>
o
o
-
o
01]
-
—
L
(&)
T8
o
-
<
2
'
>
o
-5
L
I
-

ARTICLE

Inhibition of “selt” engulfment through deactivation
of myosin-ll at the phagocytic synapse between

human cells

Richard K. Tsai' and Dennis E. Discher'?

'Biophysical Engineering Laboratory, and 2Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104

hagocytosis of foreign cells or particles by macro-

phages is a rapid process that is inefficient when

faced with “self” cells that display CD47 —although
signaling mechanisms in self-recognition have remained
largely unknown. With human macrophages, we show
the phagocytic synapse at cell contacts involves a basal
level of actin-driven phagocytosis that, in the absence of
species-specific CD47 signaling, is made more efficient
by phospho-activated myosin. We use “foreign” sheep
red blood cells (RBCs) together with CD47-blocked, anti-
body-opsonized human RBCs in order to visualize synap-
tic accumulation of phosphotyrosine, paxillin, F-actin, and

Introduction

A phagocytic cell engulfs another cell or particle that is IgG-
opsonized in a coordinated process of adhesion, pseudopod
extension, and internalization with phagosome closure. Upon
initial binding of IgG, the phagocyte’s Fc receptors (FcyRs) ac-
tivate cytoskeletal assembly with rapid accumulation of phos-
phopaxillin (Greenberg et al., 1994; Allen and Aderem, 1996)
and F-actin (Wang et al., 1984; Greenberg et al., 1991) among
other components at a “phagocytic synapse”. Nonmuscle myo-
sins also accumulate and suggest a role(s) for contractile
motors during particle internalization (Stendahl et al., 1980;
Valerius et al., 1981; Diakonova et al., 2002). Signaling activ-
ities that influence synapse assembly continue to be clarified
(Aderem and Underhill, 1999) and are presumably key to how
the macrophage distinguishes foreign cells or particles from
autologous cells of “self”. Autologous cells are certainly opso-
nized by Ig (Turrini et al., 1993), and so activation differences
are not the complete story. Indeed, based on studies of knock-
out mice lacking the membrane receptor CD47, this protein
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the major motor isoform, nonmuscle myosin-llA. When
CD47 is functional, the macrophage counter-receptor and
phosphatase-activator SIRPa localizes to the synapse,
suppressing accumulation of phosphotyrosine and myosin
without affecting F-actin. On both RBCs and microbeads,
human CD47 potently inhibits phagocytosis as does direct
inhibition of myosin. CD47-SIRP« interaction initiates a
dephosphorylation cascade directed in part at phospho-
tyrosine in myosin. A point mutation turns off this motor’s
contribution to phagocytosis, suggesting that self-recognition
inhibits contractile engulfment.

on target cells is a phagocytosis-inhibiting “marker of self”
(Oldenborg et al., 2000).

CDA47 is a ubiquitous member of the Ig superfamily that
interacts with the immune inhibitory receptor SIRPa (signal
regulatory protein) found on macrophages (Fujioka et al., 1996;
Veillette et al., 1998; Jiang et al., 1999). Although CD47-SIRP«
interactions appear to de-activate autologous macrophages in
mouse, severe reductions of CD47 (perhaps 90%) are found on
human blood cells from some Rh genotypes who show little
to no evidence of anemia (Mouro-Chanteloup et al., 2003)
and also little to no evidence of enhanced cell interactions
with phagocytic monocytes (Arndt and Garratty, 2004). Here,
we assess the species-specific inhibition of phagocytosis by
CD47-SIRPa interactions at the phagocytic synapse and visualize
how the interaction affects cytoskeletal activity.

CD47-SIRPa binding is conserved but species-specific
(Subramanian et al., 2007). Based on this divergence and assum-
ing an inhibitory role for human CD47, human macrophages
might be expected to efficiently phagocytose opsonized sheep
red blood cells (RBCs), which is certainly consistent with years
of data showing sheep RBCs are readily phagocytosed by human
macrophages (Lowry et al., 1998; Botelho et al., 2000; Cooney
et al., 2001). We show below that human-CD47 can inhibit
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Fc-receptor mediated phagocytosis by human-derived macro-
phages and monocytes, but first we map some key components
of the phagocytic synapse and identify species-specific differ-
ences in localization of SIRP«, phosphotyrosine, and nonmus-
cle myosin. A microbead system demonstrates the density and
affinity dependence of CD47-mediated inhibition and identifies
a threshold activity in the inhibitory signaling. These signals
propagate downstream and parse cytoskeletal pathways, ultimately
implicating a novel phosphotyrosine site on myosin that appears
associated with myosin enrichment and contractile function in
high efficiency internalization.

Results

Affinity, signaling, and cytoskeleton at the
phagocytic synapse with and without CD47
Consistent with recent results showing species-specific CD47-
SIRPa interactions (Subramanian et al., 2007), soluble human-
SIRPa is found here to bind much less to sheep RBCs than to
human RBCs (Fig. 1 A). Both species of RBC are extensively
used below in studies of phagocytosis, but in order to eliminate
other potential differences between species we also developed
avidin-coated microbeads that display recombinant, biotinyl-
ated human CD47. These beads demonstrate a moderate affinity
and saturable interaction of CD47 for SIRPa and also estab-
lish effective blocking of CD47 (B6H12) with a F(ab’), made
from a monoclonal antibody that is known to inhibit SIRPa
binding (Fig. 1 B).

To assess the effect of CD47 on protein localization to
the phagocytic synapse, we first imaged human-derived THP-1
macrophages incubated with IgG-opsonized human RBCs or
sheep RBCs. Briefly, the RBCs were allowed to settle and bind
macrophages at 4°C, and then 10 min after warming to 37°C,
cells were fixed and immunostained. Imaging by differential
interference contrast (DIC) microscopy allowed an unbiased
identification of phagocyte—-RBC contacts (Fig. 2 A). Sub-
sequent immunofluorescence showed that human-RBCs in con-
tact with the human macrophages stimulated accumulation of
SIRPa at the synapse. Such localization was lacking both with
sheep RBC and after blocking human RBC with a F(ab’), of
the anti-CD47 (Fig. 1 B inset; Fig. S2, A—C); the removal of
the Fc domain ensured no activating signal. Quantitative inten-
sity analyses of randomly chosen synapses showed a fivefold
enrichment of SIRPa with human-RBC contacts when com-
pared with either sheep RBCs or CD47-blocked human RBCs
(Fig. 2 B, top).

Tyrosine phosphorylation is known to be strongly en-
hanced when macrophages phagocytose IgG-opsonized targets.
Compared with SIRPa, phosphotyrosine showed the opposite
trends after immunostaining: synapses with human RBCs
showed only a small increase of phosphotyrosine above cyto-
plasmic levels and at a level that was 3.2-fold lower than sheep
RBCs or CD47-blocked human RBCs (Fig. 2 B, bottom). IgG
interactions with Fc receptors (FcyRs) are well known to initiate
Src family phosphorylation of the immunoreceptor tyrosine-
based activating motif (ITAM) that then propagate a phosphoryl-
ation cascade (Huang et al., 1992; Ghazizadeh et al., 1994,
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Figure 1. Species-specific binding of soluble human SIRP« fo RBCs and
CDA47-coated beads. (A) Fresh human and sheep RBCs binding to soluble
hSIRP« (4 pM of GST conjugate), as detected by FITC-anti-GST. “Bkgd”
is obtained with RBCs plus antibody. (B) Affinity of hCD47-coated beads
binding to soluble hSIRP« based on flow cytometry (see Fig. S2, available
at http://www.jcb.org/cgi/content/full/jcb.200708043/DC1). Satura-
tion binding fit gave the indicated dissociation constant, Ky. Because this
is a 3D binding constant relevant to binding in a narrow membrane gap
between two cells, it is equivalent to Ky =~ 1 molecule/[10 nm x (10 pm)?],
which is the concentration of free SIRPa that would half-saturate CD47 on
a surface. The inset shows inhibition of soluble hSIRPa binding to hCD47
beads by using anti-CD47 F(ab’), generated from B6H12 antibody; simi-
lar inhibition is obtained with human RBCs.

Greenberg et al., 1994). In contacts with human RBCs, however,
the CD47-induced accumulation of SIRP« at the synapse is ex-
pected to phospho-activate SIRPa’s immunoreceptor tyrosine-
based inhibiting motif (ITIM) (Kharitonenkov et al., 1997) with
subsequent recruitment of inhibitory tyrosine phosphatases,
particularly SHP-1 (Tsuda et al., 1998; Veillette et al., 1998;
Vernon-Wilson et al., 2000; Kant et al., 2002). Phosphatase acti-
vation is consistent with the relatively large and dominant
decrease found here for phosphotyrosine.

Pseudopod extension and phagocytic cup formation
around the target predictably requires extensive remodeling of
the actin cytoskeleton. Surprisingly, SIRPa—CD47 interactions
did not exert any statistically significant effect (P = 0.3) on

920z Atenige g0 uo 1senb Aq Jpd-e1080.00Z A0l/8.2068 1/686/G/08 1 /4pd-alomue/qol/Bio ssaidnyy/:dny wol pspeojumoq



Human RBC
+ anti-CD47

Sheep
RBC

A Human

RBC

THP-1

SIRPa

pTyr

Non-muscle
Myosin IIA

—=—HuRBC
——ShRBC

== HuRBC +anti-CD47

increase
5.0-fold

phospho-Tyrosine

Relative Intensity
o

57 +2.6

41 ] decrease |
3.2-fold

Distance (um)

Human RBC
+ anti-CD47

Human
RBC

Sheep
RBC

j=
=
Q
<
'8

O

F-Actin
5 .
2
(7]
c
9
£
(]
2
)
K1
[ +1.9
o 3
decrease
3.8-fold
2 -
1 ____________________
0

Distance (um)

Figure 2. Signaling and cytoskeletal proteins at the phagocytic synapse depend on CD47. Human-derived THP-1 macrophages (M) were incubated for
10 min at 37°C with IgG-opsonized human RBCs or sheep RBCs (Target. HURBC or ShRBC) for 10 min. Blocking is done with anti-CD47 F(ab’),. After
fixation, cells were stained for SIRPa and pTyr (A and B) or F-actin and nonmuscle myosin llA (C and D). Phagocytic synapses are indicated with black
arrowheads in DIC images, and in fluorescence images with either white or gray arrowheads, depending on enrichment. Bars, 10 pm. Protein localization
was quantified for phagocytic synapses randomly selected in DIC images (n = 5, + SD).

F-actin localization to the synapse (Fig. 2, C and D, top). Previous
reports have also suggested a role for nonmuscle myosin in
phagocytosis (Mansfield et al., 2000), and immunofluorescence
for the dominant myosin isoform, nonmuscle myosin ITA
(NMM IIA), shows clear recruitment to both sheep RBCs and
CD47-blocked human RBCs. However, localization of myosin
to the synapse with human RBCs is minimal, with a 3.8-fold
decrease relative to sheep RBCs and CD47-blocked human RBCs
(Fig. 2, C and D, bottom).

Recruitment of NMM IIA to the synapse formed with
sheep RBCs was seen to take minutes and to persist typically
for at least 15 min (Fig. 3 A). Macrophages were stably trans-
fected with GFP-NMM IIA, and real-time fluorescence imaging
was used to follow the contact and engulfment process. Both
sheep RBCs and human RBCs adhered and engaged the macro-
phages, initiating the formation of a phagocytic cup, but NMM
ITA did not enrich adjacent to the human RBCs (Fig. 3, B and C).
RBC contacts per macrophage additionally showed no major
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Figure 3. Time-lapse image of phagocytic synapse formation. Human-derived THP-1 macrophages stably transfected with GFP-NMM IIA were in-
cubated at 37°C with IgG-opsonized sheep RBCs (A) or human-RBCs (B) for 10 min after an initial 4°C incubation. Time-lapse images in DIC and
fluorescence microscopy were taken upon identification of a target cell adhered to the macrophage. Arrows indicate the site of target cell contact with
magnified images of the phagocytic synapse. Bars, 10 wm. (C) Phagocytic synapses fixed after 10 min. Cells were immunostained for total NMM IIA
and protein localization to the phagocytic synapse was quantified for randomly chosen GFP* cells by normalization to cytoplasmic intensity of 1.0
(n=5, +SD).
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difference in adhesion frequency (Fig. S1, available at http://
www.jcb.org/cgi/content/full/jcb.200708043/DC1), which is con-
sistent with divergent events subsequent to adhesion.

Nonmuscle myosin has long been known to be expressed in mac-
rophages (Stendahl et al., 1980), and although recent studies have
implicated myosin in FcyR-mediated phagocytosis (Swanson
et al., 1999; Titus, 1999; Mansfield et al., 2000; Diakonova et al.,
2002) through inhibition studies with 2,3-butanedione monoxime
(BDM), this is a relatively nonspecific drug compared with blebbi-
statin (Ostap, 2002; Limouze et al., 2004). This recently synthe-
sized, membrane-permeable drug inhibits the ATPase activity of
myosin types Il and VI (Straight et al., 2003; Kovacs et al., 2004).
Consistent with a significant role for myosin in phagocytosis, we
found that incubation of macrophages with blebbistatin, inhib-
ited enrichment of NMM IIA at synaptic contacts with sheep
RBCs targets (Fig. 4, A and B). CD47 on human RBCs induced
quantitatively similar effects on NMM IIA. In contrast, F-actin
localization to the synapse again appeared statistically the same
for sheep RBCs in the presence or absence of the myosin inhibi-
tor as well as for CD47-blocked human RBCs.

Paxillin is also known from past studies to accumulate at
the phagocytic synapse (Greenberg et al., 1994) and to be phos-
phorylated (Hall, 1998). Phospho-paxillin Y''® localized to the
synapse with sheep RBCs and this persisted with myosin in-
hibition by blebbistatin (Fig. 4 A). In contrast, human RBCs
inhibited phospho-paxillin localization through the effects of
CD47. Note the double-labeling studies here consistently show
statistically similar levels of F-actin localization, whereas
phospho-paxillin varies. Phosphatase activity initiated by CD47—
SIRPa interaction likely has multiple downstream targets that
directly or indirectly include phospho-paxillin and—as elabo-
rated below—a novel phosphorylation site in myosin.

Past results from mouse cells certainly suggest that CD47 inhib-
its phagocytosis, but evidence has been lacking with human
phagocytes interacting with any type of target cell or particle.
CD47-blocking of human RBCs with the F(ab’), was shown
above to perturb the phagocytic synapse, which made the syn-
apse look like that of sheep RBCs interacting with macrophages
(Fig. 2). Human CD47’s interaction with SIRPa was certainly
blocked (Fig. 1 B inset; Fig. S2, A-C, available at http://www
.jcb.org/cgi/content/full/jcb.200708043/DC1), and so we ex-
pected that CD47-blocked human RBCs would be engulfed by
human phagocytes at a greater frequency than untreated cells.
Phagocytosis by the human-derived THP-1 macrophages
of IgG-opsonized RBCs was studied by imaging in DIC micros-
copy: after 45 min at 37°C the non-engulfed RBCs were hypo-
tonically lysed (Fig. 5 A) and the number of ingested RBCs per
macrophage was counted. Phagocytosis by fresh human periph-
eral blood monocytes used fluorescence to visualize RBCs, all
of which had membranes prelabeled with PKH26 (red), and
then the non-engulfed RBCs were labeled with a fluorescein-

ShRBC
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Myosin IIA
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] ShRBC + Blebb
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Figure 4. CDA7 inhibits myosin localization similar to blebbistatin. Phago-
cytic synapses of THP-1 macrophages with IgG-opsonized sheep or human
RBCs (37°C, 10 min) after preincubation with blebbistatin (50 M, 10 min).
DMSO control showed no effect. (A) Cells fixed and immunostained for
nonmuscle myosin IIA, F-actin, paxillin-Y'™8. Bars, 10 uM. (B) Quantitation
of protein localization to the phagocytic synapse relative to the cytoplasmic
infensity set at 1.0 (n = 5 cells, + SD).

labeled (green) antibody against the Fc of the IgG-opsonin
(Fig. 5 B). For either type of human phagocyte, human RBCs
were internalized at a small fraction of the frequency of sheep
RBCs (Fig. 5, C and D), but a small number of human RBCs
was always engulfed for either type of phagocyte. All depen-
dencies on IgG-opsonization fit well to a saturation binding pro-
cess, consistent with specific activation of the FcR phagocytosis
pathway. Most important, blocking of CD47 on human RBCs
produced major increases in phagocytosis (blue arrows) with
two- to threefold more engulfment that approached or slightly
exceeded the phagocytosis of sheep RBCs.

“SELF” INHIBITION OF MYOSIN

283

9z0z Arenigad g0 uo 1senb Aq 4pd'€¥080.,002 A2l/82Z0681/686/5/08 | 4Pd-ajonie/qol/Bio"ssaidnu//:dny woly papeojumoq



294

A Antibody Blocked CD47 on HURBC

Human Monocytes THP-1 Phagocytes

45 min, pre-lysis®

ﬁ(;slt'-l ysis

C

(%]

o

& 1el

£ 15 B

< S & -7 ShRBC

o Y xQ> \Z\o ’ ]
g .

3 4

N o5} /1HuRBC+anti-CD47F(ab‘)2 ]
e k)——————iHuRBc

.

()

E 0 1 1 1 1 1 1

= Y% 0.001 0002  0.003

Ve
a5 L ,{ ShRBC
/
Ve
7 $HURBC + anti-CD47 F(ab),
0.05p § -
,/ HuRBC
0 d 1 1 1 1 1
0 0.001 0.002 0.003

Antiserum Dilution-’

Figure 5. Human macrophages and monocytes are inhibited by human CD47. (A) DIC images of THP-1 phagocytes plus CD47-blocked, IgG-opsonized
human RBCs, using F(ab’); made from monoclonal B6H12. 45 min at 37°C is sufficient time for phagocytic internalization of RBCs, which are protected from
hypotonic lysis. Bars, 10 mm. (B) Human peripheral blood monocyte plus CD47-blocked human RBCs after lysis, after 45 min of phagocytosis. Red: PKH26-
labeled human RBCs. Green: lysed RBCs labeled with FITC-anti-Fc indicating the cell is not internalized. Human RBCs and sheep RBCs were phagocytosed by
THP-1 cells (C) or human monocytes (D), showing phagocytosis increases with opsonization. Inset shows blebbistatin treatment of ShRBC showing decrease in
phagocytosis. Phagocytosis is measured as the ratio of internalized RBCs per phagocyte, with 200 phagocytes counted in triplicate experiments (+ SEM).

Nonmuscle myosin IlA contributes to FcyR-
mediated phagocytosis, but is not essential
In light of the myosin differences seen by fluorescence at the
various synapses (Figs. 2-4), we also examined the effect of
blebbistatin-inhibited myosin on phagocytosis. Engulfment of
sheep RBCs by THP-1 macrophages was found to be inhibited
by blebbistatin to an extent similar to that of CD47 on human
RBCs (Fig. 5 C, inset bar graph). Moreover, a dose—response
gave a K peop = S M for blebbistatin inhibition of phagocytosis
(Fig. S3, available at http://www.jcb.org/cgi/content/full/jcb
.200708043/DC1), which is in excellent agreement with the
K;_atpase for inhibition of NMM IIA’s ATPase by blebbistatin
(Limouze et al., 2004).

To directly confirm the implied correlation between synap-
tic myosin and the extent of phagocytosis, fluorescence imaging
was repeated on the enrichment of myosin and F-actin at the
synapse for both human and sheep RBCs treated with or without
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blebbistatin. As demonstrated in Figs. 4 and 5, when synaptic
NMM IIA is at or near background cytoplasmic levels, phago-
cytosis is low but nonzero. The comparatively rapid enrichment
of F-actin at the phagocytic synapse described here and by oth-
ers (Strzelecka et al., 1997) proved here to be dependent primar-
ily on the initial synaptic contact rather than the ultimate level of
phagocytosis. The result highlights a basal level of pseudopod
extension and engulfment that is independent of myosin.

CD47 on microbeads is sufficient

to inhibit phagocytosis

RBCs are common targets in phagocytosis, but RBC mem-
branes are complex and blocking results above could have
other interpretations. We therefore tested whether CD47 alone on
synthetic microbeads could also inhibit phagocytosis. The
extracellular immunoglobulin-like domains of human CD47
(hCD47) was recombinantly expressed with a spacer domain
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(Brown and Barclay, 1994; Brown et al., 1998) plus a C-terminal
biotinylation site. Biotinylation allowed attachment of soluble
hCD47 to streptavidin-coated beads (2.1 wm) (Fig. 6 A, sche-
matic), with density adjustable to levels previously measured
for normal and diseased RBCs (Dahl et al., 2004; Subramanian
et al., 2006).

To study phagocytosis, beads (Fig. 6 A, red) were opso-
nized by pretreatment with anti-streptavidin to again induce
FcR-mediated phagocytosis (for 45 min at 37°C); and non-
engulfed beads were detected with a flourescein anti-Fc (green)
against the IgG-opsonin. The number of adherent IgG-opsonized
beads per phagocyte was independent of hCD47 (Fig. S1).
As mentioned in the previous RBC studies (Fig. 5 B), phago-
cytosed beads were sterically protected so that the merged DIC
and fluorescent images provided a definitive means to quantify
the internalized beads per phagocyte.

The phagocytosis results for beads proved wholly consis-
tent with the RBC results. With increasing opsonization and for
both THP-1 cells and the human monocytes, the uncoated
“CDA47-null” beads were phagocytosed more than beads dis-
playing hCD47 (Fig. 6 B). The dependence on the level of IgG-
opsonization fit well to a saturation binding process, consistent
again with the specificity of FcR-activated phagocytosis (also
see RBC results, Fig. 5, C and D). Likewise, blebbistatin inhib-
ited phagocytosis of CD47-null beads to a level similar as
hCD47 beads and again yielded a Ky, consistent with in-
hibition of NMM IIA’s ATPase (Fig. S3), confirming once again
the role of nonmuscle myosin. Furthermore, blocking CD47 on
hCD47 beads again produced an increase in phagocytosis, dem-
onstrating that the Ig domain of human CD47 is sufficient to in-
hibit phagocytosis.

Density dependence of CD47 in species-
specific inhibition of phagocytosis

Studies of knockout mice have implicated CD47 as a marker of
self on mouse RBCs (Oldenborg et al., 2000); however, humans
with major co-deficiencies of CD47 on their RBCs show no evi-
dence of enhanced phagocytic interactions (Mouro-Chanteloup
et al., 2003; Arndt and Garratty, 2004). Known and unknown
differences between RBCs from different species also motivate
a common phagocytic target. We therefore sought to use the
hCD47-coated microbeads (see Fig. 1) and establish the inhibi-
tory density dependence of hCD47 with a common IgG opsonin.
These two ligands, hCD47 and IgG, do not compete and do not
interfere with SIRPa binding (Fig. S2 D).

Beads were opsonized at saturating densities of IgG (Fig. 6 B)
and then, over a 20-fold range of CD47 densities, the number of
internalized beads per THP-1 was measured (Fig. 6 C). Human-
CD47 gave a K; at high opsonin of 20 CD47/um?, which appears
~10-fold less than normal human RBC densities of CD47.
Human peripheral blood monocytes interacting with beads bear-
ing high densities of hCD47 showed a similarly potent reduction
in phagocytosis (Fig. 6 D). A higher baseline level of bead
phagocytosis versus RBCs could reflect the fact that stiffer tar-
gets are more readily engulfed (Beningo et al., 2002). More im-
portantly, the results here showed that even 10-20% of normal
CD47 densities are sufficient to inhibit phagocytosis.

In the absence of functional CD47,
phagocytosis is proportional to myosin
Blebbistatin’s inhibition of phagocytosis functionally impli-
cated NMM II because it inhibits all three isoforms (A—C), and
so to more directly assess the function of the IIA isoform, the
effects of both knockdown and overexpression were function-
ally studied. Transfection of GFP-NMM IIA added ~50% more
total ITA isoform, based on an immunoblot comparison to wild
type (Fig. S4, available at http://www.jcb.org/cgi/content/full/
jcb.200708043/DC1), and the overexpression also resulted in
~50% more phagocytosis of sheep RBCs (Fig. 7). Similarly,
knockdown of NMM IIA with Lentivirus gave ~50% less myo-
sin, and this resulted in nearly 50% less phagocytosis. Transfec-
tion of GFP-NMM IIA into the knockdown cells (driven by a
powerful CMV promoter) returned expression to near wild-type
levels, and also recovered full phagocytic function. Addition-
ally, the GFP-NMM IIA was inhibited ~50% by 5 wM blebbi-
statin (Fig. 7, inset), which again indicates that this chimeric
construct has normal, myosin-like activity. A linear fit (R* = 0.99)
through all of these phagocytosis results for sheep RBCs not
only emphasizes the proportional role for myosin in efficient
engulfment, but also yields a nonzero intercept at “zero” myo-
sin activity that is nearly the same as the low rate for “actin
only” engulfment of human RBCs (~0.2-0.3 RBC per macro-
phage). These results thus suggest that human CD47 parses
pathways and primarily signals inhibition of NMM IIA’s contri-
bution to efficient phagocytosis.

CDA47 signals through SIRPa and ultimately
to myosin
SIRPa localization to the phagocytic synapse with targets pre-
senting CD47 (Fig. 2, A and B) is consistent with ligand-receptor
interactions as well as SIRPa ITIM activation and subsequent
SHP-1 phosphatase induction (Brown and Frazier, 2001; Latour
et al., 2001). Immunoprecipitation of SIRPa followed by West-
ern blot analysis of phosphotyrosine showed a clear and saturable
signaling difference with hCD47 (Fig. 8 A). The term denoted as
K; is defined as the normalization of CD47 densities to the phago-
cytosis inhibition constant for human CD47 (Fig. 6 C) and nor-
malization of phosphotyrosine levels to SIRPa intensities gave
an effective signaling constant K| that approximated the K.
CD47’s activation of SIRPa (about twofold here) and
downstream phosphatase activity is certainly known but down-
stream phospho-targets have not yet been identified. Studies
of SIRPa-knockout macrophages engulfing IgG-opsonized
mouse RBCs (Okazawa et al., 2005) suggested no major pertur-
bation of either phospho-FcyR, downstream phospho-Syk or
phospho-Cbl, although it had been reported that SHP-1 can
dephosphorylate Cbl and thereby moderate Rac activity in
FcyR-mediated phagocytosis (Kant et al., 2002). Through
immunoblotting, changes in the phosphorylation state of these
activator/effector proteins ranged from 1.1- (FcyR) to 1.5-fold
(Cbl) (Fig. 8 B). Considerably larger down-regulation of phos-
photyrosine by CD47 at the synapse (3.2-fold) was clear in our
imaging studies (Fig. 2 B) as was CD47-induced delocalization
of myosin and phospho-paxillin (3.8- and 3.0-fold, respectively;
Fig. 2 D, Fig. 4 B).
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Figure 6. Human-CDA47 is sufficient fo inhibit phagocytosis. (A) Streptavidin beads coated with both anti-streptavidin IgG as the opsonin and biotinylated
human CD47. Phagocytosis of beads (red) by THP-1 cells was assessed in DIC and fluorescence microscopy with non-ingested beads (green) visible with
rabbit anti-streptavidin plus a second, goat anti-rabbit antibody. Bars, 10 um. Beads + hCD47 (at normal RBC density) were engulfed by THP-1 cells or
human monocytes (B), demonstrating inhibition of phagocytosis by hCD47 unless the beads are blocked with anti-CD47 . Inset bar graph compares to inhib-
ited phagocytosis of uncoated beads after 10 min pretreatment of THP-1 cells with blebbistatin (50 pM). (C) Inhibition of phagocytosis depends on density
of human CD47 on beads. All assays were conducted and analyzed as in Fig. 5. Phagocytosis inhibition occurs with an effective K; ~ 20 molecules/um?,
which considerably exceeds the relevant dissociation constant for a 10-nm gap of Ky 10am = 1 molecule/(10 wm)? (Fig. 1 B). This ratio of ~1,000 as well
as the known cell surface densities imply that almost all SIRPa and CD47 that diffuse into the gap will bind and thus enrich in the synapse (see Fig. 2,
A and B). (D) Bar graph compares hCD47 inhibition of phagocytosis in peripheral blood monocytes.

The only report of phosphotyrosine regulation of NMM
ITA suggests it to be a direct target of SHP-1 in B-cells (Baba
et al., 2003), with the speculated site of interaction appearing in
the N-terminal head domain. Phosphotyrosine regulation of
NMM IIA therefore seemed an intriguing possibility to pursue
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in the present context of CD47 function. Anti-phosphotyrosine
immunoblots were made from whole cell lysates of THP-1 cells
phagocytosing opsonized human or sheep RBCs (Fig. 8 C). Three
band regions (a, b, ¢) showed the greatest differences in phospho-
tyrosine levels compared with THP-1 cells alone. Bands a—c each
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showed 3.3- to 1.6-fold less phosphotyrosine with human RBCs
versus sheep RBCs (Fig. 8 C, plot), which was similar in range
to the down-regulation of phosphotyrosine imaged at the phago-
cytic synapse (3.2-fold in Fig. 2 B). In fact, band “a” had a MW
in the range of nonmuscle myosins in addition to a similarly
high level of down-regulation.

To identify the major phosphotyrosine bands a—c, these
bands were excised from Coomassie-stained polyacrylamide
gels, digested in-gel by trypsin, and the peptide fragments were
characterized by liquid chromatography-mass spectrometry/
mass spectrometry (LC-MS/MS) (Fig. 8 C). Within band “a”,
45 tryptic peptides matched sequences of NMM IIA (23% cov-
erage), including one fragment from myosin’s self-assembling
tail region with a novel phosphorylation at Y'** (Fig. 8 C,
bottom). Additional cytoskeletal proteins that were detected in
the macrophages and might be targeted in the CD47-SIRPa
phosphotyrosine pathway include Talin-1 (Turner et al., 1989;
Greenberg et al., 1990), mDIA1 (Meng et al., 2004), and
a-actinin (Crowley and Horwitz, 1995; Izaguirre et al., 1999).
Capabilities of MS to identify phosphotyrosine are currently
limited, as here, by low sequence coverage and sub-stoichiometric
phosphorylation (McLachlin and Chait, 2001). However, the
one solid lead from MS of the phosphotyrosine in NMM IIA
was first followed up by immunoprecipitation of NMM ITA
from the THP-1 lysates and subsequent immunoblotting for
phosphotyrosine. The results confirmed the presence of phos-
photyrosine in NMM IIA that is ultimately regulated by CD47
interactions (Fig. 8 D).

Phosphotyrosine activation of NIMM IlIA in
phagocytosis

In light of the proportionality between phagocytosis and myosin
expression (Fig. 7), several mutants of the GFP-NMM IIA con-
struct were made and studied in their effects on phagocytosis of
sheep RBCs and localization to the synapse. One mutant trun-
cated the C terminus by 170 residues and had been found previ-

ously to compromise myosin filament assembly and function
(Wei and Adelstein, 2000). Two Y—F point mutations were
made at the putative phospho-sites in the head (Y*") and
tail (Y'8). Although the wild-type GFP-NMM IIA construct
showed gain-of-function phagocytosis that was statistically dis-
tinct from untransfected wild type (P < 0.03), all three mutants
appeared the same as wild type (Fig. 9 A). Similar results with
even greater statistical significance (P < 0.01) were found upon
transfection of these constructs into the knockdown macro-
phages (Fig. 9 A).

Consistent with the lack of a functional contribution to
phagocytosis, the GFP mutants exhibited no significant local-
ization to the synapse (Fig. 9 B). Conveniently, the transfections
of these GFP constructs into wild-type macrophages also al-
lowed immunostaining for total NMM IIA. Quantitative ratio
imaging (see Fig. 2) showed that the endogenous myosin accu-
mulated at phagocytic synapses, whereas the mutant constructs
did not. These results contrast with the clear localization of the
wild-type GFP-NMM IIA to the phagocytic synapse (Fig. 3 A)
and point to the role for phospho-regulation of myosin-II
in phagocytosis.

Discussion

Human CD47 has been shown here to communicate marker
of self signals to human primary and immortalized mono-
cytes/macrophages, and the mechanism for species-specific
inhibition of phagocytosis shows that CD47 parses pathways
by selectively down-regulating the cytoskeleton’s contractile
contributions to engulfment. Our results were obtained with
IgG-opsonized RBCs from various species that are common
in phagocytosis studies (e.g., sheep RBCs) and also with syn-
thetic beads bearing recombinant CD47. The signaling and
remodeling processes are highlighted in Fig. 10. IgG activa-
tion of the Fcy receptor on the phagocytes (Cambier, 1995) is
known to induce actin cytoskeleton assembly (Araki et al., 1996;
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Figure 8. Species-specific signaling through SIRP« and ultimately to cytoskeletal proteins. (A) hCD47 was bound at varying densities to opsonized beads
and phagocytosed by THP-1 macrophages. From macrophage lysates, SIRP« was immunoprecipitated and immunoblotted (inset) for quantitation of phos-
photyrosine and total SIRP« for normalization. Fits of the data gave an effective signaling constant K, for each species that depends on the CD47 density;
all densities are scaled by hCD47’s inhibitory constant (K) as determined in Fig. é at the same opsonization. (B) Phosphotyrosine decreases in Chl, Syk,
and FcyR within THP-1 during phagocytosis of IgG-opsonized human RBCs normalized to sheep RBCs. Whole-cell lysates were immunoblotted and densi-
tometry was used to quantify suitable MW bands (also see Fig. S5, available at http://www.jcb.org/cgi/content/full /jcb.200708043/DC1). (C) Major
phosphotyrosine differences in THP-1 during phagocytosis of IgG-opsonized human RBCs versus sheep RBCs. Whole-cell lysates were immunoblotted and
densitometry was used to identify bands (a—c) that showed the largest relative differences in intensity for sheep or human RBC targets compared with THP-1
cells. For bands a—c, the plot shows the intensity obtained with phagocytosis of human RBCs relative to sheep RBCs. (triplicate experiments + SEM). The list
from MS analyses of bands a—c indicates top candidate phospho-proteins or else a directly detected sequence (for myosin). (D) Immunoprecipitation of
NMM 1A from lysates followed by immunoblot for pTyr, confirming the major decrease in phosphotyrosine NMM [IA when THP-1 phagocytose human
RBCs compared with sheep RBCs.

Crowley et al., 1997; Caron and Hall, 1998; Lowry et al., 1998; of NMM IIA and phagocytosis to the same extent (Fig. 4 B,
May and Machesky, 2001), and this F-actin assembly was proven Fig. 5 C). The proportionality between NMM IIA levels and ef-
here to be independent of CD47’s signaling pathway(s) (Fig. 2). ficient phagocytosis is also clear from knockdown and over-
In the absence of CD47 on the target, paxillin assembles at the expression studies (Fig. 7). Although CD47 signals locally, we

phagocytic synapse, consistent with past results for IgG-opso- conclude that it ultimately has a similar, but downstream effect
nized sheep RBCs (Greenberg et al., 1994; Coppolino et al., in inhibiting the major myosin isoform’s contractile contribu-
2001), and so does NMM IIA. By contrast, human RBCs with tions to engulfment.

functional CD47 show strong localization of the counter-recep- CD47 in mouse has been described as a marker of self that

tor SIRPa to the synapse (fivefold), and also show strongly re- can inhibit phagocytosis by mouse macrophages (Oldenborg
duced levels of both phosphotyrosine and NMM IIA (3.2- and et al., 2000; Gardai et al., 2005). Blocking of CD47 on human
3.8-fold, respectively; Fig. 2). We find that human CD47 and RBCs with an anti-CD47 F(ab’), increased uptake by both
the myosin inhibitor blebbistatin block synaptic localization human macrophages and monocytes. Given the low densities of
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CD47 on cells, this ubiquitous membrane protein seems less
likely to mediate cell adhesion than function as an extremely
potent signaling receptor, functional at densities of a just a few
dozen molecules per wm?* (Fig. 6 C). Major co-deficiencies of
CDA47 on human cells (Mouro-Chanteloup et al., 2003) can
therefore be tolerated without compromising marker of self
function, and because CD47-null humans have yet to be re-
ported, our results suggest an important role for CD47 in the
innate immunity of humans.

Regardless of species, normal macrophages should be ex-
pected to engulf “self” cells at a considerably lower frequency
than typical targets—apoptotic and foreign cells or particles.
The decision of a macrophage to phagocytose is in part made by
the extent of target opsonization, which activates assembly of
the F-actin cytoskeleton at the phagocytic synapse; however, Ig
is high in bodily fluids and almost certainly binds or adsorbs at
some level to all cells (Turrini et al., 1993), and so activating
signals seem unavoidable. CD47 signaling probably occurs in
parallel because IgG binding to FcyR (Duchemin et al., 1994)
promotes intimate adhesion and thereby promotes hCD47 inter-
actions with SIRPa within the synapse (Fig. 2 A). It will be
interesting to visualize the effects of SIRPa polymorphisms
in human (as well as mouse) that have been recently described
(Takenaka et al., 2007).

Synaptic activation of SHP-1 phosphatase by CD47-
SIRPa has been clear, but downstream targets and mechanisms

in phagocytosis inhibition have remained unknown. Deactiva-
tion could have been restricted to membrane receptors, particu-
larly FcyR, but our phosphorylation data indicates otherwise
(Fig. 8). Conceivably, F-actin could have been found to be the
primary target of CD47’s signaling to macrophages because
polymerization alone is sufficient to drive pseudopod extension
and particle internalization (May and Machesky, 2001). We find,
however, that F-actin establishes a basal level of phagocytosis
regardless of CD47. From our sheep versus human comparison
of phosphotyrosine and MS analysis of dephosphorylated pro-
teins, NMM IIA emerged as the major down-regulated spe-
cies (3.3-fold) (Fig. 8 C). This regulation of the myosin heavy
chain differs from the usual regulation through the light chain
(Conti and Adelstein, 2008). Talin, a-actinin, and the actin nu-
cleator mDial also appeared regulated (to a lesser extent), and
all have been implicated previously in phagocytosis (respec-
tively: [(Turner et al., 1989; Greenberg et al., 1990); (Crowley
and Horwitz, 1995; Izaguirre et al., 1999); (Meng et al., 2004;
Brandt et al., 2007)]). Although phospho-paxillin was down-
regulated in our imaging studies, it was not prominent in our
immunoblots and was unaffected by blebbistatin, which other-
wise mimicked CD47’s inhibitory effects (Figs. 5 C and 6 B,
insets). Nonetheless, focal adhesion-type cytoskeletal assem-
blies of paxillin, talin (Niewohner et al., 1997), or even a-actinin
(Sampath et al., 1998) could also contribute to CD47 function,
as these phospho-proteins are also implicated in phagocytosis.
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Figure 10. Phagocytic synapse and CD47’s signaling
in cytoskeleton remodeling. IgG-opsonized target cell or
particle lacking CD47 results binds FcyR which activates
assembly of paxillin, F-actin, and nonmuscle myosin IIA at
the synapse. In contrast, parallel interactions with CD47
signals through SIRPa to inhibit myosin assembly and con-
tractile contributions to efficient phagocytosis.

Engulfment

FcyR-induced tyrosine phosphorylation leads to the
downstream activation of Rac/Cdc42 (Olazabal et al., 2002),
which then signals the recruitment and assembly of F-actin and
a focal adhesion type of structure. Syk is not required because
macrophages from Syk-deficient mice will extend actin-rich
pseudopods around target particles even though FcyR-mediated
phagocytosis is ultimately defective (Crowley et al., 1997).
In comparison, SIRPa-null macrophages engulf IgG-opsonized
mouse RBCs more readily than wild-type macrophages (Okazawa
et al., 2005) and show no major differences in either phospho-
FcyR, or downstream phospho-Syk or phosho-Cbl. Likewise,
in our phagocytosis studies of human versus sheep RBCs, no sig-
nificant difference in phospho-FcyR was detected, and, relative
to phospho-SIRPa and cytoskeletal changes (Fig. 8 C), only
small decreases in phospho-Syk or phospho-Cbl were detected
(Fig. 8 B: 1.3- and 1.5-fold, respectively). Such differences up-
stream could in principle reflect a classical amplification of sig-
naling, but our finding of slight decreases in phospho-Cbl due to
CD47 is perhaps most consistent with the activity of SHP-1
(Kant et al., 2002). The small effect would suggest perturba-
tions to actin assembly; indeed, with CD47-SIRP« interactions
(Fig. 2 D and Fig. 4 B) all suggest a slight tendency toward de-
creased actin polymerization (based on staining with rhodamine-
phalloidin), but the effects on myosin are statistically certain
in comparison.

Past studies of antibody-opsonized beads as targets have
shown that FcyR-mediated phagocytosis is independent of Rho
or ROCK activity while dependent on myosin-II for particle in-
ternalization but not for actin cup formation (Olazabal et al.,
2002). With CD47 on the target, activation of the SIRPa—SHP-1
phosphatase pathway (Vernon-Wilson et al., 2000) could in
principle block engulfment by regulating various kinase or phos-
phatase activities (such as Cbl) or perhaps even by regulating
signaling to NMM IIA. Our immunoblot analysis followed
by LC-MS/MS indeed identified direct phosphorylation of Y8
in this myosin’s self-assembling tail as an ultimate target for
CD47-SIRPa interaction. Mutation of this site disables this
major myosin from contributing to phagocytosis (Fig. 9). More-
over, initial studies of NMM IIA in primary human mesenchymal
stem cells (that are also marrow derived) identify the same site
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as being phosphorylated (unpublished data), and since we have
shown NMM’s contribute in key ways to differentiation of these
adult stem cells (Engler et al., 2006), a general mechanism of
regulation is perhaps emerging. Detailed study of purified point
mutants would certainly help clarify broader effects on myo-
sin assembly/activity, but regulatory roles for specific residues
in the myosin tail region already appear reasonable because:
(1) nearby sequences (aa 1666—1728 and 1914-1961) are involved
in isoform-specific assembly of functional myosin filaments
(Sato et al., 2007), and (2) disease-causing mutations occur
nearby with the charge changes E1841K and R1933X (Heath
et al., 2001). The head and tail of at least some myosin-IIs can
interact to form a compact, diffusible monomer and regulatory
interactions then open up this conformation for polymerization
into filaments (Kudryashov et al., 2002); pY might regulate
such a conformational switch. The only other report of a phos-
photyrosine in NMM IIA suggested pY?”’ is a direct target for
SHP-1 (Baba et al., 2003).

Both phosphotyrosine sites identified here in human myo-
sin are found in mouse, for which CD47’s “self” signaling was
first described (Oldenborg et al., 2000). Both phospho-sites in
NMM IIA are found in other mammalian species as well as in
other proteins (i.e., eight myosin heavy chain proteins share the
head motif and one non-myosin, coiled-coil protein has the tail
motif). In addition, the MS data here indicated that NMM IIA
dominates the B and C myosin isoforms by at least 10-fold
(Table S1, available at http://www.jcb.org/cgi/content/full/
jcb.200708043/DC1), and mouse knockouts of the B and C iso-
forms do not exhibit immune defects whereas the NMM IIA-
null mouse is embryonic lethal as an undifferentiated mass of
cells (Conti et al., 2004). The results here with human cells have
implicated NMM IIA for good reason it seems and thus suggest
that recognition of “self” entails blocking engulfment by turn-
ing off this ubiquitous and essential motor.

Materials and methods

Chemicals

Dulbecco’s phosphate-buffered saline (DPBS) without Ca?* or Mg?* (Invitro-
gen) was supplemented with either 1% BSA or 1% BSA + 0.05% Tween 20
(Sigma-Aldrich). PKH26 (Sigma-Aldrich) hydrophobic dye was used for
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red cell labeling. TBS (Tris-buffered saline) and TTBS (TBS with Tween 20)
were used in Western blotting.

Antibodies

The fluorescein-labeled antibody B6H12-FITC was used against human
CD47 (BD Biosciences). Opsonizing antibodies against human and sheep
RBCs included rabbit anti-human RBCs, and rabbit anti-sheep RBCs
(Sigma-Aldrich); these were used as IgG opsonin in phagocytosis assays.
Antibodies against NMM 1A, actin was obtained from Sigma-Aldrich.
Antibodies against streptavidin coated polystyrene beads (Spherotech) in-
cluded rabbit anti-streptavidin (Sigma-Aldrich) and rabbit anti-streptavidin
conjugated with FITC (Rockland Immunochemicals) used also as IgG opso-
nin in phagocytosis assays. Secondary antibodies used for detecting opso-
nin levels and uningested beads included goat anti-rabbit FITC or goat
anti-rabbit F(ab’); RPE (Sigma-Aldrich). Secondary antibodies used for
detecting SIRPa binding included anti-GST Alexa 488 (Invitrogen). Antibodies
against Syk (SYK-01) were purchased from AbCam, and Phospho-Syk
(Tyr525/526), Phospho c-Cbl (Tyr774), and c-Cbl (2747) were purchased
from Cell Signaling Technology.

Plasmid construction

The plasmid vector containing a cytomegalovirus promoter in pEGFP-C3
containing the DNA fragment encoding aa 1-1961 from NMHC II-A were
obtained from Addgene. The original construct was prepared as described
(Wei and Adelstein, 2000). To generate pCMV-GFP-AC170 encoding aa
1-1791, the original NMHC II-A construct from Addgene was digested
with Aflll-Spel and the purified larger fragment was rendered blunt and
selfligated. pPCMV-GFP-NMHC II-A point mutants Y277F and Y1805F were
mutated by using primers 5-CCTTCCACATCTTCTTTTATCTCCTGTCTGG-3’
and 5’-TCAAGTCCAAGTTCAAGGCCTCCATC-3', respectively; done using
the QuikChange Site-Directed Mutagenesis kit (Stratagene). For convenience
pCMV-GFP-NMHC IIl-A, pCMV-GFP-AC170, and pCMV-GFP-NMHC II-A point
mutants Y277F and Y 1805F will be referred to as GFP-NMM II-A, GFP-AC170,
GFP-Y277F, and GFP-Y1805F, respectively. All constructs were confirmed
by sequencing.

Lentiviral knockdown of NMM IIA in THP-1 cells

ShRNA lentiviral supernatants to NMM IIA purchased from Sigma-Aldrich
were targeting MYH9 (TRC#: TRCN0000029467) encoding NMM IIA.
Further details of these clones are available from the Sigma-Aldrich website.
Target THP-1 cells were infected with lentiviral supernatants at a multiplicity
of infection (MOI) of 10, and then cells with integrated viral sequence were
selected using puromycin (Sigma-Aldrich) at 2 pg/ml and then passaged
with continuous puromycin selection. The degree of NMM IIA silencing was
regularly monitored by both immunofluorescence and Western blotting.
Control cell cultures were generated with control lentiviruses in parallel.

Cell culture and transfection

COS-1, CHOKT1, and THP-1 cells (American Type Culture Collection) were
respectively maintained in DMEM, MEMa, and RPMI 1640 media (Invitro-
gen)—all supplemented with 10% FBS (Sigma-Aldrich). Differentiation of
THP-1 cells was achieved in 100 ng/ml phorbol myristate acetate (PMA)
(Sigma-Aldrich) for 2 d and confirmed by attachment of these cells to tissue-
culture plastic. Peripheral blood monocytes from human donors were ob-
tained through the Human Immunology Core (University of Pennsylvania,
Philadelphia, PA). Human blood was obtained from finger pricks of healthy
donors. Blood from other species was obtained from Covance and washed
3x in PBS plus 0.4% BSA. Sheep and human RBCs were used because of
the different degrees of binding to human SIRP« at saturating levels with
human RBCs having the highest interaction, and sheep RBCs at the lowest
interaction as demonstrated by flow cytometry (Fig. 1 A).

GFP-NMHC |I-A, GFP-AC170, and GFP-Y1805F were transfected
into THP-1 wild-type cells with Effectene (QIAGEN) according to manufactur-
er's instructions. Clones resistant o 400 wg/ml G418 (Invitrogen) were se-
lected. For clones with endogenous NMM IIA shRNA knockdown transfected
with GFP-NMM II-A were resistant to both 400 ug/ml G418 and 2 pg/ml
puromycin. The resulting resistant cells were maintained at 200 pg/ml.

Soluble human SIRP« production

COS-1 cells were transfected with pcDNA3-based vector (Seiffert et al., 1999)
encoding a human SIRPa extracellular domain (variant: NA18949_V10)
(Kharitonenkov et al., 1997) fused to GST using Lipofectamine 2000
(Invitrogen). Secreted SIRPa1-GST (referred to simply as hSIRPa) was affin-
ity purified using Glutathione Sepharose 4B (Amersham Biosciences) and
dialyzed against PBS (Invitrogen). The protein was stored at —20°C with
or without addition of 10% (vol/vol) glycerol (Thermo Fisher Scientific).

Production of recombinant human CD47

Plasmids encoding the extracellular domain of human CD47 were PCR
amplified, digested with Xbal and Sall (New England Biolabs, Inc.), and
ligated to similarly digested vector, pEF-BOS-XB (Vernon-Wilson et al.,
2000), which results in an inframe fusion of CD4d3 + 4-biotin at the C ter-
minus of the extracellular domain of CD47. The above vector containing
the extracellular domain of CD47 was transfected into CHO (—K1) cells
using Lipofectamine 2000 (Invitrogen). Secreted CD47-CD4d3 + 4 was
concentrated using a 10 K MWCO Amicon (Millipore) and biotinylated at
the C terminus using a biotin—protein ligase (Avidity, LLC) and dialyzed
against PBS (Invitrogen). The protein was affinity purified using a mono-
meric avidin (Promega) and dialyzed against PBS (Invitrogen).

Preparation and quantification of CD47 density on polystyrene beads
Streptavidin-coated polystyrene beads of 2.1 pum diameter (Spherotech)
were washed and blocked 3x in PBS plus 0.4% BSA. Biotinylated human
CD47 was attached to streptavidin-coated beads at room temperature for
30 min, washed 3x, and resuspended in PBS plus 0.4% BSA.

The density of human CD47 present on the beads was labeled with
saturating levels of B6H12-FITC and mIAP301-FITC (BD Biosciences), re-
spectively for 30 min at room temperature. Beads were washed and re-
suspended in PBS/0.4% BSA and stored on ice until flow cytometric
analysis. Mean fluorescence intensities were calibrated against uncoated
streptavidin beads labeled with saturating B6H12-FITC/mIAP301-FITC lev-
els (Fig. S2, E and F). The fluorescent intensities were standardized using
Quantum FITC Molecule of Equivalent Soluble Fluorochrome (MESF) units
(Bangs Laboratories). The MESF value for the human CD47 beads was
then divided by the number of fluorophore per antibody to obtain the num-
ber of molecules per bead. The density of CD47 molecules on the streptavi-
din bead was determined for the bead by dividing the surface area (SA)
of the 2.1-um bead (SA = 13.9 um?). The density of CD47 molecules on
human RBCs (SA = 128 um?) was also determined as described for the
CD47 beads.

Binding isotherm for soluble hSIRP« for CD47 coated beads

Human CD47 was attached to the identical density as described above.
The binding isotherm of soluble hSIRPa was performed for different species
over a range of concentration using flow cytometry. Forward scatter, side
scatter, and fluorescence (FL1, FL2, FL3, FL4 channels in logarithmic mode)
were acquired for a least 10* events using a FACScan or FACSCalibur (BD
Immunocytometry Systems). Data points from flow cytometry were plotted
and fitted: the Ky values for human CD47-coated beads was 0.12 pM and
6.9 pM, respectively (Fig. 1 B).

Phagocytosis assay

For phagocytosis assays, macrophages were plated in 4-cm? Laboratory-
Tek Il chambered coverglass (Nalge Nunc International) at 10%/cm?.
Streptavidin polystyrene beads or RBCs were added to macrophages at a
ratio of 20:1 and allowed to incubate at 37°C for 45 min. Non-phagocytosed
beads or RBCs were washed with PBS. Cells were fixed with 5% formal-
dehyde (Thermo Fischer Scientific) for 5 min, followed by immediate re-
placement with PBS. For differentiation of non-internalized beads, beads
were labeled with a primary antibody, rabbit anti-streptavidin (Sigma-
Aldrich) at 1:1,000 in PBS for 20 min at 25°C. A second antibody, anti-
rabbit R-PE (Sigma-Aldrich) was added at 1:1,000 in PBS fo the cells and
incubated for an additional 20 min at 25°C. Cells were then washed with
PBS/0.4% BSA and then quantified by light and fluorescent microscopy.
At least 200 cells were scored per well and experiments were repeated at
least three times. Assays using RBCs as targets, lysis of uningested RBCs
was performed by adding deionized H,O for 60 s, followed by immedi-
ate replacement with PBS/0.4% BSA and fixing with 5% formaldehyde
for 5 min.

For stimulated phagocytosis assays, beads with or without CD47
were incubated with rabbit anti-streptavidin serum and for sheep and hu-
man RBCs with rabbit anti-sheep RBCs and rabbit anti-human RBCs, re-
spectively, as the opsonin. Beads or RBCs were opsonized at the respective
concentration for 30 min at room temperature. In some experiments, human
CD47 was blocked with a F(ab’), monoclonal antibody against CD47. The
Fc fragments of mAb B6H12 were removed by Ficin digestion and separa-
tion by protein A chromatography after 10 min of the addition of opsonin.
Opsonized beads and RBC were washed 2x and resuspended in 50 pl of
PBS/0.4% BSA. Phagocytes were washed with PBS and uningested RBC
was lysed and uningested beads were labeled as described above.

For cytoskeletal involvement at the phagocytic synapse, sheep and
human RBCs were opsonized with rabbit anti-sheep RBCs or rabbit anti—
human RBCs, respectively. Opsonized RBC cells were added to THP-1
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cells, PMA treated, and immediately placed at 4°C for 30 min to synchro-
nize phagocytosis. The temperature of the cells was then immediately in-
creased to 37°C for 10 min and then fixed with 5% formaldehyde for
immunofluorescence. For studies involving blebbistatin (EMD Biosciences),
macrophages were treated for 10 min at 4°C before temperature increase
to 37°C or for 45 min and 37°C. Macrophages treated with DMSO were
used to verify no solvent effects.

Adhesion studies were done as above with incubations at 4°C for
30 min, and then the cultures were fixed and gently washed in PBS to elimi-
nate non-adherent cells. RBCs per phagocyte were then counted.

Quantification of fluorescent infensity

Immunostaining was performed by permeabilization with 0.1% Triton
X-100 in PBS for 20 min before blocking for 1 h with 5% BSA in PBS. Stain-
ing with primary antibodies was performed for 1 h at room temperature in
PBS. After washing, samples were incubated with appropriate PE-conjugated
secondary antibodies (1:1,000). To label cytoskeletal proteins at the phago-
cytic synapse, primary antibodies prepared with Zenon Alexa 488 or
Zenon Alexa 647 Fab Labeling kits (Invitrogen) were labeled for 45 min at
room temperature. Cells were immediately fixed using 5% formaldehyde
for 20 min and washed with PBS. Samples were analyzed by differential
interference contrast (DIC) and fluorescence microscopy.

Images were acquired with an inverted microscope (X7 1; Olympus)
with a 60x (oil, 1.4 NA) objective using a Cascade CCD camera (Photo-
metrics). Image acquisition was performed with Image Pro software (Me-
dia Cybernetics, Inc.). Time-lapse imaging was performed using a heated
stage (lbidi GmbH) at 37°C in normal growth medium. Intensity analysis of
the phagocytic synapse was performed using Image) with a 10 x 2 pm
box. The synapse was aligned at the center of the 10-um length box and
the peak intensity designated as the zero in the distance scale on the plots.
Fluorescence intensity was normalized by setting the cytoplasmic signal to
1 as the base signal, and five randomly selected cells were averaged. Two-
tailed t tests were performed to assess the significance.

Immunoprecipitation and Western blotting

Human phagocytes, THP-1 cells (2 x 10°) were cultured and differentiated
in 6-well plates for 48 h after PMA differentiation. Human CD47 was at-
tached to 2.1-um beads at specific densities as described in the text and
added at a bead-to-cell ratio of 20:1 for 2, 5, 10, and 30 min. After the in-
cubation time, the cells were washed with ice-cold PBS and then lysed on
ice in 400 pl of lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl,
1 mM EDTA, 1% NP-40, 1% protease inhibitor cocktail [Sigma-Aldrich], and
2 mM activated sodium orthovanadate). For immunoprecipitation, whole
lysate was mixed with anti-SIRPa antibody conjugated to agarose (Santa
Cruz Biotechnology, Inc.) at 4°C overnight. Precipitated proteins were sep-
arated on 10% SDS-PAGE (Invitrogen) and transferred to PYDF membrane
for Western blotting, in which phosphotyrosine IgG HRP-conjugated and
anti-SIRPa followed by IgG HRP-conjugated (Santa Cruz Biotechnology,
Inc.) as primary antibodies. For Western blot, macrophage whole lysate or
immunoprecipitated samples were separated on 4-12% SDS-PAGE and
blotted onto PYDF membrane.

Online supplemental material

Fig. ST shows the adhesion frequency of ShRRBC and HuRBC. Fig. S2 shows
the antibody and microbead characterization and demonstrates CD47 and
IgG-opsonin noncompetitive binding; functional interaction of recombinant
CDA47 on beads. Fig. S3 shows that blebbistatin inhibits phagocytosis with
aninhibition constant, K'~ 5 uM. Fig. S4 shows the expression of GFP-NMM
IIA. Fig. S5 shows additional minor signaling differences in THP-1 lysates.
Table S1 lists the proteins in THP-1 cell lysates identified via mass spectrom-
efry in the different gel excised. Online supplemental material is available

at http://www.jcb.org/cgi/content/full /jcb.200708043/DC1.
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