, and RhoA), and pET42a – guanine nucleotide – free Rho 
GTPases (Rac1G15A, Cdc42G15A, and RhoAG17A) were constructed 
as previously described ( Yamauchi et al., 2005a , b ). The mammalian ex-
pression plasmids encoding Dock180 were provided by M. Matsuda 
(Osaka University, Osaka, Japan) and K.S. Ravichandran (University of 
Virginia, Charlottesville, VA). All sequences were confi rmed by automatic 
sequencers (Applied Biosystems). 

 Cell culture 
 Primary Schwann cells were prepared from sciatic nerves of Sprague-Dawley 
rats at postnatal day 1 ( Yamauchi et al., 2004 ). Schwann cells were cul-
tured on poly-lysine – coated dishes in DME containing 10% heat-inactivated 
FBS and 50  μ g/ml gentamicin at 37 ° C and plated for experiments on col-
lagen (type I)-coated dishes, unless otherwise indicated. Before the experi-
ments were performed, Schwann cells were cultured in Sato medium 
containing 1 mg/ml BSA for 24 h. DRG neurons were dissociated from rat 
embryos at gestational day 15, purifi ed, and cultured in DME-GlutaMax 
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Dock7; 5 � -ACCTCTACTCACGACAAGCTGC-3 �  (sense) and 5 � -TCAGCT-
GCCCTGTGACAACTG-3 �  (antisense) for Dock8; 5 � -ATCCTGACAGTT A-
GTGTTCCCAC-3 �  (sense) and 5 � -TCAGCAGCAAGTCATGGAGAG-3 �  
(antisense) for Dock9; 5 � -GACTTCAAAAAATTATCGGACCTCTATTATG-3 �  
(sense) and 5 � -GAGATTCTGGCTGCCACTTTTG-3 �  (antisense) for Dock10; 
5 � -GAGAAACTGACTCAAGTCTATAGAACTC-3 �  (sense) and 5 � -T C  A TA C T T-
C A GAGTATCTTGGGGAAC-3 �  (antisense) for Dock11; and 5 � -ATG  GAT-
GACGATATCGCTGCGCTC-3 �  (sense) and 5 � -CTAGAAGCATTTGCGGT-
GCACGATG-3 �  (antisense) for  � -actin. 

 Recombinant proteins 
 Unless otherwise indicated, all steps were performed at 4 ° C as previously 
described ( Yamauchi et al., 2005a , b ;  Chan et al., 2006 ). FLAG-tagged 
DHR-2, wild-type, and Y1118F proteins of Dock7 were purifi ed from serum-
starved 293T cells transiently transfected with pCMV – FLAG – Dock7 –
 DHR-2, pCMV-FLAG-Dock7, and pCMV-FLAG-Dock7Y1118F, respectively, 
using the CalPhos transfection reagent (Takara Bio Inc.) according to the 
manufacturer ’ s protocol. In brief, cells were lysed in lysis buffer A (50 mM 
Hepes-NaOH, pH 7.5, 150 mM NaCl, 3 mM MgCl 2 , 1 mM dithiothreitol, 
1 mM phenylmethane sulfonylfl uoride, 1  μ g/ml leupeptin, 1 mM EDTA, 
and 0.5% NP-40) and centrifuged. The supernatants were mixed with pro-
tein G resin (GE Healthcare) that was preadsorbed with an anti-FLAG anti-
body. Bound FLAG-Dock7 proteins were extensively washed with lysis 
buffer A containing 500 mM NaCl and subsequently with lysis buffer A 
containing 500 mM NaCl and 50 mM EDTA and eluted with lysis buffer A 
containing 20 mM FLAG peptide (Sigma-Aldrich), according to the manu-
facturer ’ s protocol. The buffer contained in elution fractions was exchanged 
with reaction buffer (20 mM Hepes-NaOH, pH 7.5, 150 mM NaCl, 5 mM 
MgCl 2 , 1 mM dithiothreitol, 1 mM phenylmethane sulfonylfl uoride, 1  μ g/ml 
leupeptin, and 1 mM EDTA). The aliquots were stored at  � 80 ° C until use. 
The intracellular kinase domain of ErbB2 (HTScan ErbB2 kinase) was pur-
chased from Cell Signaling Technology. GST-tagged Pak1-CRIB, wild-type 
Rho GTPases, and guanine nucleotide – free Rho GTPases were purifi ed 
from  E. coli  BL21 (DE3) pLysS cells transformed with pET42a-Pak1-CRIB, 
pET42a-wild-type Rho GTPases, and pET42a – guanine nucleotide – free Rho 
GTPases, respectively. In brief, cells were treated with 0.4 mM isopropyl-1-
thio- � - D -galactopyranoside at 37 ° C for 1.5 h and harvested by centrifuga-
tion. A cell-free extract was made by the addition of 500  μ g/ml lysozyme 
and 100  μ g/ml DNase I in extraction buffer (50 mM Tris-HCl, pH 7.5, 
5 mM MgCl 2 , 1 mM dithiothreitol, 1 mM phenylmethane sulfonylfl uoride, 
1  μ g/ml leupeptin, 1 mM EDTA, and 0.5% NP-40). The lysates were centri-
fuged, and the supernatants were mixed with glutathione resin (GE Health-
care). Bound proteins were washed with extraction buffer and eluted with 
extraction buffer containing 20 mM glutathione. The buffer contained in 
elution fractions was dialyzed against reaction buffer for GST-Pak1-CRIB 
or against reaction buffer containing 0.1  μ M GDP for GST-Rho GTPases. 
The aliquots were stored at  � 80 ° C until use. The Coomassie brilliant 
blue staining was performed by using the Rapid Coomassie or One Step 
Coomassie kit (Nakalai), according to the manufacturer ’ s protocol. 

 siRNA transfection 
 The siRNAs were transfected into primary Schwann cells using the Oligo-
fectamine or Lipofectamine 2000 reagent (Invitrogen) according to the 
manufacturer ’ s protocol. The medium was replaced at 24 h after transfec-
tion. The effi ciencies of protein depletion were 95  ±  3.1% for Dock7-1 
siRNA, 83  ±  5.7% for Dock7-2 siRNA, 87  ±  6.7% for ErbB2 siRNA, 93  ±  
5.5% for ErbB3 siRNA, 92  ±  5.7% for Tiam1 siRNA, 91  ±  7.9% for Dbs 
siRNA, 98  ±  0.33% for Rac1 siRNA, 81  ±  2.9% for Cdc42-1 siRNA, and 
98  ±  1.8% for Cdc42-2 siRNA at 48 h after transfection. 

 siRNA preparation 
 The 21-nt siRNA duplexes were synthesized by Nippon EGT. The target nu-
cleotide sequences for the fi rst Dock7 (Dock7-1) siRNA (5 � - AAGACGTTC-
GATGTCAATAGA-3 � ), the second, nonoverlapping Dock7 (Dock7-2) siRNA 
(5 � -AAGTCTTAATTTTGCCAACCG-3 � ), ErbB2 siRNA (5 � -AAGTCTCACAGA-
GATCCTGAA-3 � ), ErbB3 siRNA (5 � -AAGTTCACTCAGCTAACAGAG-3 � ), 
Tiam1 siRNA (5 � -AAGAACATTTAACAAGCAACG-3 � ;  Yamauchi et al., 
2005b ), Dbs siRNA (5 � -AAGGCTAAAGTGAAGGAGGAT-3 � ;  Yamauchi 
et al., 2005a ), Rac1 siRNA (5 � -AAGATTATGACAGACTGCGTC-3 � ), the 
fi rst Cdc42 (Cdc42-1) siRNA (5 � -AACTATGCAGTCACAGTTATG-3 � ), and 
the second, nonoverlapping Cdc42 (Cdc42-2) siRNA (5 � -AAACCGTTA-
AGTTATCCACAG-3 � ) were designed according to an online software, 
siRNA Sequence Selector (Clontech Laboratories, Inc.; http://bioinfo.
clontech.com/rnaidesigner/). The target sequence of the control  Photinus 
pyralis  luciferase siRNA was 5 � -AAGCCATTCTATCCTCTAGAG-3 � , which 

system (DMI4000B; Leica) equipped with an INUG2-ZILCS stage top incu-
bator (Tokai Hit) and AF6000 software (Leica). The time frame was 60 –
 300 min after putting Schwann cell reaggregates on DRG neurons, which 
were replaced with a fresh medium in the presence or absence of 20 ng/ml 
NRG1. To avoid fading of the GFP fl uorescence, the intensity levels were 
fi xed at less than position 2. Captured images were thus adjusted using the 
brightness switch on AF6000 software. Image sequence was recorded at 
one frame per 5 min and played at three frames per second. 

 Immunoprecipitation and immunoblotting 
 Cells were lysed in lysis buffer B (50 mM Hepes-NaOH, pH 7.5, 20 mM 
MgCl 2 , 150 mM NaCl, 1 mM dithiothreitol, 1 mM phenylmethane sulfonyl-
fl uoride, 1  μ g/ml leupeptin, 1 mM EDTA, 1 mM Na 3 VO 4 , 10 mM NaF, 
and 0.5% NP-40) and the lysates were centrifuged. The supernatants were 
mixed with protein G resin that was preadsorbed with various antibodies. 
The immunoprecipitates or the proteins in the cell lysates were denatured 
and then subjected to SDS-PAGE. The electrophoretically separated pro-
teins were transferred to PVDF membranes, blocked, and immunoblotted. 
The bound antibodies were detected using the ECL or ECL-Plus system (GE 
Healthcare). The band images were captured with a GT-7000U scanner 
(Epson) and analyzed with ImageJ software (National Institutes of Health; 
http://rsb.info.nih.gov/ij/). 

 In vitro tyrosine-phosphorylation reaction 
 250 ng of purifi ed immobilized FLAG-Dock7 proteins were incubated 
with 20  μ M of cold ATP in the presence or absence of 100 ng ErbB2 
kinase in 30  μ l of reaction buffer (20 mM Hepes-NaOH, pH 7.5, 150 mM 
NaCl, 5 mM MgCl 2 , 1 mM dithiothreitol, 1 mM phenylmethane sulfonyl-
fl uoride, 1  μ g/ml leupeptin, and 1 mM EDTA) at 30 ° C for 30 min and 
then chilled on ice. Tyrosine-phosphorylated FLAG-Dock7 proteins were 
washed with reaction buffer and used for guanine nucleotide releasing 
assays for Rac1 and Cdc42. 

 Guanine nucleotide exchange assays 
 Guanine nucleotide exchange assays were performed as previously de-
scribed ( Yamauchi et al., 2005a ). In brief, for the guanine nucleotide 
binding assay, 125 ng of immobilized FLAG – Dock7 – DHR-2 or the immuno-
precipitates were incubated in 30  μ l of reaction buffer containing 16 ng/ μ l 
each of GST-Rho GTPase, 33 ng/ μ l BSA, and 3  μ M [ 3 H]GDP (0.3  μ Ci/ μ l) 
at 30 ° C for 0 – 30 min. The reactions were stopped by adding 1 ml of 
ice-cold wash buffer (20 mM Hepes-NaOH, pH 7.5, and 10 mM MgCl 2 ) 
and fi ltered through 0.45- μ m nitrocellulose membranes. The membranes 
were immediately washed with ice-cold wash buffer and air dried. 
The radioactivity remaining on each membrane was measured using a LSC-
6100 liquid scintillation counter (Aloka). For the guanine nucleotide – 
releasing assay, [ 3 H]GDP-bound GST-Rho GTPases were obtained by 
incubation with reaction buffer containing 125 ng/ μ l each of Rho GTPase, 
250 ng/ μ l BSA, 5 mM EDTA, and 0.3  μ M [ 3 H]GDP (0.3  μ Ci/ μ l) at 
30 ° C for 90 min. The reaction was stopped by adding 5 mM MgCl 2 , 
and mixtures were immediately cooled on ice. 125 ng of immobilized 
FLAG-Dock7-DHR-2, 250 ng FLAG-Dock7 proteins, or the immuno-
precipitates were incubated in 30  μ l of reaction buffer containing 16 ng/ μ l 
GST-Rho GTPase – [ 3 H]GDP, 33 ng/ μ l BSA, and 3  μ M of cold GDP at 30 ° C 
for 0 – 30 min. The reaction was stopped and fi ltered. The radioactivity 
remaining on each membrane was measured. 3 – 10 separate experiments 
were performed. 

 RNA preparation and RT-PCR analysis 
 Total RNA was isolated by Trizol reagent (Invitrogen). The cDNA were 
prepared from 1  μ g of total RNA with Superscript II (Invitrogen), according 
to the manufacturer ’ s instructions. PCR amplifi cation (Takara Bio Inc.) was 
performed at 30 cycles, each cycle consisting of denaturation at 94 ° C for 
1 min, annealing at 56.5 ° C for 1 min, and extension at 72 ° C for 1 min. 
The primers used were the following: 5 � -CCTTCATTCCTTCGGGGAAAAG-
 TG-3 �  (sense) and 5 � -GGACCTGGAGTGCATCTTCTTC-3 �  (antisense) for 
Dock180; 5 � -CTTTTGAGCCAGTTCCCCAACG-3 �  (sense) and 5 � -CTCCTC-
CACTTTGGGAGTCTTG-3 �  (antisense) for Dock2; 5 � -TTCTTCCTTCGGAATA-
AAGAGTATGTGTG-3 �  (sense) and 5 � -GTCACCCATCATCATCATGTTTCC-3 �  
(antisense) for Dock3; 5 � -CCATTTTTCTTAAGAAATAAGAAGTTTGTAT-
GTCGAG-3 �  (sense) and 5 � -TGATTGCCCTGTAATATTGCTTACTTCAGC-3 �  
(antisense) for Dock4; 5 � -GTGGGATACTACGGGCAG-3 �  (sense) and 
5 � -CAGGATGGAACCATCAGATCC-3 �  (antisense) for Dock5; 5 � -ATCCTT-
GA AGCCCACCGAGAC-3 �  (sense) and 5 � -TGACCGCCGGCCCAAGCTC-3 �  
(antisense) for Dock6; 5 � -GAACACCAGGAGGATCCTGAAATGTTG-3 �  
(sense) and 5 � -GAGATCCATTTTGCGAAGGCTCATTCG-3 �  (antisense) for 
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of Rac1 and Cdc42 in Cos-7 cells cotransfected with ErbB2 and ErbB3. 
Fig. S5 demonstrates that Dock7 does not interact with ELMO1 and CrkII. 
Videos 1 and 2 illustrate time-lapse imaging of vehicle-stimulated migration 
from reaggregates of control siRNA-transfected Schwann cells. Videos 3 
and 4 demonstrate NRG1-stimulated migration from reaggregates of 
control siRNA-transfected Schwann cells. Video 5 demonstrates vehicle-
stimulated migration from reaggregates of Rac1 siRNA-transfected Schwann 
cells. Video 6 illustrates NRG1-stimulated migration from reaggregates of 
Rac1 siRNA-transfected Schwann cells. Video 7 illustrates vehicle-stimulated 
migration from reaggregates of Cdc42 siRNA-transfected Schwann cells. 
Video 8 shows NRG1-stimulated migration from reaggregates of Cdc42 
siRNA-transfected Schwann cells. Video 9 shows vehicle-stimulated migra-
tion from reaggregates of Dock7 siRNA-transfected Schwann cells. Video 10 
represents NRG1-stimulated migration from reaggregates of Dock7 siRNA-
transfected Schwann cells. 
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does not have signifi cant homology to any mammalian gene sequences. 
To confi rm cell viability under these experimental conditions, Schwann cells 
were stained with trypan blue. Trypan blue – positive cells in tissue culture 
dishes numbered  < 1% at 48 h after siRNA transfection ( < 0.5% for con-
trol luciferase siRNA, 0.7  ±  0.02% for Dock7-1 siRNA, 0.5  ±  0.03% for 
Dock7-2 siRNA, 0.5  ±  0.03% for ErbB2 siRNA, 0.7  ±  0.06% for ErbB3 
siRNA, 0.5  ±  0.09% for Tiam1 siRNA, 0.7  ±  0.07% for Dbs siRNA, 0.7  ±  
0.05% for Rac1 siRNA, 0.5  ±  0.02% for Cdc42-1 siRNA, and 0.8  ±  
0.03% for Cdc42-2 siRNA). 

 Plasmid transfection 
 For primary Schwann cells, pEGFP, pEGFP-Dock7-1 siRNA-resistant wild-
type, Y1118F, Y1138F, Y1225F, Y1233F, Y1375F, or Y1429F Dock7 was 
cotransfected with control, Dock7-1, Rac1, or Cdc42-2 siRNA by using the 
Lipofectamine 2000 reagent or Nucleofector II (Amaxa Biosystems) with 
the Basic Neuron Nucleofector Transfection kit (Amaxa Biosystems), ac-
cording to the manufacturer ’ s protocol. Transfection effi ciency was 15 – 20% 
using GFP-expressing plasmid as the control. The medium was replaced 
at 24 h after transfection. To perform the Boyden chamber migration as-
say, Schwann cells were cultured in Sato medium containing 1 mg/ml 
BSA for another 24 h. To assay the migration of reaggregated Schwann 
cells, cells were allowed to form reaggregates in DME containing 10% 
FBS for another 24 h. For 293T and Cos-7 cells, pCMV-FLAG-Dock7, 
pCMV-FLAG-Dock7Y1118F, pCMV-FLAG-Dock7Y1138F, pCMV-FLAG-
Dock7Y1225F, pCMV-FLAG-Dock7Y1233F, pCMV-FLAG-Dock7Y1375F, 
pCMV-FLAG-Dock7Y1429F, pCMV – FLAG-Dock7 – DHR-1, pCMV – FLAG –
 Dock7 – middle region 1, pCMV – FLAG-Dock7 – middle region 2 or the Tyr-to-
  Phe mutant, or pCMV – FLAG – Dock7 – DHR-2 was transfected with or without 
pCMV-ErbB2 and pCMV-ErbB3 using the CalPhos transfection reagent. 
Transfection effi ciency typically exceeded 95% using GFP-expressing plas-
mid as the control. 

 Affi nity precipitation of GEFs 
 Dock7 proteins or Dbs-DHPH in the cell lysates was affi nity precipitated 
with 20  μ g GST-Rac1G15A, GST-Cdc42G15A, or GST-RhoAG17A, which 
are guanine nucleotide – free Rho GTPases. A Gly-to-Ala mutation of residue 
15 in Rac1 and Cdc42 or residue 17 in RhoA decreases their nucleotide 
binding ( Arthur et al., 2002 ). Active GEFs preferentially interact with gua-
nine nucleotide – free forms of the small GTPases ( Arthur et al., 2002 ; 
 Schmidt and Hall, 2002 ;  Rossman et al., 2005 ). The affi nity precipitation 
was also performed using 20  μ g GST wild-type Rho GTPase (Rac1, Cdc42, 
or RhoA). Affi nity-precipitated GEFs were detected by immunoblotting 
( Yamauchi et al., 2005a , b ). 

 Detection of active Rho GTPases 
 To detect active GTP-bound Rac1 and Cdc42 in the cell lysates, we per-
formed affi nity precipitation by using 20  μ g GST-Pak1-CRIB, which binds 
to their GTP-bound forms. To compare the total amount of GTPase, immuno-
blotting was also performed with an anti-Rac1 or Cdc42 antibody. Two to 
fi ve separate experiments were performed. The band intensity in the 
immunoblot was quantifi ed, and the levels of Rac1-GTP and Cdc42-GTP 
were normalized to the amount of each total GTPase ( Yamauchi et al., 
2005a , b ). 

 JNK assay 
 The cell lysates were immunoblotted with an anti-(pThr 183 /pTyr 185 )JNK anti-
body that recognizes the active form. To compare the total amount of JNK, 
immunoblotting was also performed with an anti-JNK antibody. Three to 
fi ve separate experiments were performed. The band intensity in the immuno-
blot was quantifi ed, and the levels of the phosphorylated forms were nor-
malized to the amount of total kinase. 

 Statistical analysis 
 Values shown represent the mean  ± SD from separate experiments. Analy-
sis of variance (ANOVA) was followed by Fisher ’ s protected least signifi -
cant difference post hoc comparisons (*, P  <  0.01; **, P  <  0.015; ***, 
P  <  0.02). 

 Online supplemental material 
 Fig. S1 demonstrates that Schwann cell migration requires the activation of 
the Rho family of small GTPases but is not dependent on Tiam1 or Dbs 
of the Dbl family GEFs. Fig. S2 characterizes the anti-Dock7 and anti-
(pTyr 1118 )Dock7 antibodies. Fig. S3 shows the purifi cation of the DHR-2, 
wild-type, and Y1118F mutant proteins of Dock7. Fig. S4 illustrates that the 
middle region 2 of Dock7 inhibits NRG1-induced migration and activation 
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