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    Introduction 
 Driving human embryonic stem cells (hESCs) along specifi c 

differentiation pathways remains a signifi cant challenge for 

translational medicine and the development of hESC therapies. 

During early embryology, signaling pathways, such as hedgehog 

(Hh) and Wnt, are critical for human development ( Corbit et al., 

2005 ;  Haycraft et al., 2005 ;  Huangfu and Anderson, 2005 ;  Liu 

et al., 2005 ;  May et al., 2005 ) and, recently, have been shown to 

be mediated by the primary cilium (for reviews see  Michaud 

and Yoder, 2006 ;  Singla and Reiter, 2006 ;  Christensen et al., 

2007 ;  Satir and Christensen, 2007 ). Therefore, in the search for 

mechanisms regulating hESC differentiation, it is vital to fi rst 

establish the existence of primary cilia and the localization of 

signaling components in undifferentiated hESCs. 

 Primary cilia are single, generally nonmotile, cilia with a 

9 + 0 axoneme, differing from the 9 + 2 arrangement of motile 

cilia. Primary cilia are implicated as key cellular sensory structures 

involved in signal transduction and coordination of intra- and 

intercellular signaling pathways (for reviews see  Michaud and 

Yoder, 2006 ;  Singla and Reiter, 2006 ;  Christensen et al., 2007 ; 

 Satir and Christensen, 2007 ). Signaling in primary cilia is thought 

to be initiated by receptors positioned within the cilium and re-

layed through transcription factors, which may become activated 

directly in the cilium or in the cell body via basal body scaffold 

proteins. Specifi c growth factor receptors in the primary cilium, 

such as PDGF receptor- � , enable the cell to respond differentially 

to ligands and to initiate cell division ( Schneider et al., 2005 ). 

 Mutations giving rise to defective primary cilia or improper 

placement of signaling molecules within the cilium result in a 

plethora of clinical manifestations ( Pazour, 2004 ;  Badano et al., 

2006 ). These include obesity, rod – cone dystrophy, renal ab-

normalities, polycystic kidney disease, polydactyly, genital ab-

normalities, learning disabilities, congenital heart disease, hearing 

loss, situs inversus, and Bardet-Biedl syndrome ( Blacque and 

Leroux, 2006 ). In particular, mutations in genes encoding intra-

fl agellar transport proteins impair Hh signaling and result in 

limb bud and neural tube defects, which are similar to those seen in 

Hh signaling mutations ( Corbit et al., 2005 ;  Haycraft et al., 2005 ; 

 Huangfu and Anderson, 2005 ;  Liu et al., 2005 ;  May et al., 2005 ). 

Hh signaling is essential during embryonic development for 

 H
uman embryonic stem cells (hESCs) are potential 

therapeutic tools and models of human develop-

ment. With a growing interest in primary cilia in 

signal transduction pathways that are crucial for embryo-

logical development and tissue differentiation and interest 

in mechanisms regulating human hESC differentiation, 

demonstrating the existence of primary cilia and the local-

ization of signaling components in undifferentiated hESCs 

establishes a mechanistic basis for the regulation of hESC 

differentiation. Using electron microscopy (EM), immuno-

fl uorescence, and confocal microscopies, we show that 

primary cilia are present in three undifferentiated hESC 

lines. EM reveals the characteristic 9 + 0 axoneme. The num-

ber and length of cilia increase after serum starvation. 

Important components of the hedgehog (Hh) pathway, 

including smoothened, patched 1 (Ptc1), and Gli1 and 2, 

are present in the cilia. Stimulation of the pathway results 

in the concerted movement of Ptc1 out of, and smoothened 

into, the primary cilium as well as up-regulation of  GLI1  

and  PTC1 . These fi ndings show that hESCs contain pri-

mary cilia associated with working Hh machinery.

 Human embryonic stem cells in culture possess 
primary cilia with hedgehog signaling machinery 
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hESCs. The presence of this organelle is not limited to specifi c 

culture conditions. HESCs from H1 (male) and H9 (female) lines 

(approved by the National Institutes of Health;  Olivier et al., 

2006 ) were grown on matrigel without feeder cells (described in 

 Yao et al. [2006] ) with serum replacement for 6 d. Primary cilia 

were fi rst identifi ed by immunofl uorescence (IF) markers of 

acetylated tubulin (AcTb) in both H1 and 9 hESCs after 6 d of 

culture in DME:F12 with serum replacement ( Figs. 1 A and 2 A ).   

Primary cilia became more prominent after starvation of hESCs 

by placement in DME:F12 without serum replacement for 24 h 

( Fig. 1 B ). Another hESC line, LRB003 (female; studied in the 

Denmark laboratory and supported by funds independent of the 

National Institutes of Health;  Laursen et al., 2007 ), was cultured 

in monolayers on 0.1% gelatin with conditioned medium from 

cultured human foreskin fi broblasts (hFF), and primary cilia 

were observed after 4 d as the cells entered growth arrest in con-

fl uent colonies in the culture dish ( Fig. 1, D and E ). 

 Confi rmation that the hESCs remained undifferentiated 

was made by IF using the transcription factor OCT-4 ( Fig. 1, 

A, D, and E ) and stage-specifi c embryonic antigen 4 (not depicted). 

Both markers were used to assure undifferentiated hESCs. Anti-

AcTb identifi ed potential primary cilia ( Fig. 1, B and C ) and 

antibodies against tumor rejection antigen 1-85 (Tra-1-85) –

 marked human cells (see  Fig. 3 D ). After 5 d in culture, short 

( � 2 – 3  μ m) AcTb extensions characteristic of primary cilia were 

seen on  � 33% of H1 hESCs (25 cilia/75 cells counted from fi ve 

left – right asymmetry axis, limb and heart development, and 

neurogenesis ( Corbit et al., 2005 ;  Haycraft et al., 2005 ;  Huangfu 

and Anderson, 2005 ;  Liu et al., 2005 ;  May et al., 2005 ). In the 

adult, Hh signaling is involved in stem cell maintenance and 

tissue homeostasis. 

 We hypothesized that primary cilia might be found in 

hESCs, wherein they could play a critical role in hESC differ-

entiation parallel to that in normal early embryogenesis. In this 

study, we demonstrate that primary cilia are a general feature of 

hESC lines and that essential signaling components of the Hh 

pathway are present and functional in primary cilia of undiffer-

entiated hESCs. Transmission electron microscopy (TEM) and 

scanning electron microscopy (SEM) images provide defi nitive 

evidence and reveal novel features of hESCs and their primary 

cilia. To date, this is the fi rst study conclusively showing the pres-

ence of these unique organelles in hESCs by defi nitive confocal 

and electron micrographs of hESC primary cilia and by dynamic 

colocalization of key signaling molecules essential for early 

development and known to be functional in the Hh signaling 

pathway, as was recently demonstrated in primary cilia of cul-

tured mouse fi broblasts ( Rohatgi et al., 2007 ). 

 Results and discussion 
 In this study, we demonstrate that the primary cilium is a dynamic 

ultrastructural feature in three different lines of undifferentiated 

 Figure 1.    Immunolabeling of primary cilia in undifferentiated hESCs.  (A) Characterization of undifferentiated colonies of H1 hESCs grown on matrigel 
for 5 d in DME:F12 with serum replacement. Undifferentiated cells are identifi ed by nuclear colocalization of anti – OCT-4 (OCT-4, green) and DAPI (dark 
blue) in the merged image (light blue). More than 97% of cells on average expressed OCT-4 in a nuclear pattern indicating their undifferentiated state. 
Primary cilia stained with anti-AcTb (tb, red) are indicated by arrows. (B) H1 hESCs grown on matrigel for 5 d in DME:F12 with serum replacement (i.e., 
unstarved), labeled with anti-AcTb (tb, green) to show primary cilia (arrows). (C) H1 hESCs grown on matrigel for the same period of time in DME:F12 
without serum replacement (i.e., starved) for 24 h and labeled with anti-AcTb (tb, green). Primary cilia are indicated by arrows. (D) Characterization of 
undifferentiated colonies of LRB003 hESC grown on 0.1% gelatin with conditioned medium. Undifferentiated cells are identifi ed by nuclear colocalization 
of anti – OCT-4 (OCT-4, green) and DAPI (dark blue) in the merged image (light blue). Anti-AcTb (tb, red) marks the primary cilia (arrows) as well as the 
microtubular network in the cytoplasm. Less than or equal to 95% of the cells were ciliated and positive for OCT-4. Primary cilia are not easily visualized at 
the low resolution images (as shown in the insets). (E) A primary cilium (tb, red, arrow) in undifferentiated LRB003 hESCs emerges from one of the centrioles 
(asterisks) marked with anti-centrin (centrin, green). Nuclear localization of anti – OCT-4 (OCT-4, blue) denotes that the cell has not differentiated. The inset 
shows anti-pericentrin (Pctn, green) marking the centrosome ( ¤ ) at the base of the primary cilium (arrow).   
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surfaces of the cells, which is in contrast to the many microvilli 

that are shorter and have a smaller diameter ( Fig. 2 B ). SEM also 

demonstrated paddle tips at the ends of some primary cilia ( Fig. 2, 

C and D ). Confocal images ( Fig. 2 A ) show the outward orienta-

tion of primary cilium from growth-arrested cells in a monolayer, 

whereas mitotic cells lack a primary cilium ( Pan and Snell, 2007 ). 

 To show defi nitively that the structures are primary cilia, 

we fi xed hESC cultures in situ and processed them for TEM. 

Some colonies were cut parallel to and just above their free sur-

faces to give cross-sectional views of projecting structures, and 

other sections were oriented through the cell bodies perpendicular 

to this direction to show longitudinal views of the cilia and 

their basal bodies. Cross sections near the apical surfaces of 

the cells showed axonemes, which are enclosed by a unit mem-

brane ( Fig. 2 E ). The 9 + 0 pattern can be clearly observed in 

cross sections close to the basal body, as are a disarray of nine 

doublets, including 8 + 1, 6 + 1, and other patterns ( Fig. 2 E ), 

either from the same cell but at different sections along the length 

of the cilia approaching the tip or in different cells at varying 

stages of ciliary growth. One centriole pair can also be observed 

close to the cell surface with a primary cilium growing from one 

of the centrioles ( Fig. 2 F ), which has become the ciliary basal 

body. Primary cilia often emerge from a concavity in the cell, 

different fi elds of colonies on a plate;  Fig. 1 B ). In the remaining 

H1 cells, anti-AcTb was often seen as a single concentrated spot, 

which likely represents a very short cilium of length  < 1  � m. 

When cultures were starved in DME:F12 alone (without serum 

replacement) for 24 h, the AcTb extensions increased in length 

to  � 4 – 6  μ m, and the number of cells with these extensions in-

creased to  � 50% (41/80 cells, counted as the H1 hESCs;  Fig. 1 C ). 

H9 behaved essentially similarly (unpublished data). 

 In the LRB003 hESCs, after  � 7 d in culture and indepen-

dent of starvation, primary cilia with lengths of 5 – 10  μ m emerged 

as solitary organelles from  > 90% of the confl uent cells ( Fig. 1 D ). 

To show unequivocally that cilia were present on undifferenti-

ated LRB003 hESCs, we used triple colocalization with anti-

AcTb, anti – OCT-4, and either anti-centrin or anti-pericentrin 

( Fig. 1 E ). Single primary cilia (labeled by anti-AcTb) were shown 

to emanate from the centrosomes (labeled by anti-pericentrin; 

 Fig. 1 E , inset) of OCT-4 – positive cells and, in particular, from one 

of the two centrioles (labeled by anti-centrin;  Fig. 1 E ), prob-

ably the mother centriole, which also functions as the ciliary 

basal body. 

 SEM of H1 and 9 hESCs (95% OCT-4 positive) revealed 

single AcTb-positive projections  � 4 – 6  μ m in length and  � 0.25  μ m 

in diameter (characteristic of primary cilia) seen at the free 

 Figure 2.    Electron microscopy of hESC primary cilia.  (A) Confocal microscopy of hESCs grown on matrigel in a monolayer viewed from the side (a) and 
the top (b), showing primary cilia (arrows) on undifferentiated hESCs but not on dividing cells (arrowhead). (B) SEM of H1 cells grown for 7 d on matrigel 
in N2/B27-supplemented medium and starved in DME:F12 without serum replacement for the last 24 h of growth. See Online supplemental material for 
details. Primary cilia (arrows) are seen on two adjacent cells among numerous smaller microvilli. (C and D) Enlarged images of primary cilia. Note paddle 
tips. (E) TEM cross sections of primary cilia of H1 and 9 hESCs grown for 7 d on matrigel in N2/B27-supplemented medium and starved in DME:F12 
without serum replacement for the last 24 h before fi xation. The fi rst panel shows the 9 + 0 arrangement, which becomes disorganized along the ciliary 
length as shown on the rest of the panels. (F) TEM longitudinal section of a primary cilium (arrowhead) emerging from one of a pair of centrioles/basal 
bodies. The perpendicular orientation of the basal bodies suggests that the cilium arises from the mother centriole (arrow). A lamellar vesicle (asterisk) is 
seen budding from the cell surface. (G) TEM of lamellar-type bodies secreted by hESCs.   
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Gli transcription factors that enter the nucleus to control differ-

ential processes during early and late embryogenesis. Smo was 

previously reported to be a constituent of nodal cilia, Madin Darby 

canine kidney cell cilia, and other primary cilia ( Corbit et al., 

2005 ;  May et al., 2005 ), and Gli2 was found at the tip of mesen-

chymal primary cilia during limb formation ( Haycraft et al., 2005 ). 

Time-dependent studies in mammalian differentiated cells sup-

port a model in which SHh triggers the removal of Ptc from the 

primary cilium, permitting Smo to enter the cilium and initiat-

ing signaling ( Rohatgi et al., 2007 ). We therefore tested whether 

Smo, Ptc, and Gli2 are present in hESC primary cilia, and we 

followed the movement of Smo and Ptc in and out of the cilium 

upon stimulation by Smo agonist (SAG). The use of SAG to in-

duce activation of SHh signaling has been established by  Chen 

et al. (2002) . In transfected LRB003 hESCs, YFP:Smo strongly 

and almost exclusively localizes to the primary cilium ( Fig. 3 A ).   

The ciliary staining of YFP:Smo was remarkably higher than 

that of anti-Smo ( Fig. 4 A ) because of overexpression of Smo 

from the construct.   Furthermore, with a Gli2-specifi c antibody, 

which may be interpreted as a small depression in the cell ’ s apical 

surface as shown in the SEM ( Fig. 2 D ) and TEM (Fig. S1 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200706028/DC1) 

images. Rarely (in  < 1% of observed cells), two primary cilia 

originate within one cell (unpublished data). A rich array of poly-

somes and cytoplasmic microtubules, running parallel to the api-

cal surface, are seen near the basal body (Fig. S1 A). Immediately 

below this level, a ciliary rootlet emerging from the basal body 

and microfi lament bands of the adherens junctions of the confl uent 

hESCs can be found (Fig. S2). In addition, lamellar-type vesicles 

are observed both intracellularly and extracellularly, adherent to 

the hESC surface ( Fig. 2, F and G ; and Fig. S1 B). 

 Next, we examined whether components of the Hh signal-

ing system were present and functional in the hESC primary cilia. 

It has been reported previously that the sonic Hh (SHh) recep-

tors patched (Ptc) and smoothened (Smo) and their downstream 

effectors Gli1, 2, and 3 are expressed in hESCs ( Rho et al., 2006 ). 

In various cells, upon binding of SHh to its receptor Ptc, Smo is 

activated, which is followed by the processing and activation of 

 Figure 3.    Hh signaling proteins localize to hESC primary cilia.  (A) Localization of YFP:Smo (green) to the primary cilium (tb, red, arrow) in LRB003 hESCs. 
The merged image shows colocalization. Nuclei are stained with DAPI (blue). (B) Immunolocalization of Gli2 (green) to primary cilia (tb, red, arrows) in 
LRB003 hESCs. The merged image shows colocalization. Nuclei are stained with DAPI (blue). Gli data from H1 and LRB003 cells were obtained with 
different antibodies. (C) H1 cells grown for 7 d on matrigel in N2/B27-supplemented medium and labeled for primary cilia (tb, green) and anti-SHh 
(SHh, red). In addition, a z series of a fi eld showing separate SHh labeling (red) located distinctly to the side of the primary cilium (green) is depicted. 
(D) Similar cells labeled with anti – Tra-1-85 (red) and anti-Gli2 (Gli2, green). Arrows indicate punctuate localization of the Gli2 protein (green dots) and 
the inset specifi cally localizes the Gli2 protein (arrowhead) at one end of a primary cilium (tb, red). (E) Anti-SHh (SHh, red) localizes near the base of most 
primary cilia. 33/71 cells possess primary cilia (46.5%), which is consistent with  Fig. 1 C . 22/33 cells with primary cilia (66%) exhibit SHh near their 
base (arrows). SHh also localizes to points not associated with the cilia (arrowheads). The asterisk points to the midbody of cells that have recently under-
gone cytokinesis. These structures are not associated with Hh signaling molecules. (F) Anti-Smo (Smo, red) localizes predominantly to the base of primary 
cilia. This pattern of Smo expression is similar to that observed at 0 and 1 h of SAG stimulation (see  Fig. 4 ). Arrows point to primary cilia (tb, green) and 
arrowheads indicate Smo localization.   
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proteins and their Hh cargoes in hESCs that would establish 

mechanisms of traffi cking. Knockdown experiments, for exam-

ple, using siRNA of KIF3A, would be informative and are pres-

ently underway. 

 The addition of 5  μ M SHh or 10  μ g/ml SAG to H1 hESCs 

for 18 h up-regulated  GLI1  (approximately twofold) and  PTC1  

(approximately fi vefold) mRNA levels compared with baseline 

levels of these components without exogenous ligand stimulation, 

as determined by real-time PCR with GAPDH as an internal 

control ( Fig. 5 ).   As expected,  GLI2  mRNA was essentially non-

responsive. Cyclopamine, a Smo inhibitor ( Lipinski et al., 2006 ), 

modestly inhibited the up-regulation in the presence of inducers 

under the conditions used ( Fig. 5 ).  GLI2  mRNA was not affected. 

These data are consistent with the dynamics of the Hh signaling 

machinery, as described by  Rohatgi et al. (2007) , in differentiated 

cells and, together with the localization studies of Hh signaling 

proteins, support the conclusion that Hh signaling proceeds 

through hESC primary cilia. Whether or not the SHh ligand is 

produced by the hESC and whether the function of the signal is 

to maintain the cells undifferentiated or act as a precursor to 

differentiation remains to be determined. 

 The presence of the extracellular lamellar bodies in un-

differentiated hESCs may also be related to Hh or other signaling 

pathways. Similar vesicles have been reported to be involved in 

we show that Gli2 strongly localizes in a punctuate pattern along 

the entire length of primary cilia but is absent in the nucleus of 

these cells ( Fig. 3 B ). Also, in H1 and 9 hESCs, anti-Gli2 local-

izes to the primary cilia ( Fig. 3, B and D ), whereas Smo local-

izes to the base of  � 3/4 of the cells with primary cilia ( Fig. 3 F ). 

In addition, by fl uorescence immunolocalization, small amounts 

of SHh can be localized near the base of the cilia, which is 

clearly located to the side of the primary cilium ( Fig. 3 C , z series) 

in  � 2/3 of the ciliated H1 cells ( Fig. 3, C and E ). In LRB003 

cells, upon stimulation with SAG, the ciliary level of Smo starts 

to increase beginning at 1 h ( Fig. 4 B ) as compared with 0 h 

( Fig. 4 A ). This is followed by a major accumulation of Smo 

along the length of the cilium at 4 h of SAG treatment ( Fig. 4 C ). 

This infers that translocation of Smo along the cilium is initi-

ated by the docking of Smo at the base of the cilium. The oppo-

site pattern of translocation can be seen for Ptc, which leaves 

the cilium upon SAG stimulation ( Fig. 4, D – F ). This movement 

of Hh components into and out of the cilium ( Fig. 4 ), along with 

the z series showing SHh located to the side of the primary cilium 

( Fig. 3 C ), eliminates the possibility of nonspecifi c antibody 

binding to the centrosome in light of the fact that centrosomes 

never migrate up the cilium. Experiments similar to that described 

by  Orozco et al. (1999)  are planned for the direct viewing of intra-

cellular and ciliary transport of intrafl agellar transport motor 

 Figure 4.    Translocation of Smo and Ptc in and 
out of the primary cilium after SAG stimulation. 
 (A) Localization of anti-Smo (green) to the pri-
mary cilium of LRB003 cells (tb, red, arrows) 
at 0 h of SAG treatment. (B and C) Localiza-
tion of anti-Smo to the primary cilium (arrows) 
at 1 and 4 h, respectively. The insets in A – C 
show high resolution (shifted overlays) of Smo 
(green) in the primary cilium (red). The asterisk 
indicates the base of the cilium. (D) Localization 
of anti-Ptc (green) to the primary cilium (tb, red, 
arrows) at 0 h of SAG treatment. (E and F) Local-
ization of anti-Ptc at 1 and 4 h, respectively, to 
primary cilium (arrows). The insets in D – F show 
high resolution images (shifted overlays) of Ptc 
(green) in the primary cilium (red). Nuclei were 
stained with DAPI.   
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L- glutamine and 15 mM Hepes, supplemented with the serum replacements 
N2 (chemically defi ned supplement containing 1000 mg/liter human trans-
ferrin, 50 mg/liter insulin recombinant full chain, 0.6 mg/liter progesterone, 
161 mg/liter putrescine, and 173 mg/liter selenite; Invitrogen) as 100 ×  con-
centrate of Bottenstein ’ s N2 formulation ( Bottenstein, 1985 ) and B27 (50 ×  
serum supplement designed for the long-term viability of hippocampal and 
other neurons of the central nervous system; Invitrogen), in addition to 20 ng/ml 
of basic FGF (R & D Systems), BSA fraction V, 1% nonessential amino 
acids, 50 U/ml penicillin, 50 ng/ml streptomycin, 1 mM  L- glutamine, and 
1-thioglycerol added for 6 d (as described in detail in  Yao et al. [2006] ) 
and observed by phase microscopy using an inverted light microscope 
(CK40; Olympus). To passage the cells, differentiated cells were scraped in 
PBS under a binocular magnifi er with a Pasteur pipette scraper (elongated and 
twisted using heat), treated with prewarmed collagenase type IV for 5 min to 
detach the hESC colonies, aspirated, concentrated using a macrocentrifuge 
(Eppendorf), and either plated on 6-well tissue culture plates (Thermo Fisher 
Scientifi c) coated with 1:4 matrigel for propagation, on gamma-irradiated 
35-mm glass-bottom microwell dishes (MatTek Cultureware) covered with 1:4 
matrigel for IF, or on carbon-coated glass coverslips on the bottom of each 
well of a 6-well plate covered with 1:4 matrigel for TEM or SEM. The cultures 
were monitored microscopically and at day 6 were either maintained for an 
additional day in the same supplemented medium or starved in plain DME:
F12 for 24 h. The cells were then prepared for IF microscopy using the proto-
col described in IF Microscopy (Albert Einstein College of Medicine). 

 The LRB003 cell line (not approved by the National Institutes of Health) 
was studied, as described in the next section, in the Copenhagen laboratory 
and solely supported by Danish funding agencies (see Acknowledgments). 

 Cell cultures (Copenhagen) 
 The hESC line LRB003 ( Laursen et al., 2007 ) was initially cultured on 35-mm 
dishes (Thermo Fisher Scientifi c) coated with 0.1% gelatin (Sigma-Aldrich) 
on a confl uent layer of mitotically inactivated hFF (Line #CCD-1112Sk; 
American Type Culture Collection). The hESC culture medium consisted of 
the following: knockout DME, 15% knockout serum replacement, 2 mM 
GlutaMAX, nonessential amino acids, 50 U/ml penicillin, 50 ng/ml strepto-
mycin, and 0.1 mM  � -mercaptoethanol (Invitrogen); and 4 ng/ml basic 
FGF (R & D Systems). Cells were maintained in a humidifi ed incubator at 
37 ° C with an atmosphere consisting of 6% CO 2 , 7% O 2 , and 87% N 2 . After 
5 – 7 d of incubation, hESCs were passaged using trypsin (Invitrogen) for ex-
perimental culturing conditions in a feeder-free environment. The cells were 
plated on 16-well glass slides (Thermo Fisher Scientifi c) coated with 0.1% 
gelatin (BD Biosciences) in the absence of hFF. The conditioned media used 
consisted of hFF supernatant and hESC culture media (1:1). 

 IF microscopy (Albert Einstein College of Medicine) 
 hESCs from H1 and 9 cell lines were washed in Dulbecco ’ s PBS without cal-
cium and magnesium (Mediatech, Inc.) at RT, and then fi xed in 3.7% para-
formaldehyde in PBS for 15 min. They were then rinsed three times with PBS, 
incubated in 0.1% Triton X-100 (Sigma-Aldrich) in PBS for 10 min, and 
blocked with 2% BSA in PBS for 1 h at RT or overnight at 4 ° C, and primary 
antibodies (monoclonal anti-AcTb mouse anti – human IgG2b [Sigma-Aldrich]; 

signaling in association with cells with nodal or primary cilia in 

several embryonic tissues. It would be interesting if the lamellar 

vesicles seen here are indeed akin to nodal vesicular parcels con-

taining SHh signals, as described in early embryonic nodal cells 

( Tanaka et al., 2005 ;  Hirokawa et al., 2006 ), or to prominin-1 – 

containing particles of dividing neuroepithelial cells of the 

developing mammalian central nervous system (Dubreuil et al., 

2007). The content of the H1 lamellar vesicles remains to be in-

vestigated further. 

 In summary, defi nitive confocal and transmission electron 

micrographs, coupled with SEM and IF microscopy, conclu-

sively demonstrate the presence of primary cilia with many 

known features in hESCs. For a detailed review of primary cilia 

ultrastructure in differentiated cells, see  Satir and Christensen 

(2007 ). Because Hh signaling pathways of embryological 

development and patterning operate via primary cilia, it is per-

haps not surprising to fi nd Ptc, Smo, and Gli2 localized and po-

tentially functional within the hESC primary cilia. Whether SHh 

is released in cultures before or after differentiation of hESCs is 

unclear, and whether important receptors of other signaling path-

ways, such as Wnt ( Gerdes et al., 2007 ;  Pan and Thomson, 2007 ), 

are localized in hESC primary cilia remains to be determined. 

 Collectively, our results suggest that primary cilia may be 

involved in the regulation and coordination of the fi rst steps of 

hESC differentiation and/or the maintenance of the undifferenti-

ated state/self-renewal. Because hESCs hold promise for the treat-

ment of many diseases and provide an excellent system for 

studying mechanisms involved in early human development, these 

fi ndings provide the groundwork to determine specifi c aspects of 

early differentiation controlled by the machinery of primary cilia. 

This knowledge may ultimately reveal pathways for manipulation 

of hESC differentiation into specifi c cell and tissue lineages. 

 Materials and methods 
 Cell cultures (Albert Einstein College of Medicine) 
 hESCs from H1 and 9 lines (National Institutes of Health approved) were 
maintained in a humidifi ed incubator at 37 ° C with an atmosphere consisting 
of 6% CO 2 , 7% O 2 , and 87% N 2  and were grown on matrigel (BD Bio-
sciences) without feeder cells in DME nutrient mixture F12 (Ham; Invitrogen) with  

 Figure 5.    Up-regulation of mRNAs for Hh com-
ponents in H1 HESCs by SHhN or SAG induction 
as determined by real-time PCR (Materials and 
methods).  A comparison of the relative increase 
in mRNA compared with baseline levels (without 
stimulation) for the respective components is 
shown. This experiment was reproduced twice 
with essentially the same qualitative results, 
and the mean values are shown as numbers 
above each bar with the corresponding stan-
dard error bars, which represent the standard 
error of the mean. Each experiment used three 
pooled samples to obtain suffi cient RNA for 
the technique.   

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/180/5/897/1882909/jcb_200706028.pdf by guest on 09 February 2026



903HUMAN EMBRYONIC STEM CELLS AND PRIMARY CILIA  •  KIPRILOV ET AL.

 RNA purifi cation from H1 hESC lines and real-time quantitative PCR 
(Albert Einstein College of Medicine) 
 After 18 h, RNA was extracted from three pooled wells of H1 hESCs after 
stimulation, pretreated with DNase, and further purifi ed by RNeasy columns 
(QIAGEN). cDNA synthesis was performed using the SuperScript III double-
stranded cDNA synthesis kit (Invitrogen) on a Mastercycler Gradient 
(Eppendorf). Single-stranded cDNA was cleaned on a QIAquick PCR purifi ca-
tion kit (QIAGEN) and 50 ng was used for the PCR quantifi cation. Gene ex-
pression was assayed by quantitative real-time RT-PCR using TaqMan gene 
expression master mix (Applied Biosystems) and TaqMan gene expression 
assay primer and probe sets (Applied Biosystems) of  PTCH1  (Assay ID, 
Hs00181117_m1),  GLI1  (Hs00171790_m1), and  GLI2  (Hs00257977_m1) 
on the iCycler (Applied Biosystems) and normalized using the internal 
control gene human  GAPDH  (FAM/MGB Probe, non – primer limited; Ap-
plied Biosystems), which was used as the endogenous reference in the H1 
hESC line assays. Each sample was run twice in triplicate. PCR reactions 
were run for 40 cycles. The log-linear phase of amplifi cation was monitored 
to obtain threshold cycle values. The comparative threshold cycle method 
was used to determine levels of expression. Absence of primer dimers was 
verifi ed by running the PCR product on a 1.5% agarose gel. 

 Transfection of cells (Copenhagen) 
 800 ng of pSmo:YFP (provided by P. Beachy, Stanford University School of 
Medicine, Stanford, CA) was mixed with FuGene6 (Roche) at 6:1 at RT for 
45 min. Afterward, 16  μ l of the mix was aliquoted to each well containing 
hESC colonies in 100  μ l knockout DME. After 3 h at 37 ° C, the medium 
was replaced with conditioned medium and incubated at 37 ° C for an ad-
ditional 48 h. The cells were fi xed and permeabilized, and anti-AcTb was 
added at 1:10,000 and visualized with Alexa Fluor 568  – conjugated rabbit 
anti – mouse IgG along with DAPI staining. 

 TEM (Albert Einstein College of Medicine) 
 The carbon-coated matrigel-covered samples with hESC colonies of H1 
and 9 cells, respectively, were fi xed with 2.5% glutaraldehyde and 0.5% 
tannic acid in 0.1 M sodium cacodylate buffer, postfi xed with 1% osmium 
tetroxide followed by 2% uranyl acetate, dehydrated through a graded se-
ries of ethanol, and embedded in LX112 resin (Ladd Research Industries). 
Ultrathin sections were cut on a Ultracut UCT (Reichert), stained with uranyl 
acetate followed by lead citrate, and viewed on a transmission electron 
microscope (1200EX; JEOL) at 80 kV. 

 SEM (Albert Einstein College of Medicine) 
 The carbon-coated matrigel-covered samples with hESC colonies of H1 
and 9 cells, respectively, were fi xed in 2.5% glutaraldehyde, 0.1 M sodium 
cacodylate, 0.2 M sucrose, and 5 mM MgCl 2 , pH 7.4, dehydrated through 
a graded series of ethanol, critical point dried using liquid CO 2  in a critical 
point drier (Samdri 795; Tousimis), sputter coated with gold-palladium in a 
sputter coater (Vacuum Desk-2; Denton), and examined in a scanning electron 
microscope (JSM6400; JEOL) using an accelerating voltage of 10 kV. 

 Online supplemental material 
 Fig. S1 shows a transmission electron micrograph of an hESC showing the 
details of lamellar vesicles with a ciliary necklace around a forming pri-
mary cilia. Fig. S2 shows a transmission electron micrograph of a section 
taken just below the cell cortex with a centriole/basal body showing a cili-
ary rootlet and microfi lament bands at the adherens junctions of confl uent 
H9 hESCs. Online supplementary material is available at http://www.jcb
.org/cgi/content/full/jcb.200706028/DC1. 
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purifi ed polyclonal anti –  � -tubulin rabbit anti – human IgG [BioLegend]; puri-
fi ed polyclonal anti-zinc fi nger protein Gli2 rabbit anti – human IgG [Aviva 
Systems Biology]; monoclonal anti – Tra-1-85 mouse anti – human IgG1 
[Millipore]; and PE-conjugated monoclonal anti – stage-specifi c embryonic 
antigen 4 mouse anti – human IgG3 [R & D Systems]) were added in 1:300 
dilution in blocking buffer for 1 h at RT or overnight at 4 ° C. Rabbit anti – 
human Oct-3/4 polyclonal IgG (Santa Cruz Biotechnology, Inc.), rabbit 
anti – human Smo polyclonal IgG (Santa Cruz Biotechnology, Inc.), and rab-
bit anti – human SHh antibody polyclonal IgG (Cell Signaling Technology) 
were used at dilutions of 1:100 in blocking buffer and incubated overnight 
at 4 ° C. The cells were then washed three times in PBS with 5-min incuba-
tions between washes. The secondary antibodies Cy3-conjugated Affi ni-
Pure goat anti – mouse IgG (H + L) and Cy5-conjugated Affi niPure goat 
anti – rabbit IgG (H + L) (Jackson ImmunoResearch Laboratories) were 
added at 1:400 dilution in blocking buffer and incubated for 1 h at RT 
in the dark. All appropriate controls were done for the IF experiments 
described. Negative controls consisted of cells incubated with secondary 
antibody only. The cells were then washed again three times in PBS with 
5-min incubations between washes and taken for IF imaging or stored at 
4 ° C. The cells were incubated in DAPI (1:1,000 dilution) for 15 min in PBS 
before imaging. IF imaging was performed on an inverted (IX70; Olym-
pus) and a confocal microscope (described in detail in Confocal micros-
copy; TCS SP2 AOBS; Leica) and viewed at a fi nal magnifi cation of 600 
using CY3 (red) and 5 (far red) fl uorescence fi lters. A cooled charge-
 coupled device camera (Sensicam QE; Sony) and IP Laboratory software 
(BD Biosciences) were used to capture the images, whereas ImageJ (National 
Institutes of Health) and Photoshop CS2 version 9.0.2 (Adobe) were used 
to view and analyze the data. 

 IF microscopy (Copenhagen) 
 After 1 wk of incubation, hESCs on 16-well glass slides were washed once 
with PBS (136.89 mM NaCl, 2.68 mM KCl, 8.1 mM Na 2 HPO 4 , and 
1.7 mM KH 2 HPO 4 ) and then fi xed with 4% paraformaldehyde for 20 min. 
After three 5-min washes with PBS, the wells were permeabilized with 
0.1% Triton X-100 for 20 min. After three 5-min washes with PBS, the wells 
were blocked with 4% FBS for 45 min. Wells were incubated overnight at 
4 ° C in the following primary antibodies: monoclonal mouse anti-AcTb at 
1:10,000; polyclonal goat anti-pericentrin, polyclonal goat anti-centrin, 
polyclonal rabbit anti-Gli2, polyclonal rabbit anti – OCT-4, polyclonal 
rabbit anti-Ptc (Santa Cruz Biotechnology, Inc.) at 1:200; and polyclonal 
rabbit anti-Smo (MBL International) at 1:200. The next day, cells were 
washed fi ve times with PBS and allowed to stand 5 min, followed by three 
more quick washes with PBS. The cells were incubated 1 h with the follow-
ing secondary antibodies: Alexa Fluor 488  – conjugated goat anti – rabbit 
IgG, Alexa Fluor 488  – conjugated donkey anti – goat IgG, and Alexa Fluor 568  –
 conjugated goat or rabbit anti – mouse IgG (1:600; Invitrogen); and coumarin/
aminomethylcoumarin acetate – conjugated donkey anti – rabbit IgG (Jackson 
ImmunoResearch Laboratories). Secondary antibody incubation was occa-
sionally followed by DAPI incubation. Cells were visualized on a micro-
scope (Eclipse E600; Nikon) with EPI-FL3 fi lters and a cooled charge-coupled 
device camera (MagnaFire; Optronics), and digital images were processed 
using Photoshop. 

 Confocal microscopy (Albert Einstein College of Medicine) 
 Images were collected with a confocal microscope (TCS SP2 AOBS) with 
60 ×  oil immersion optics. Laser lines at 488, 543, and 633 nm for excita-
tion of DAPI, Cy3, and Cy5, respectively, were provided by an Ar laser 
and a HeNe laser. Detection ranges were set to eliminate crosstalk be-
tween fl uorophores. 

 SAG stimulation (Copenhagen) 
 Confl uent cultures of LRB003 cells were incubated in the presence of 1  μ M 
SAG (Qbiogene) for 0, 1, and 4 h, followed by IF microscopy analysis with 
rabbit anti-Smo and anti-Ptc. Primary cilia were visualized with anti-AcTb and 
nuclei with DAPI. All images were taken with equivalent time exposures. 

 Exposure of H1 hESCs to SHhN, SAG, and cyclopamine (Albert Einstein 
College of Medicine) 
 Recombinant human SHh (C24II), amino terminal peptide (SHhN; R & D 
Systems), and SAG were dissolved in PBS containing 0.1% BSA. Cyclopa-
mine (Toronto Research Chemicals) was dissolved in 95% ethanol. SHhN, 
SAG, and cyclopamine, in medium containing 0.5% serum, were applied 
to H1 hESCs in culture (in triplicate) at concentrations of 5  μ M, 10  μ g/ml, 
and 1  μ M, respectively, for 18 h. The exposure time and concentrations 
used were derived from  Lipinski et al. (2006) . 
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