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    Introduction 
 Noncoding RNPs are ancient devices that play fundamental 

roles in the cell. The L7Ae family of proteins comprises a set of 

related RNA-binding proteins that share a homologous RNA 

recognition domain ( Koonin et al., 1994 ). Members of the L7Ae 

protein family occur in both Archaea and Eukarya. They have 

been found in numerous essential RNPs ( Fig. 1 ), including the 

large ribosomal subunit, U4 spliceosomal small nuclear RNP 

(snRNP), box C/D and H/ACA small nucleolar RNPs (snoRNPs), 

small Cajal body RNPs (scaRNPs), telomerase, archaeal small 

RNP, and selenoprotein messenger RNPs (mRNPs). In humans, 

canonical members are ribosomal proteins L7A, L30, 15.5K, 

hNHP2, and SBP2 ( Koonin et al., 1994 ;  Watkins et al., 2000; 

Allmang et al., 2002 ). 

 The snoRNPs play essential roles in ribosomal RNA 

maturation both during the cleavage steps and nucleotide modi-

fi cations (for reviews see  Kiss, 2002 ;  Matera et al., 2007 ). 

The snoRNPs are divided into two major classes: the box C/D 

snoRNPs that catalyze ribose 2 � - O -methylation and the box 

H/ACA snoRNPs that mediate pseudouridine formation. Each 

snoRNP contains a small nucleolar RNA (snoRNA) and a set of 

common snoRNP proteins. The box C/D snoRNPs contain 

15.5K (Snu13 in yeast), Nop56, Nop58, and the methyltrans-

ferase fi brillarin (Nop1 in yeast). Box H/ACA snoRNPs contain 

hNHP2, Gar1, Nop10, and the pseudouridine synthase dyskerin 

(Cbf5 in yeast). Vertebrate cells also contain related RNPs like 

the scaRNPs that also share box C/D or H/ACA RNP proteins. 

Although most scaRNPs are involved in the posttranscriptional 

modifi cation of spliceosomal small nuclear RNAs (snRNAs), 

the telomerase box H/ACA scaRNP functions in telomeric DNA 

synthesis. Selenoprotein synthesis requires cotranslational re-

coding of in-frame UGA codons. In eukaryotes, this process in-

volves the assembly of RNA – protein complexes at specifi c stem 

 R
NA-binding proteins of the L7Ae family are at the 

heart of many essential ribonucleoproteins (RNPs), 

including box C/D and H/ACA small nucleolar 

RNPs, U4 small nuclear RNP, telomerase, and messenger 

RNPs coding for selenoproteins. In this study, we show that 

Nufi p and its yeast homologue Rsa1 are key components 

of the machinery that assembles these RNPs. We observed 

that Rsa1 and Nufi p bind several L7Ae proteins and tether 

them to other core proteins in the immature particles. 

Surprisingly, Rsa1 and Nufi p also link assembling RNPs with 

the AAA + adenosine triphosphatases hRvb1 and hRvb2 

and with the Hsp90 chaperone through two conserved 

adaptors, Tah1/hSpagh and Pih1. Inhibition of Hsp90 in 

human cells prevents the accumulation of U3, U4, and 

telomerase RNAs and decreases the levels of newly synthe-

sized hNop58, hNHP2, 15.5K, and SBP2. Thus, Hsp90 

may control the folding of these proteins during the forma-

tion of new RNPs. This suggests that Hsp90 functions as a 

master regulator of cell proliferation by allowing simulta-

neous control of cell signaling and cell growth.

 The Hsp90 chaperone controls the biogenesis of 
L7Ae RNPs through conserved machinery 
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complex for the U4 snRNP ( Nottrott et al., 2002 ), and RRP9 

(U3-55K in the human) for the B/C motif of the U3 snoRNP 

( Granneman et al., 2002 ). Importantly, the binding of Snu13/15.5K 

is required for association of the other core proteins. For in-

stance, hPRP31 binds neither 15.5K nor U4 snRNA alone, but it 

does bind the 15.5K – U4 complex, in which it directly contacts 

both the RNA and protein ( Liu et al., 2007 ). 

 Although some RNPs can be reconstituted in vitro, in 

living cells they are formed through assembly and maturation 

pathways that are far more complex than initially anticipated 

( Yong et al., 2004; for review see Matera et al., 2007 ). The num-

ber of assembly factors often exceeds the number of proteins 

present in the mature particle. Assembly of most RNPs requires 

dynamic remodeling of the maturing RNP particle, and it is 

often accompanied by a complicated series of transient inter-

molecular interactions involving stably associated core components 

and transiently interacting processing factors. Although RNP 

assembly requires the proper folding of both the RNA and protein 

components, protein chaperones have not yet been implicated 

loops located in the 3 �  untranslated region of selenoprotein 

mRNAs, termed the selenocysteine insertion sequence (SECIS). 

SBP2 specifi cally binds the SECIS element and recruits the 

specialized elongation factor EFsec ( Copeland et al., 2000 ; 

 Fagegaltier et al., 2000 ). 

 Detailed structural information is available for several 

members of the L7Ae family ( Vidovic et al., 2000; Li and Ye, 

2006 ). They bind to a common RNA structure called the K-turn or 

K-loop motif, and binding exposes further interaction surfaces 

on both the RNA and the protein. Thus, upon RNA binding, L7Ae 

proteins recruit additional factors to construct complex RNPs. 

Remarkably, some L7Ae proteins participate in several RNPs. 

This is the case for Snu13/15.5K, which is at the heart of the 

U4 snRNP, box C/D snoRNPs, and a specialized B/C structure 

of the U3 snoRNP ( Watkins et al., 2000 ). Although Snu13/15.5K 

has structurally similar binding sites in these RNAs, it recruits 

different sets of protein partners (or core proteins), such as 

Nop56, Nop58, and fi brillarin in box C/D snoRNPs ( Watkins 

et al., 2002 ), PRP31 and the cyclophilin H – hPRP4 – hPRP3 

 Figure 1.    Composition of L7Ae RNPs.  The various RNPs containing the L7Ae family members (yellow) studied here are depicted. The yeast names are 
indicated below the human names.   
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in fungi, plants, and animals (Fig. S2). To identify the domains 

of Nufi p involved in the interaction with 15.5K, we generated 

several mutants: an N-terminal fragment truncated before its 

Zn fi nger (Nufi p-Nter), a central fragment containing the Zn 

fi nger and the PEP motif (Nufi p-Zn), and a C-terminal region 

(Nufi p-Cter). Y2H tests revealed that the 15.5K interaction domain 

matched the central region containing the PEP motif ( Fig. 2 B ). 

Remarkably, deletion of PEP (Nufi p- � PEP) abolished binding, 

whereas the PEP motif alone was suffi cient for interaction with 

15.5K. To test whether Rsa1 also interacts with Snu13, full-length 

and mutant forms of Rsa1 were tested in Y2H assays ( Fig. 2 B ). 

We found that Rsa1 indeed interacted with Snu13 and that the 

interaction site mapped to its PEP motif. 

 To verify that Y2H interactions refl ected a direct physical 

association of Nufi p and Rsa1 with 15.5K and Snu13, in vitro 

binding assays were performed ( Fig. 2 C ). We found that 15.5K 

translated in vitro in a bacterial S30 lysate interacted with im-

mobilized GST-Nufi p and that recombinant Snu13p produced 

in  Escherichia coli  bound to GST-Rsa1p. 

 To test whether Nufi p associates with 15.5K in human 

cells, we performed co-immunoprecipitation (IP) assays. A con-

struct expressing GFP-15.5K was transfected into HeLa cells, 

extracts were incubated with anti-GFP beads, and the selected 

proteins were analyzed by Western blots. Nufi p was found in the 

GFP-15.5K pellet but not in the control ( Fig. 2 D ). Collectively, 

these results show that Nufi p associates with 15.5K in vivo and 

that Nufi p and Rsa1 are related proteins that physically interact 

with 15.5K and Snu13. 

 Nufi p binds hNHP2 and SBP2 
 The binding of Nufi p to 15.5K prompted us to test whether it 

could also interact with other members of the L7Ae family. 

By using a Y2H system, we tested the interaction of Nufi p with 

the box H/ACA snoRNP core protein hNHP2, with SBP2, which 

associates with mRNAs coding for selenoproteins, and also with 

the human ribosomal protein hL30, another member of this family. 

We found that Nufi p interacted with hNHP2 and SBP2 but not 

with hL30 ( Fig. 2 B ). Although the PEP domain was required 

for these interactions, it was not suffi cient to bind hNHP2, and 

it only weakly bound SBP2. In vitro binding assays confi rmed 

that these interactions refl ected direct physical associations 

( Fig. 2 C ). Next, we transfected HeLa cells with a GFP-hNHP2 

construct, and extracts were immunoprecipitated with an anti-

GFP antibody. Western blot analysis revealed effi cient co-IP of 

Nufi p by GFP-hNHP2 ( Fig. 2 D ). Similarly, when nuclear HeLa 

cell extracts were passed through a column with immobilized 

anti-SBP2 peptide antibodies, we found that Nufi p copurifi ed 

with SBP2 ( Fig. 2 D ). These results show that Nufi p associates 

not only with 15.5K but also with two other members of the L7Ae 

family, hNHP2 and SBP2. 

 Nufi p and Rsa1 form a ternary complex 
with 15.5K/Snu13 and target RNAs 
 Rsa1 was initially found in a Y3H screen with an RNA bait that 

bound Snu13, suggesting that it interacted with an Snu13 – RNA 

complex. To verify this, we reconstituted the complex in vitro 

using gel-shift assays ( Fig. 3 A , left). Snu13 alone could bind 

in this process. Interestingly, some factors involved in yeast 

snoRNP biogenesis have been independently identifi ed as co-

chaperones for Hsp90. Indeed, the R2TP complex, which is com-

posed of Tah1, Pih1, and the two AAA + ATPases Rvb1 and 

Rvb2, is a cochaperone for Hsp90 ( Zhao et al., 2005 ), and both 

Rvb2 and Pih1 are involved in box C/D snoRNP biogenesis 

( King et al., 2001 ;  Gonzales et al., 2005 ), raising the possibility 

that Hsp90 and the R2TP complex are involved in the produc-

tion of box C/D snoRNPs. Although no human equivalent of the 

R2TP complex has been identifi ed, it has been shown that im-

mature human U3 particles contain the homologues of yeast 

Rvb1 and Rvb2 (hRvb1 and hRvb2, also called Tip48 and Tip49; 

 Newman et al., 2000 ). 

 Hsp90 has attracted a lot of interest because it is involved in 

cancer and in the control of nuclear receptors and protein kinases 

( Pearl and Prodromou, 2006; Caplan et al., 2007 ). Hsp90 is highly 

conserved from eubacteria to eukarya and performs essential cel-

lular functions. Compared with other chaperones, Hsp90 has two 

unique features. First, it usually binds target proteins at a late 

stage of their folding in a near-native state. Second, it appears as 

a specialized chaperone that is mainly involved in the control of 

signal transduction. Like other chaperones, Hsp90 recognizes its 

substrate through cochaperones and cofactors. 

 In this study, we describe a conserved molecular machin-

ery for the assembly of RNPs of the L7Ae family. This machinery 

exists in yeast and human cells and is composed of the R2TP 

proteins and an adaptor called Nufi p (Rsa1 in yeast). Remark-

ably, we show that Nufi p holds together the core components of 

the mature RNP and directly links RNP assembly with Hsp90. 

 Results 
 Nufi p and its yeast homologue Rsa1 bind 
15.5K and Snu13 through a short 
peptide motif 
 To characterize new factors involved in box C/D snoRNP bio-

genesis, we performed yeast two-hybrid (Y2H) and yeast three-

hybrid (Y3H) screens. First, we screened a yeast genomic library 

using a minimal U3 B/C motif as bait. Out of 10 4  clones screened, 

we found two positive ones that coded for Rsa1, a nuclear pro-

tein previously found in a synthetic lethal screen with Dbp6 

( Kressler et al., 1999 ). Interestingly, when Rsa1 was tested in 

Y3H against various RNAs, its binding correlated with that of 

Snu13 (Fig. S1, available at http://www.jcb.org/cgi/content/full/

jcb.200708110/DC1), suggesting that it formed a complex with 

Snu13 bound to target RNAs (see the section Nufi p and Rsa1 

form a ternary complex … ). Second, we screened a human liver 

library using 15.5K as bait. Upon screening of 10 7  clones, we 

detected 23 positives, three of which coded for Nufi p, a nuclear 

RNA-binding protein previously shown to interact with nu-

clear isoforms of fragile X mental retardation protein (FMRP; 

 Bardoni et al., 1999 ). No homology between Nufi p and Rsa1 could 

be identifi ed by BLAST search; however, a careful comparison 

of their sequence identifi ed a conserved stretch of 32 amino 

 acids (PEP;  Fig. 2 A ). Although no other homologies could be 

detected between the two proteins, BLAST searches performed 

with this oligopeptide sequence identifi ed potential homologues 
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 Figure 2.    Nufi p and Rsa1 are related proteins that bind L7Ae family members through a short peptide motif.  (A) Alignment of Rsa1 with Nufi p. The con-
served motif, named PEP, is represented. (B) Y2H tests between the indicated proteins. Rsa1, Nufi p, and their various domains are represented by lines. 
Growth on  � Leu  � His  � Trp ( � L  � H  � T) indicates an interaction. (C) GST pull-down experiments.15.5K and SBP2 were translated in vitro in bacterial S30 
lysate and assayed for binding to the indicated recombinant GST fusions. GFP-hNhp2 was translated in rabbit reticulocyte lysate, but similar results were 
obtained with bacterial lysate (not depicted). Snu13 was purifi ed from  E. coli  and stained with Coomassie blue. (D) In vivo co-IP assays. GFP-15.5K and 
GFP-hNHP2 were expressed in HeLa cells and purifi ed with anti-GFP antibodies. Endogenous SBP2 was immunopurifi ed from nuclear HeLa cell extracts 
using antipeptide antibodies. Bound proteins were analyzed by Western blots with anti-Nufi p antibodies. I, input (10% of total); Pt, pellet; NI, preimmune 
control serum; Ct, control beads without antibodies. The sizes of the various products are indicated on the side of the gels.   
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prepared from 293FT cells expressing GFP-Nufi p and RNAs 

coimmunoprecipitated with anti-GFP antibodies and were ana-

lyzed by RT-PCR. Anti-GFP antibodies coprecipitated endog-

enous selenoprotein glutathione peroxidase 4 and type 2 deiodinase 

mRNAs but not the  � -actin mRNA that was tested as a nega-

tive control ( Fig. 3 F ). These results demonstrate that Nufi p 

 associates with box C/D and box H/ACA snoRNAs, a B/C 

RNA, U4, and SBP2 mRNPs. Nufi p binds precursor forms of 

C/D snoRNAs, and binding is dependent on the presence of a 

binding site for 15.5K. Finally, Rsa1 also interacts with U3 pre-

cursors in yeast ( Fig. 3 B ). 

 Nufi p and Rsa1 are required for 
snoRNA biogenesis 
 To further document its role in snoRNA biogenesis, Nufi p 

was depleted from HeLa cells using two different siRNAs 

( Fig. 4 A ). Northern blot analysis showed that depletion of 

Nufi p reduced the level of the endogenous U3 snoRNA by 50%. 

As demonstrated by quantitative PCR (qPCR) analysis, depletion 

of Nufi p had little effect on accumulation of the U4 snRNA. 

Although its depletion slightly reduced the levels of the U14 box 

C/D and U19 box H/ACA snoRNAs, it had a more dramatic 

effect on the accumulation of telomerase RNA that carries an 

H/ACA domain. 

 Next, we investigated the effect of removing Rsa1 in 

yeast. Primer extension analyses showed that the levels of the 

U14 and U3 box C/D snoRNAs were reduced in the  � Rsa1 

strain by 66% and 42%, respectively ( Fig. 4 B ). As in mam-

malian cells, the level of U4 remained almost unaffected, and 

a slight decrease was observed in the levels of box H/ACA 

snoRNAs. To gain further insights into the role of Rsa1, we 

analyzed a truncated version of the U3 snRNA (U3del) that is 

incorporated into snoRNPs with low effi cacy and, therefore, 

accumulates precursor RNPs that are devoid of Nop1, Nop56, 

and Nop58 and are stabilized by La and LSm proteins ( Kufel 

et al., 2000 ). The lack of Rsa1 resulted in a greater accumula-

tion of U3 precursors (three- to fourfold when normalized to 

mature U3del levels;  Fig. 4 C ), indicating a role for Rsa1 in U3 

assembly and maturation. 

 Nufi p and Rsa1 tether 15.5K and Snu13 
to the other core proteins of U4, box C/D, 
and box B/C RNPs 
 Because Nufi p and Rsa1 bound Snu13 and 15.5K and were in-

volved in RNP assembly, we tested whether they could interact 

with other core proteins contained in the mature RNP. In Y2H 

assays (Table S1, available at http://www.jcb.org/cgi/content/

full/jcb.200708110/DC1), we observed that Rsa1 and Nufi p 

associated with yeast and human PRP31, respectively. In addi-

tion, Rsa1 interacted with Nop58, and Nufi p associated with 

U3-55K and fi brillarin. Binding of Nufi p to the endogenous 

Snu13 did not contribute to these interactions because the 

C-terminal domain of Nufi p that does not bind Snu13 and 15.5K 

also interacted with hPRP31, U3-55K, and fi brillarin. To verify 

these results, we performed GST pull-down experiments with 

in vitro – translated  35 S-labeled proteins. In agreement with the Y2H 

results, we found that Nufi p directly bound hPRP31, U3-55K, 

U14 snoRNA, whereas two His-tagged fragments of Rsa1 (N3C1 

and yPEP) did not. However, when Snu13 was added, complexes 

of higher molecular weight were obtained with both Rsa1 frag-

ments. These complexes were supershifted by anti-His antibodies 

( Fig. 3 A ), demonstrating that they contained N3C1 and yPEP. 

To check whether Nufi p could also associate with Snu13 – RNA 

complexes, we used Y3H assays ( Fig. 3 A , right). As expected, 

we found that Nufi p could specifi cally interact with the B/C motif 

in a PEP-dependent manner. These results demonstrate that Nufi p 

and Rsa1 can form ternary complexes with Snu13 bound to RNA. 

 Nufi p associates with U4 snRNA, box C/D 
and H/ACA snoRNAs, a minimal U3 B/C 
RNA, and SBP2 mRNPs 
 To test whether Nufi p also associated with 15.5K RNPs in vivo, 

we performed a series of co-IP assays. First, we analyzed whether 

Nufi p was associated with box C/D snoRNAs. HeLa cells were 

transfected with mouse U8, human U13, and rat U3 genes. 

 Extracts were subjected to IP with anti-Nufi p antibodies, and the 

pellets were analyzed by RNase protection with RNA probes 

specifi c for the 3 � -terminal regions of the test RNAs. The U3, U8, 

and U13 snoRNAs are synthesized from their own promoters, 

and their precursors contain a short 3 �  extension that is trimmed 

during RNP assembly ( Verheggen et al., 2002; Boulon et al., 

2004 ). Remarkably, we observed that Nufi p was associated with 

all precursors and mature forms of U3, U8, and U13 ( Fig. 3 C ). 

Identical results that were obtained with GFP-Nufi p and anti-

GFP antibodies excluded nonspecifi c binding of the antibody. 

To test whether Nufi p also binds snoRNAs processed from introns, 

we transfected HeLa cells with a construct expressing an artifi -

cial C/D snoRNA inserted in the second intron of the  � -globin 

gene (dBB). The anti-Nufi p antibody effi ciently precipitated this 

snoRNA ( Fig. 3 C ), indicating that a C/D motif is suffi cient to 

 direct Nufi p binding. 

 U3 contains two binding sites for 15.5K ( Watkins et al., 

2000 ): the C � /D motif that is equivalent to the C/D motif in other 

snoRNAs and the B/C motif that recruits U3-55K. IP experi-

ments showed that Nufi p bound a U3 mutated in its C � /D motif 

but not a U3 mutant in which both the B/C and C � /D motifs had 

been inactivated ( Fig. 3 C ). 15.5K is also found in U4 snRNP, 

where it interacts with hPRP31 ( Watkins et al., 2000 ). Again, 

co-IP experiments found endogeneous Nufi p and Nufi p-GFP as-

sociated with both endogenous U4 and a transiently expressed 

tagged U4 RNA ( Fig. 3 D ). 

 The interaction of Nufi p with hNHP2 suggested that it 

could also bind box H/ACA snoRNAs. RNAs immuno-precipitated 

with anti-Nufi p antibodies from HeLa cell extracts were thus 

analyzed by RNase protection with probes specifi c for the U19 

H/ACA snoRNA and for the U3 box C/D snoRNA as a control 

( Fig. 3 E ). Nufi p antibodies coprecipitated both U3 and U19 

snoRNAs. Although this assay could not discriminate between 

mature and precursor forms of U19, the fact that Nufi p is ex-

cluded from nucleoli in HeLa cells (unpublished data) is consis-

tent with an association with forms of U19 not yet involved in 

rRNA maturation. 

 As Nufi p was shown to interact with SBP2, we tested 

whether it could also bind selenoprotein mRNAs. Extracts were 
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 Figure 3.    Nufi p binds box C/D and H/ACA snoRNAs, a B/C-containing RNA, U4 snRNA, and mRNAs coding for selenoproteins.  (A) In vitro interactions of 
Rsa1 and Nufi p with Snu13 – RNA complexes. (left) Gel-shift assays show that the Rsa1 N3C1 and PEP domains interact with Snu13 bound to RNA. Radiolabeled 
yeast U14 snoRNA was incubated with the indicated recombinant proteins and anti-His antibodies when indicated. (right) Y3H assays show that Nufi p interacts 
with yU3-B/C RNA in a PEP-dependent manner. Plate  � Leu  � Ura ( � L  � U) shows the growth of the test strain. Growth on  � Leu  � Ura  � His ( � L  � U  � H) 
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 The R2TP complex has not been identifi ed in human 

cells, but a recent analysis of the human Hsp90 proteome 

showed that hRvb1, hRvb2, and the human homologue of 

Pih1 were associated with Hsp90 ( Te et al., 2007 ). This raises 

the possibility that the R2TP complex may also occur and 

function as an Hsp90 cofactor in higher eukaryotes. The yeast 

Tah1 is a small protein mostly composed of two tetratrico-

peptide repeat (TPR) motifs. Given that the human genome 

encodes several TPR-containing proteins, a sequence compar-

ison failed to identify the human functional homologue of Tah1. 

However, upon a closer examination of systematic interaction 

databases, we found that a  Drosophila melanogaster  TPR pro-

tein called Spaghetti had been reported to interact with both 

dHsp90 and dPih1 in Y2H screens ( Giot et al., 2003 ). In addi-

tion, the human homologue of Spaghetti (FLJ21908, hereafter 

named hSpagh) was found in the Hsp90 proteome ( Te et al., 

2007 ), suggesting that it may represent the functional homo-

logue of yeast Tah1. To test this possibility, we generated an 

antibody against hSpagh and performed IP analyses. Indeed, 

we found that hRvb1, hRvb2, and hPih1 were immunoprecip-

itated by this antibody (Fig. S3, available at http://www.jcb.org/

cgi/content/full/jcb.200708110/DC1). 

 To determine whether these proteins associate with as-

sembling U3 particles, we performed co-IP assays. Antibodies 

against Hsp90, hSpag, and hPih1 were used to immunopreci-

pitate their respective proteins from extracts prepared from HeLa 

cells transiently expressing rat U3 snoRNA. The coprecipitated 

RNAs were analyzed by RNase protection ( Fig. 6 A ). Hsp90, 

hSpag, and hPih1 bound precursor and mature forms of U3. 

Similar results were obtained with transiently expressed epitope-

tagged proteins, confi rming that they specifi cally interacted with 

U3 RNA (unpublished data). In similar experiments performed 

with U4 snRNA, we observed that antibodies against hPih1, 

hSpagh, Hsp90, hRvb1, and hRvb2 also coprecipitated the U4 

snRNA ( Fig. 6 B ). 

 To test whether R2TP proteins can interact with other 

RNPs of the L7Ae family, we checked their association with 

SBP2. IP of Hsp90, GFP-Pih1, GFP-hRvb1, and GFP-hRvb2 

coprecipitated SBP2 ( Fig. 6 C ). In addition, endogenous 

hRvb1 coimmunopurifi ed with SBP2 from native HeLa nu-

clear extracts ( Fig. 6 D ). This suggests that these proteins are 

involved in the assembly of SECIS-containing RNPs. Collec-

tively, these data provide a direct and remarkable link between 

the protein folding machinery and assembly of L7Ae RNPs. 

These observations also support the idea that the human homo-

logues of yeast R2TP proteins function as Hsp90 cofactors 

during RNP assembly. 

and fi brillarin ( Fig. 5, A and B ). This suggested that Nufi p can 

tether 15.5K to other core proteins. To test this more directly, 

we introduced it as a bridge in Y2H assays ( Fig. 5 C ). Al-

though 15.5K fused to the Gal4 DNA-binding domain did not 

produce Y2H interactions with fi brillarin, hPrp31, or U3-55K 

fused to the Gal4-activating domain, introduction of Nufi p 

into this strain allowed growth on selective media, indicating 

that the proteins formed a ternary complex. It was unlikely 

that endogenous yeast proteins contributed to the complex be-

cause little cross-reaction was observed between the yeast and 

human proteins in Y2H assays (unpublished data). In particu-

lar, ySnu13 did not interact with hPRP31 and fi brillarin. In ad-

dition, neither transformation of an empty vector nor expression 

of an Nufi p- � PEP mutant produced an interaction. Thus, we 

conclude that Nufi p can tether 15.5K with fi brillarin, hPrp31, 

and U3-55K. 

 Next, we tested whether Nufi p could also link Snu13 –

 RNA complexes to core RNP proteins. Using bridged Y3H 

assays, we found that Nufi p could promote the interaction of 

hPRP31 and a fi brillarin C-terminal domain with yU3B/C RNA 

( Fig. 5 D ). It should be noted that under in vitro conditions, B/C 

RNAs are not competent to form ternary complexes with 15.5K 

and either hPRP31 or fi brillarin ( Schultz et al., 2006 ). This sug-

gests that RNP complexes tethered by Nufi p bind RNA primar-

ily through Snu13/15.5K and that the other core proteins become 

associated by virtue of their binding to Nufi p. Thus, we con-

cluded that Nufi p and Rsa1 could act as adaptors to bridge core 

RNP proteins to Snu13 – RNA complexes. 

 Yeast R2TP proteins function in U3 
assembly, and their human homologues, 
together with Hsp90, associate with 
immature U3 and U4 particles and 
SBP2 mRNPs 
 To defi ne more precisely the function of Nufi p and Rsa1, we 

characterized the composition of immature U3 and U4 parti-

cles in more detail. As described in the Introduction, yeast box 

C/D snoRNP accumulation and localization involve Rvb2 and 

Pih1 proteins that, together with Rvb1 and the yeast Hsp90 

cochaperone Tah1, form the R2TP complex ( Zhao et al., 2005 ). 

To confi rm the role of Pih1 in the assembly of yeast U3 snoRNP 

and to demonstrate that Tah1 is also involved in this process, 

we analyzed the biogenesis of the truncated form of U3 

(U3del) in strains lacking these proteins. As shown in  Fig. 4 C , 

such strains had reduced levels of mature U3 but increased 

levels of U3 precursors, indicating a defect in the formation of 

U3 snoRNP. 

indicates a positive interaction. (B) In vivo association of Rsa1 with U3 precursors in yeast. Extracts from TAP-Rsa1 or wild-type ( � ) isogenic strains were 
purifi ed on IgG beads and analyzed by RT-PCR with primers specifi c for U3 precursors. (C) In vivo interactions of Nufi p with rat U3B.7 and other box C/D 
snoRNAs. HeLa cells were transfected with the indicated snoRNA gene either alone (top) or with an Nufi p-GFP vector (bottom). Extracts were purifi ed with 
anti-Nufi p (top) or anti-GFP (bottom) antibodies or beads as a control, and bound RNAs were analyzed by RNase protection. U3 Δ C �  and U3 Δ C Δ C �  are 
mutated in the C �  and in the C and C �  boxes. dBB is an artifi cial intronic C/D snoRNA (see Results). I, input (10% of total); M*, mature species. 
(D) In vivo association of Nufi p with endogenous U4 snRNA (right) and a transfected, tagged U4 snRNA (left and middle). Legend as in C. (E) In vivo binding 
of Nufi p with H/ACA snoRNAs. HeLa nuclear extracts were immunoprecipitated with anti-Nufi p antibodies and analyzed by RNase protection with the 
indicated probes. Legend as in C. (F) Nufi p associates with mRNAs coding for selenoproteins. Anti-GFP IP of extracts of 293FT cells transfected with SBP2 
alone (lanes Ct) or together with Nufi p-GFP (lane Pt). U3 and  � -actin are positive and negative controls, and type 2 deiodinase and glutathione peroxidase 4 are 
two selenoproteins. Input, 10% of total.   
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 Figure 4.    Nufi p and Rsa1 are required for the production of snoRNAs.  (A) Nufi p is required for the production of U3. HeLa cells were treated with 
siRNA duplexes against Nufi p. Nufi p depletion was verifi ed by Western blotting (top), and the levels of the indicated RNAs were monitored by Northern 
blotting (bottom) or by qPCR (graph). The qPCR values represent ratios of the indicated RNA to GAPDH mRNA and are expressed as fractions of the 
levels obtained with the control siRNAs (Ct). (B) Primer extension was used to measure the levels of small RNAs in yeast cells lacking Rsa1 ( � Rsa1). 
Numbers represent the amount of RNA relative to wild type (W303). (C) Processing of a modifi ed U3del gene was analyzed in strains deleted for Rsa1, Pih1, 
and Tah1 (BY4741 background). This U3 gene accumulates precursor species (I and I � ), and this defect is more pronounced in mutant strains. (left) Northern blot. 
(right) Quantifi cation of each species after normalization to levels in wild-type cells. Error bars represent SD.   
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 Inhibition of Hsp90 reduces the levels of 
newly synthesized U3, U4, and telomerase 
RNA and leads to the loss of 15.5K, 
hNHP2, SBP2, and hNop58 
 The aforementioned interactions suggested that Hsp90 could par-

ticipate in RNP assembly; thus, we tested the effect of inhibiting 

Hsp90 on the production of L7Ae RNPs. The U3 and U4 RNPs 

have very long half-lives in human cells ( Fury and Zieve, 1996 ), 

and they are essential RNPs, making the analysis of cells depleted 

from these RNPs problematic. In addition, inhibition of Hsp90 

for long periods may result in indirect effects as a result of its 

pleiotropic functions. To specifi cally analyze newly synthesized 

RNAs, we thus resorted to a transient transfection approach. 

Human 293 cells were cotransfected with vectors encoding GFP 

as an internal control and either rat U3, tagged U4, or telomerase 

RNAs. 4 h after adding the DNA, cells were incubated with gel-

danamycin, a drug that inhibits the ATPase activity of Hsp90 

and prevents folding of client proteins. After 16 h of treatment, the 

levels of transiently expressed RNAs were measured by RNase 

protection or qPCR. Remarkably, we found that the ectopically 

expressed RNAs under-accumulated in geldanamycin-treated cells 

( Fig. 7 A ), indicating an important role for Hsp90 in the biogene-

sis of these RNPs. Interestingly, the transiently expressed U4 was 

more severely affected than the endogenous RNA, indicating that 

Hsp90 inhibition preferentially affected newly synthesized RNPs. 

This suggests that Hsp90 is involved in RNP assembly rather than 

in the maintenance of already formed RNPs. 

 Because Hsp90 is a protein chaperone, one likely possibil-

ity is that it acts by controlling the folding of core RNP proteins 

or assembly factors. Client proteins for Hsp90 often become un-

stable when its ATPase activity is inhibited by geldanamycin 

( Pearl and Prodromou, 2006; Caplan et al., 2007 ). To test which 

proteins could be Hsp90 substrates, we analyzed the effect of this 

drug on the accumulation of newly synthesized proteins using a 

similar transfection approach. Human 293 cells were cotrans-

fected with vectors expressing GFP-tagged proteins and GFP 

alone as an internal control and were incubated with the drug for 

4 h after adding the DNA, and protein levels were monitored after 

16 h of expression. Remarkably, we found that some GFP-tagged 

proteins failed to accumulate when Hsp90 was inhibited ( Fig. 7 B ). 

This was the case for all L7Ae proteins (15.5K, hNHP2, and 

SBP2) and for hNop58. A mild effect was also seen for hNop56 

and hPrp31, whereas U3-55K, fi brillarin, dyskerin, Nufi p, hPih1, 

hRvb1, and hRvb2 appeared to be unaffected (unpublished data). 

Altogether, this indicates an essential role of Hsp90 in the biogen-

esis of C/D snoRNP, U4 snRNA, and telomerase RNPs. It also 

suggests that Hsp90 acts by controlling the folding of several core 

proteins during RNP assembly. 

 hSpagh links Hsp90 to hPih1 and Nufi p 
 To understand how Hsp90 is recruited to assembling L7Ae RNPs 

and is presented to its potential clients, we analyzed the inter-

actions of the proteins involved by performing systematic Y2H 

interaction assays with the human and yeast proteins ( Fig. 8 A  

and Table S1). Consistent with previous results ( Zhao et al., 2005 ), 

we found that yeast Hsp90 bound Tah1 that, in turn, associated 

with Pih1. Rsa1 appeared to make extensive contacts with 

the R2TP complex, as it interacted with Pih1, Rvb1, and Rvb2. 

For the human proteins, we defi ned a similar set of interactions. 

Hsp90 interacted with hSpagh, which bound hPih1. hSpagh was 

additionally connected to hRvb2 that bound hRvb1. Similar to 

Rsa1, Nufi p was also tightly connected to the human homologues 

of the R2TP proteins because it interacted with hPih1, hRvb1, 

and hRvb2. Interactions between the human proteins were unlikely 

to be mediated by endogenous yeast factors because there was 

little cross-reaction between the yeast and human proteins in Y2H 

assays (unpublished data). To confi rm that the Y2H interactions 

were direct, we performed GST pull-down experiments with pro-

teins translated in vitro in a bacterial S30 lysate. The results con-

fi rmed the interactions of hSpagh with Hsp90, hPih1, and hRvb2 

as well as the association of Nufi p with hPih1, hRvb1, and hRvb2 

( Fig. 8 A ). We conclude that the human R2TP proteins form inter-

molecular interactions similar to those formed by their yeast counter-

parts and that hSpagh can bridge Hsp90 to hPih1 and Nufi p. 

 hPih1 is associated with SBP2, hNop58, 
and hNop56 
 Because yeast Nop58 also forms a Y2H interaction with Pih1, we 

tested whether human Pih1 also binds snoRNP proteins. Indeed, 

hNop58 and hNop56 translated in vitro in a rabbit reticulocyte 

lysate-bound hPih1 in GST pull-down assays ( Fig. 8 B ). However, 

this was not the case when these proteins were translated in a 

bacterial lysate (unpublished data), suggesting that the interaction 

is indirect or requires protein modifi cation. Interestingly, in Y2H 

assays, hPih1 was also able to interact with SBP2 (Table S1). 

The direct physical association of SBP2 and hPih1 was confi rmed 

by in vitro binding assay. SBP2 translated in vitro in a bacterial 

S30 lysate interacted with immobilized GST-hPih1 ( Fig. 8 B ). 

Thus, hPih1 can also interact with hNop58, hNop56, and SBP2. 

 R2TP proteins associate with core 
snoRNP proteins in large cytoplasmic 
complexes 
 To test whether some assembly factors and core RNP proteins 

could associate together within large complexes, HeLa S100 ex-

tracts were separated onto linear 10 – 30% glycerol gradients and 

analyzed by Western blotting ( Fig. 9 A  and Fig. S4, available 

at http://www.jcb.org/cgi/content/full/jcb.200708110/DC1). 

As previously described, hRvb1 peaked in the middle of the 

gradient in complexes  > 670 kD ( Makino et al., 1998 ), and a 

similar pattern was found for hRvb2. Nufi p, hSpagh, hNop58, 

and fi brillarin peaked in slightly lighter fractions but were also 

present in heavier fractions where hRvb1 and hRvb2 accumu-

lated. To test whether this cosedimentation refl ected a physical 

association, these fractions were immunoprecipitated with anti-

fi brillarin antibodies. Indeed, hRvb1 was found to be associated 

with fi brillarin in these large complexes ( Fig. 9 B ). 

 Discussion 
 Assembly of L7Ae-type RNPs involves 
Nufi p and a conserved set of proteins 
 In this work, we have characterized a conserved machinery that is 

involved in the assembly of several L7Ae RNPs, including box C/D 
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 Figure 5.    Nufi p tethers 15.5K to hPrp31, U3-55K, and fi brillarin.  (A) Nufi p interacts with hPp31, U3-55K, and fi brillarin in GST pull-down experiments. 
The indicated proteins were translated in vitro in bacterial S30 lysate and assayed for binding to recombinant GST-Nufi p. I, input (10% of total). Arrows 
indicate the full-length protein. The other bands represent incomplete and read-through translation products that occur in the bacterial lysate. (B) Sum-
mary of the interactions obtained between Nufi p and U4 or box C/D core proteins. Y2H interactions are indicated by arrows, and physical interactions 
observed in GST pull-downs are indicated by straight lines. (C) Nufi p links 15.5K to fi brillarin, hPrp31, and U3-55K in a bridged Y2H assay. Y2H strains 
containing the indicated pAS and pACT test plasmids were transformed with an ADE2 plasmid expressing Nufi p, a mutant lacking the PEP domain, or no 
protein. Transformants were plated on triple or quadruple dropout media. Growth on  � Leu  � Trp  � His  � Ade ( � L  � T  � H  � A) indicates the formation of a 
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L7Ae family members (Snu13/15.5K, hNHP2, and SBP2) through 

Nufi p and Rsa1, and this directs assembly factors onto nascent 

RNPs; (2) it tethers L7Ae proteins to other core proteins, thus likely 

increasing the effi ciency and specifi city of their assembly; and 

(3) it is associated with chaperones of the Hsp90 family, indicating 

that RNP assembly is closely linked to protein folding. 

and H/ACA snoRNPs, the U4 snRNP, and, most strikingly, also the 

SECIS mRNPs that code for selenoproteins. In yeast, this machinery 

is composed of Rsa1 and four R2TP proteins: Tah1, Pih1, Rvb1, and 

Rvb2. In humans, it contains homologues of these proteins: Nufi p, 

hSpagh, hPih1, hRvb1, and hRvb2. This conserved RNP assembly 

machine possesses several remarkable features: (1) it binds several 

complex between the indicated proteins. (D) Nufi p tethers hPRP31 and the C-terminal domain of fi brillarin to yU3B/C RNA. Y3H strains deleted for Rsa1 
were transformed with the indicated plasmid and an ADE2 vector expressing Nufi p, a mutant lacking the PEP domain, or no protein. Growth on quadruple 
dropout media indicates the formation of a complex between the indicated proteins and yU3B/C RNA.   

 

 Figure 6.    Hsp90 and human homologues of R2TP proteins bind U3, U4, and SBP2.  (A) U3. Vectors expressing rU3B.7 were transfected in HeLa cells, extracts 
were immunoprecipitated with the indicated antibody, and RNAs bound to antibody-coated beads or beads alone as a control were analyzed by RNase 
protection. Precursors and mature forms of U3 are indicated by a bar and an asterisk, respectively. I, input (3% of total). (B) U4. Legend as in A except that 
binding was tested against the endogenous U4 RNA. I, input (10% of total). (C) SBP2. 293FT cells were transfected with vectors expressing SBP2 alone or 
with GFP-hPih1, hRvb1-GFP, or hRvb2-GFP, and extracts were immunoprecipitated with anti-GFP (left) or with anti-Hsp90 antibodies (right). Precipitates were 
analyzed with anti-SBP2 antibodies. I, input (5% of total); Pt, pellets. (D) hRvb1 is present in immunopurifi ed SBP2 complexes. HeLa nuclear extracts were 
purifi ed with anti-SBP2 antibodies (Pt) or nonimmune serum (NI) and analyzed by Western blotting with anti-hRvb1 antibodies. I, input (0.5% of total).   
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 Figure 7.    Inhibition of Hsp90 prevents the production of L7Ae RNPs and destabilizes hNop58, 15.5K, hNHP2, and SBP2.  (A) Geldanamycin prevents the 
accumulation of U4, U3, and telomerase RNAs. HeLa cells were cotransfected with a GFP expression vector and either a tagged U4 gene (U4 tag), a rat U3 
gene, or a human telomerase gene and were incubated with 2  � M geldanamycin for 16 h. The RNAs produced were then analyzed by RNase protection 
(left) or by qPCR (right). The different U3 precursors (U3-0 to U3-III) and the mature U3 (U3-m) are indicated. (bottom) Western blots against GFP as controls. 
The graph represents the levels of hTR RNA normalized to levels of GAPDH mRNA and expressed as the fraction of untreated cells. Values are the averages 
of three experiments. The error bar represents SD. (B) Geldanamycin inhibits the accumulation of GFP-15.5K, GFP-hNHP2, GFP-hNop58, and SBP2. 
293 cells were cotransfected with vectors expressing the indicated proteins and GFP as a control and were incubated with 2  � M geldanamycin for 16 h. 
Cell extracts were analyzed by Western blotting with anti-GFP antibodies (left) or with the indicated combination of antibodies. NT, nontransfected cells.   
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 Assembling L7Ae RNPs: a remodeling 
event that involves AAA + ATPases 
and Hsp90? 
 On the basis of the differential stability of immature and mature 

C/D snoRNP complexes toward salt, it has been proposed that 

pre-snoRNPs undergo a remodeling event to yield the mature 

particle ( Watkins et al., 2004 ). Although Nufi p is part of imma-

ture particles, it is absent from mature snoRNPs. Because Nufi p 

is able to tether fi brillarin and hNop58 to 15.5K either directly 

or through hPih1, this suggests that fi brillarin and hNop58 are 

loaded on the assembling particle by virtue of their interaction 

with Nufi p. Thus, the remodeling event that leads to the forma-

tion of the mature particle probably involves the transfer of 

hNop58 and fi brillarin from hPih1 or Nufi p to 15.5K. Similarly, 

in the case of U4 and B/C RNPs, it is tempting to speculate that 

hPRP31 and U3-55K fi rst interact with Nufi p bound to 15.5K – RNA 

complexes and that remodeling transfers hPrp31 and U3-55K 

to 15.5K. 

 It is remarkable that the C-terminal domain of Nufi p also 

binds the AAA + ATPases hRvb1 and hRvb2. This family of 

proteins is known to unfold client proteins, which can be pre-

sented by adaptors, and to drive the dissociation of protein com-

plexes and protein aggregates ( Hanson and Whiteheart, 2005 ). 

The C-terminal domain of Nufi p also binds hPRP31, U3-55K, 

and fi brillarin, and hRvb2 itself binds fi brillarin (Table S1). 

Thus, one possibility would be that Nufi p presents core RNP 

proteins to hRvb1 and hRvb2, which would partially unfold them 

to promote their transfer from Nufi p to 15.5K – RNA complexes. 

Another contrasting possibility would be that hRvb2 brings 

fi brillarin to the nascent RNP and that interaction of this complex 

with Nufi p would trigger its transfer to 15.5K – RNA complexes. 

Hsp90 may also participate in the process by controlling protein 

folding during remodeling. 

 Hsp90, L7Ae RNPs, cell growth, 
and cancer 
 Hsp90 is an essential and ubiquitous chaperone but with a rather 

specialized function in signal transduction ( Pearl and Prodro-

mou, 2006; Caplan et al., 2007 ). In this paper, we show that 

snoRNPs are targets of Hsp90 and that this is likely conserved 

from yeast to humans, which is indicative of an ancient function 

for Hsp90. Hsp90 is tightly linked to human cancer; its over-

expression is a marker for cancer cells, and geldanamycin, a drug 

that specifically targets Hsp90, is a promising treatment for 

cancer ( Pearl and  Prodromou, 2006; Caplan et al., 2007 ). It was 

previously shown that Hsp90 binds and controls the activity of 

hTERT, the telomerase reverse transcription ( Holt et al., 1999 ). 

Here, we show that Hsp90 is also required for accumulation of 

the telomerase RNA, a process that does not require hTERT. 

Thus, formation of an active telomerase is tightly controlled by 

Hsp90, as the chaperone is  required at several steps during 

its biogenesis. 

 It has been proposed that Hsp90 behaves as a master regu-

lator of cell proliferation by controlling many signal transduc-

tion pathways and that this underlies its role in cancers. Our 

results indicate that Hsp90 also controls cell growth through the 

synthesis of new ribosomes, replication through the production 

 Hsp90 is required for RNP biogenesis and 
acts by controlling protein folding during 
RNP assembly 
 Hsp90 plays an essential role in the formation of U3, U4, and 

telomerase RNP, as its inhibition with geldanamycin prevents 

their accumulation. Client proteins for Hsp90 are often de-

graded in cells treated by geldanamycin. We showed that this 

drug inhibits the accumulation of newly synthesized hNop58, 

15.5K, hNHP2, and SBP2, thus suggesting that Hsp90 is re-

quired to chaperone their folding during RNP assembly. One 

possibility would be that these proteins adopt a particular 

conformation when present in the mature RNP complex but 

that this conformation is unstable or prone to aggregation when 

the proteins are unassembled and would thus require Hsp90. 

In this view, the role of chaperones and assembly factors would 

be to stabilize unassembled proteins, to bring them together 

on the nascent RNP, and to facilitate the transition to the mature 

complex. Thus, with the help of scaffolding factors, forma-

tion of an intermolecular complex would mimic intramolec-

ular folding. 

 Although our data are consistent with a role for Hsp90 

during RNP assembly, it is equally possible that it exerts its es-

sential folding activity at an earlier step, before the core pro-

teins bind RNA. In this case, the proper protein fold may be 

stabilized by assembly factors such as hPih1 and Nufi p. It is 

also possible that some proteins like 15.5K bind RNA fi rst and 

that assembly factors and chaperones would then join the na-

scent RNP. Finally, the effect of Hsp90 could be indirect, and 

binding of Hsp90 to U3 precursors may not be functionally rel-

evant or may even be caused by reassociation of the chaperone 

during the extraction or IP procedure ( Kittur et al., 2006 ). 

 We found that hPih1 associates with hNop58 in reticulo-

cyte lysates, which are cytoplasmic extracts devoid of nucleolar 

RNAs. Similarly, Nufi p is bound to 15.5K in cytoplasmic S100 

extracts (unpublished data). Thus, we favor a model in which 

core RNP proteins would follow an assembly line in which 

newly translated proteins would fi rst bind chaperone and co-

chaperone complexes in the cytoplasm and then translocate into 

the nucleus, where they would assemble with nascent RNPs. 

 hSpagh, hPih1, and Nufi p are probable 
cofactors for Hsp90 
 Hsp90 recognizes many of its client proteins through adaptors, 

which frequently interact with the chaperone through their TPR 

domains, as in the case of Tah1 ( Zhao et al., 2005 ) and possibly 

hSpagh as well. We observed that in human cells, RNP assem-

bly factors remain stable when Hsp90 is inhibited, indicating 

that they are Hsp90 cofactors rather than targets. Many such co-

factors are not essential but merely facilitate the recognition of 

client proteins. In agreement, although Tah1, Pih1, and Rsa1 are 

all involved in U3 assembly in yeast ( Fig. 4 C ), they are not 

 essential genes. Interestingly, strains lacking Pih1 and Rsa1 dis-

play a thermosensitive phenotype, suggesting that more chaper-

one activity might be required at higher temperature and may 

render these proteins essential. Thus, rather than being abso-

lutely required for snoRNP biogenesis, Hsp90 might simply 

 ensure effi cient RNP formation. 
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 Figure 8.    hSpagh, hPih1, and Nufi p mediate the interaction of Hsp90 with hNop58, 15.5K, hNHP2, and SBP2.  (A) Interactions between Rsa1, Nufi p, and 
R2TP proteins. (top) Summary of interactions between yeast (left) and human (right) proteins. Y2H interactions are indicated by green arrows, and physical 
interactions observed in GST pull-downs are indicated by blue lines. (bottom) GST pull-down experiments. Legend as in  Fig. 4 . For the interaction between 
hSpagh and hRvb2, a FLAG-hRvb2 fusion was used. (B) SBP2, hNop56, and hNop58 interact with hPih1 in GST pull-down experiments. Legend as in A 
except that hNop56 and hNop58 were translated in rabbit reticulocyte lysates (RR). The schematic summarizes the interactions of SBP2 with Nufi p and 
R2TP proteins (legend as in A).   
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 Materials and methods 
 Cells, plasmids, and antibodies 
 Plasmids were obtained by standard techniques and using Gateway tech-
nology (Invitrogen) with appropriate destination vectors (pACTII, pASII �  � , 

of telomerase RNA, and antioxidant defense through seleno-

protein synthesis. Thus, Hsp90 may coordinate many of the events 

required for cell proliferation, explaining why its inhibition is 

so detrimental to tumor cells. 

 Figure 9.    Nufi p and R2TP proteins are present within large cytoplasmic complexes.  (A) Sedimentation profi le of Nufi p, R2TP proteins, and core snoRNP 
proteins. S100 cytoplasmic extracts were fractionated on 10 – 30% glycerol gradients, and 23 fractions were collected. Fractions 7 (top) – 16 (bottom) are 
shown. The boxed fractions contain all of the analyzed proteins. (B) Fibrillarin associates with hRvb1 within large cytoplasmic complexes. Fractions 12 – 14 
were pooled, immunoprecipitated with fi brillarin antibodies, and analyzed by Western blots with anti-hRvb1 antibodies.   
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washed four times in the same buffer, and RNAs were extracted and 
analyzed by RT-PCR. 

 Purifi cation of endogenous SBP2 complexes 
 HeLa cell lysates (a gift from R. L ü hrmann, Max Planck Institute of Bio-
physical Chemistry, G ö ttingen, Germany) were diluted in IPP250 (250 mM 
NaCl, 20 mM Hepes-NaOH, pH 7.9, 1.5 mM MgCl 2 , 0.5 mM DTT, and 
0.05% NP-40) and incubated for 2 h at 4 ° C with protein A – Sepharose 
(GE Healthcare) charged with affi nity-purifi ed anti-SBP2 peptide antibodies. 
Beads were washed with 120 column volumes, and bound proteins were 
eluted using IPP250 supplemented with 5% glycerol and 0.6 mg/ml peptide. 

 Oligonucleotides 
 The oligonucleotides used in this study for qPCR are as follows: U3 (5 � -TTCTCT-
GAACGTGTAGAGCACCGA and 3 � -GATCATCAATGGCTGACGGCAGTT), 
U4 (5 � -GCTTTGCGCAGTGGCAGT and 3 � -AGCAATAATCGCTCCTCGG), 
U14 (5 � -CCAACATTCGCAGTTTCCACCAG and 3 � -CTCACTCAGACATC-
CAAGGAAGG), hTel RNA (5 � -CTAACTGAGAAGGGCGTAGGC and 
3 � -TGCTCTAGAATGAACGGTGGA), and U19 (5 � -ATGTGGTGCCTGT-
GATGGTGTTAC and 3 � -ACACTGCCCAAAGGTACTCAGCTA). The oligo-
nucleotides used in this study for primer extension are as follows: RTU3 
(GGGTACAAAGGTTAT), RTU14 (TCACTCAGACATCCTAG), RTsnR190 
(CGAGGAAAGAAGAGACACCATTATC), RTsnR42 (TCAAACAATAGGCT-
CCCTAAAGCATCACAA), RTU4 (TAAATTTCAACCAGGGGAAACA CA-
AT CTCGGACGAA), RTtRNA (TGGACGCAACCGGAATCGAACCG), and 
RT7S (CAGGACAAATTTACGACGGAGGAA). 

 Online supplemental material 
 Fig. S1 shows Y3H interactions of Nufi p with various B/C RNAs. Fig. S2 
shows alignment of the Rsa1 PEP sequence with potential homologues in 
various organisms. Fig. S3 shows that hSpagh is associated with hRvb1, 
hRvb2, and hPih1. Fig. S4 shows cosedimentation of R2TP proteins and 
Nufi p in glycerol gradients. Table S1 is a Y2H interaction map of yeast and 
human proteins. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200708110/DC1. 
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