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Binding of cargo sorting signals to AP-1 enhances
its association with ADP ribosylation factor 1-GTP

Intaek Lee, Balraj Doray, Jennifer Govero, and Stuart Kornfeld

Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110

he adaptor protein AP-1 is the major coat protein

involved in the formation of clathrin-coated vesicles

at the trans-Golgi network. The prevailing view is
that AP-1 recruitment involves coincident binding to multi-
ple low-affinity sites comprising adenosine diphosphate
ribosylation factor 1 (Arf-1)-guanosine triphosphate (GTP),
cargo sorting signals, and phosphoinositides. We now
show that binding of cargo signal peptides to AP-1 in-
duces a conformational change in its core domain that
greatly enhances its interaction with Arf-1-GTP. In addition,

Introduction

The adaptor protein complex AP-1 (a heterotetramer composed
of vy, B1, w1, and o1 subunits) plays a major role in the assem-
bly of clathrin-coated vesicles (CCVs) at the TGN, serving to
select and link cargo molecules with the growing clathrin lattice.
AP-1 binds cargo molecules, mainly via two types of sorting
determinants, a tyrosine-based YXX¢ motif (where ¢ is a bulky
hydrophobic residue), which binds to the w1 subunit, and the
dileucine-based [D/E]XXXL[L/I/M] sequence, which binds to the
v/o1 hemicomplex (Traub, 2005). The prevailing model of AP-1
targeting to the TGN ascribes a major role to the small GTPase
ADP ribosylation factor 1 (Arf-1) as the primary docking site
in the initial recruitment step. Activation of Arf-1 involves GTP-
for-GDP exchange, which is catalyzed by guanine nucleotide ex-
change factors, which in turn exposes the covalently linked
myristoyl moiety on the Arf-1 allowing it to insert into mem-
branes. It is thought that the ensuing conformational change in the
membrane-associated GTP-bound form of Arf-1 is what allows
it to weakly associate with and initially recruit AP-1 (Edeling et al.,
2006). Additional components of the TGN, such as phosphoino-
sitides and the cytosolic domains of sorting signal-bearing cargo
proteins, are believed to function together with Arf-1 in providing
a combinatorial targeting mechanism for the Golgi localization
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we provide evidence for cross talk between the dileu-
cine and tyrosine binding sites within the AP-1 core
domain such that binding of a cargo signal to one site fa-
cilitates binding to the other site. The stable association of
AP-1 with Arf-1-GTP, which is induced by cargo signals,
would serve to provide sufficient time for adaptor polym-
erization and clathrin recruitment while ensuring the
packaging of cargo molecules into the forming trans-
port vesicles.

of AP-1. This concept of coincidence detection suggests that the
association of AP-1 with the various TGN components, though
insufficient in themselves, is significantly enhanced through
multiple simultaneous interactions that together result in the
proper membrane targeting of AP-1 (Carlton and Cullen, 2005).
In support of this hypothesis, it has been demonstrated that a
membrane-anchored tyrosine-based sorting signal, together with
myristoylated Arf-1-GTP, constitutes a minimal machinery for
the recruitment of AP-1 to chemically defined liposomes and
that the process can be further stimulated by specific phosphoino-
sitides (Crottet et al., 2002; Baust et al., 2006). This finding that
myristoylated Arf-1 alone cannot recruit AP-1 to liposomes is
indicative of the fact that whatever conformational switch occurs
in the membrane-associated Arf-1 is insufficient for binding AP-1.

An alternate mechanism, which is not mutually exclusive
to the coincident detection hypothesis, is one where sorting sig-
nal binding to AP-1 influences its association with Arf-1-GTP.
To distinguish between these two models, we synthesized soluble
peptides corresponding to known dileucine- or tyrosine-based
sorting signals and determined their effects on the interaction
of AP-1 with activated Arf-1. Our experiments show that both
types of sorting determinants are able to strongly enhance the
AP-1-Arf-1-GTP interaction. We further demonstrate that the
peptide-induced stimulation of this interaction is accompanied
by a conformational change in the adaptor core domain, which
we propose serves to stabilize the association of AP-1 with
Golgi membranes.
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Figure 1. Binding of the CI-MPR ETEWLM peptide to AP-1 stimulates its association with activated Arf-1. (A) Recruitment of CCV-derived AP-1 to soybean
liposomes is greatly enhanced only in the presence of 250 yM ETEWLM peptide (top, compare lanes 5 and 6) even though similar amounts of activated
Arf-1 are found on the liposomes, as seen in the Ponceau stain of the blot (bottom, *). Lane 1 represents 5% of the CCV coat fraction input. (B) Recruitment of
25 nM AP-1 purified from BAC to liposomes is stimulated by the ETEWLM peptide (lanes 5 vs. 7) in a GTPyS-dependent manner (lanes 3 vs. 5). The reactions
contained 4 pM of myristoylated Arf-1, 100 pM GTPyS, and the indicated concentrations of AP-1. Lane 1 represents 20% of the input from the reaction
containing 25 nM AP-1. (C) Pulldown of AP-1 from BBC with both WT GST-Arf-1 and the Q7 1L mutant preloaded with 2mM GTP or 100 pM GTPyS is
dependent on the presence of the ETEWLM peptide. No binding to AP-2 was detected under these conditions. (D and E) Binding of AP-1, purified from
BAC, to GST-Arf-1 is a function of the concentration of the ETEWLM peptide (D) and purified adaptor (E). The AP-1 concentration was kept constant at 25 nM
in D, whereas the peptide concentrations were kept constant at 250 pM in E. The doublet observed on the blots in D and E, and in subsequent experiments
where BAC served as the source of cytosolic AP-1, is the consequence of partial proteolysis of the appendage domain of the «y subunit of AP-1 in our adrenal
cytosol preparations. The vy subunit of AP-1 in our bovine brain CCV coat preparations did not undergo such proteolysis, as shown in A. (F) The dileucine
peptide—dependent binding of AP-1 to activated GST-Arf-1 requires the tetramer because neither hemicomplex bound.

(compare lanes 5 and 6). This recruitment required activated Arf-1,
as no AP-1 association occurred in the absence of myristoylated
Arf-1-GTPyS (Fig. 1 A, lane 4). To rule out the idea that some

Results and discussion

AP-1 binding to Arf-1-GTP is stimulated by

dileucine- and tyrosine-based sorting signals
In considering a possible role for sorting signals in the modula-
tion of AP-1 function at the TGN, we first tested whether a soluble
14-aa peptide molecule corresponding to the cation-independent
mannose 6-phosphate receptor (CI-MPR) internal dileucine-
type sequence (ETEWLM) could affect AP-1 binding to acti-
vated Arf-1 in a liposome recruitment assay. As shown in Fig. 1 A,
recruitment of AP-1 from a CCV coat fraction was greatly in-
creased in the presence of the wild-type (WT) ETEWLM peptide

JCB « VOLUME 180 « NUMBER 3 « 2008

other component of the CCV coat fraction mediated the peptide-
stimulated association of AP-1 with liposome, recruitment assays
were performed with purified AP-1. As in Fig. 1 A, the WT
ETEWLM (Fig. 1 B, lanes 4 and 5), but not the mutant ATEWAA,
peptide (Fig. 1 B, lanes 6 and 7) stimulated recruitment of puri-
fied AP-1 in a GTPyS-dependent manner. The ETEWLM peptide
also stimulated binding of cytosolic AP-1 to Arf-1, immobilized
as a GST fusion protein. Fig. 1 C shows that AP-1 from bovine
brain cytosol (BBC) failed to bind either WT GST-Arf-1 or the
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Figure 2. A tyrosine-based sorting peptide stimulates
binding of AP-1 to Arf-1-GTP. (A) Binding of 25 nM of puri-
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e D G D O oD e loading of GST-Arf-1 in all lanes. (B) Binding of purified
Ponceau AP-1 to activated GST-Arf-1 required a higher concentra-
- « 25D tion of YQTI peptide relative to the ETEWLM peptide to
achieve the same degree of stimulation (lanes 7-12).
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constitutively active Q71L mutant (which is unable to hydro-
lyze GTP) in the presence of GTPyS, which is in agreement
with previous observations that AP-1 and Arf-1 do not interact
in solution (Austin et al., 2000). In contrast, the ETEWLM, but
not the ATEWAA, peptide greatly stimulated binding of cyto-
solic AP-1 to both forms of Arf-1 in a GTPyS-dependent man-
ner (Fig. 1 C, lanes 8—13) or to Arf-1 Q71L in a GTP-dependent
manner (Fig. 1 C, lanes 3-6). There was no binding to AP-2
under any condition, which highlights the specificity of the AP-1
interaction with Arf-1. This effect was dependent on the concentra-
tion of both free peptide (Fig. 1 D) and purified adaptor (Fig. 1 E).
Furthermore, the cargo signal-dependent binding of AP-1 to
Arf-1 requires the tetrameric form of the adaptor complex, as
neither the y/o1 nor 31/p1 hemicomplex bound to GST-Arf-1
Q71L in the presence of the ETEWLM peptide (Fig. 1 F). This
result is consistent with the finding that Arf-1 is cross-linked
to both the y and 31 subunits of AP-1 on immature secretory
granule membranes (Austin et al., 2000), which suggests that

productive binding of AP-1 to activated Arf-1 requires an inter-
action of Arf-1 with both large subunits of the adaptor.

To ascertain if other cargo sorting signals are also func-
tional in our assay, we tested two other soluble peptides, YQTI
and ERRNLL, corresponding to known sorting signals in Lamp1
and Vamp4, respectively (Guarnieri et al., 1993; Peden et al., 2001).
Both the YQTI and ERRNLL peptides, but not the y appendage—
binding WNSF peptide (Bai et al., 2004; Yamada et al., 2005),
stimulated binding of purified AP-1 to GST-Arf-1 (Fig. 2 A).
In our assays, a four to fivefold molar excess of the YQTI pep-
tide was necessary to achieve the same effect in stimulating Arf-1
binding as the ETEWLM peptide (Fig. 2 B, lanes 7-12). It has
previously been demonstrated that the YQTI peptide, when im-
mobilized as a peptidoliposome, is able to recruit purified AP-1
in the presence of Arf-1-GTP (Crottet et al., 2002). Fig. 2 C shows
that a soluble YQTI peptide is also functional in the liposome
recruitment assay in an Arf-1- and GTPvyS-dependent manner
(lanes 2-7).
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Figure 3. The ETEWLM peptide induces a conformational change in cyto-
solic AP-1, as assessed by trypsin sensitivity. Trypsin treatment (5 pg/ml
trypsin for 15 min at 37°C) of AP-1 immunoisolated from BBC cleaved the
maijority of B1 into the trunk domain (81 trunk), whereas the y1 and w1
subunits were not affected under these conditions (lanes 1 vs. 2; Traub et al.,
1995). The presence of the ETEWLM peptide (lanes 4 and 5) but not the
ATEWAA peptide (lane 3) increased the trypsin sensitivity of w1, as shown
by the release of the Cterminal fragment (detected by the RY1 polyclonal
antibody). The B1 trunk (detected by the 100/1 mAb) was slightly more
susceptible to trypsin in the presence of the ETEWLM peptide. When quan-
titated by densitometry (numbers in blots), ~35% of .1 was cleaved in the
presence of the ETEWLM peptide, but not the mutant peptide, under the
conditions used.

Dileucine peptide induces conformational
change in the AP-1 core domain

These findings suggest that binding of sorting signals to the AP-1
core (AP-1 tetramer minus the hinge and appendage domains of
v and 1) may induce a structural change in AP-1 that increases
its affinity for Arf-1-GTP. To test this possibility, limited trypsin
proteolysis of AP-1 immunoisolated from cytosol was performed
under conditions where the majority of the appendage and hinge
domains of 31 adaptin were cleaved but the 31 trunk and the
v and w1 subunits remained intact (Fig. 3, compare lanes 1 and 2;
Traub et al., 1995). In the presence of the ETEWLM peptide,
a significant fraction (35%) of the w1 subunit was sensitive to
proteolysis, as shown by the release of the C-terminal fragment
(Fig. 3, lanes 4 and 5). Furthermore, the 31 trunk fragment under-
went additional proteolysis (Fig. 3, lane 5). The increased tryptic
sensitivity of w1 and the B1 trunk are consistent with a peptide-
induced structural change within the AP-1 core that could facilitate
and stabilize its association with activated Arf-1.

Cross talk occurs between the dileucine-
and tyrosine-based binding sites of AP-1
The crystal structure of the AP-1 core indicates that the YXX¢
binding pocket in the w1 subunit is occupied by a 1 chain
hydrophobic residue, suggesting that a conformational change in

JCB « VOLUME 180 « NUMBER 3 « 2008

the molecule is required to expose the C-terminal half of w1 to
permit unhindered access of a tyrosine-based sorting signal
(Heldwein et al., 2004). We next asked if the conformational
change induced by the ETEWLM peptide is sufficient to allow
binding of AP-1 to an immobilized tyrosine motif, namely the
CI-MPR YSKV motif fused to GST (Fig. 4 A). As expected,
binding of cytosolic AP-1 to GST-YSKV was either extremely
poor or undetectable under our assay conditions (Fig. 4 B, lane 3),
reflecting the functionally closed state of the adaptor in solution.
The presence of the WT, but not the mutant, peptide in the assay
promoted AP-1 binding (Fig. 4 B, lanes 4 and 5), indicating that
the ETEWLM peptide induces the open conformation of AP-1,
allowing its simultaneous association with both activated Arf-1
and cargo molecules.

The internal dileucine signal in the bovine CI-MPR 163-aa
cytoplasmic tail occurs in tandem with the tyrosine-based YSKV
motif (Fig. 4 A). To determine if this ETEWLM sequence in-
deed plays a role in facilitating the interaction of the YSKV motif
with cytosolic AP-1 when it is part of the same molecule, we
initially constructed several truncations within the CI-MPR tail
in the context of a GST fusion protein (Fig. 4 A). Binding of cyto-
solic AP-1 to the various GST tail fusions was unaffected if both
the dileucine- and tyrosine-based motifs remained intact, as in
the GST-A96 construct (Fig. 4, A and C [lane 6]). When the YSKV
motif was mutated to ASKA (GST-A96.YV—AA), a low level
of binding was observed, corresponding to that mediated by the
ETEWLM sequence (Fig. 4 D, lane 4). Mutation of ETEWLM to
ATEWAA (Fig. 4 D, lane 5, GST-A96.E—A.LM—AA) almost
completely abrogated AP-1 binding, but this binding was com-
pletely restored by the addition of the WT but not the mutant
peptide (Fig. 4 D, lanes 7-10). As expected, the ETEWLM peptide
was without effect if both the YSKV and the ETEWLM motifs
were mutated (Fig. 4 D, lane 11). These findings indicate that
the binding of cytosolic AP-1 to the GST-A96 protein is not sim-
ply the consequence of increased avidity when the adaptor mol-
ecule engages the two individual motifs simultaneously. If this
were the case, the soluble ETEWLM peptide would not restore
binding of AP-1 to the GST-A96.E—A.LM—AA fusion protein.
Instead, our results demonstrate that cytosolic AP-1 is indeed in
a closed conformation and that binding of the dileucine sequence
to the y/o'1 hemicomplex serves to reconfigure the 31/ 1 hemi-
complex within the tetramer into a state competent to engage
tyrosine-based sorting signals.

Finally, we investigated whether bidirectional cross talk
occurs between the dileucine-based and tyrosine-based binding
sites within the AP-1 core. As shown in Fig. 4 E, the soluble
YQTI peptide does indeed stimulate binding of AP-1 to GST-A96.
YV—AA, suggesting that binding of the tyrosine-based peptide
to w1 optimizes the y/a'1 hemicomplex for engaging the CI-MPR
dileucine-based signal.

In summary, we present evidence that cargo sorting signal
peptide binding to AP-1 in solution impacts the conformation of
the core domain of the adaptor such that its interaction with Arf-1
is strongly stimulated. Although both the dileucine- and tyrosine-
based sorting signals within the CI-MPR cytoplasmic tail are
able to perform this function, the latter required a markedly
higher peptide concentration to achieve the same effect. This is
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Figure 4. Binding of the ETEWLM peptide to the core domain of cytosolic AP-1 exposes the tyrosine binding site on 1. (A) The bovine CI-MPR cytosolic
tail contains the tyrosine (YSKV) and the dileucine (ETEWLM)-based motifs arranged in tandem as shown. 163, number of amino acids in the CI-MPR cyto-
plasmic tail; A values, amino acids where truncations were made. (B) The lack of AP-1 binding to GST-YSKV (A126) is indicative of the closed structure of
the adaptor in solution (lane 3) (Heldwein et al., 2004). The ETEWLM, but not the ATEWAA, peptide stimulated binding of AP-1 (lanes 4 and 5), indicating
that the dileucine peptide-induced change within the core is sufficient to permit the YSKV motif access to the cargo binding site on C-p.1. (C) The minimal
construct (GST-A96) that displayed AP-1 binding retained both motifs. (D) Mutation of the dileucine motif (GST-A96E—A.LM—AA) abolished AP-1 binding
(lane 5), which is restored by the addition of the ETEWLM but not the ATEWAA peptide (lanes 7 to 10). (E) Bidirectional cross talk occurs between the
dileucine- and tyrosine-based binding sites because the YQTI, but not the AQTA, peptide stimulated binding of AP-1 to GST-A96.YV—AA (lanes 5-7).

likely because the equilibrium of cytosolic AP-1 strongly favors
the conformation in which the tyrosine binding site within w1 is
not accessible. Our data further indicate that binding of the
dileucine motif does not require AP-1 to be in the open confor-
mation but, instead, drives the equilibrium toward this state to
facilitate binding of the tyrosine signal to p.1with a concomitant
increase in affinity for activated Arf-1. This mode of AP-1 acti-
vation to promote coupling of cargo protein selection and coat
nucleation goes well beyond the simple coincidence-detector
role currently ascribed to AP-1. In the latter model, AP-1 seeks
out a combination of low-affinity membrane components, including
Arf-1, phosphatidylinositol lipids, and sorting signals in cargo
proteins, that together create a high-affinity binding site for AP-1
on the membrane (Wang et al., 2003; Baust et al., 2006). Instead,
our results indicate that cargo sorting signals play an active role
in promoting their own sorting into transport vesicles by ensuring
the stable association of AP-1 with activated Arf-1 in a temporally
controlled manner to permit nucleation of coat protein assembly.

A similar mechanism has been proposed for AP-2 and COPII
coat vesicle formation (Springer and Schekman, 1998; Haucke
and De Camilli, 1999), suggesting that the mode of coated vesi-
cle formation along the secretory pathway is more universally
conserved than was previously thought.

Materials and methods

DNA constructs, antibodies, reagents, and peptides

GST-CI-MPRA96 was constructed from the plasmid encoding the 163-aa
bovine CI-MPR tail fused to GST (Zhu et al., 2001) by inserting a stop
codon at amino acid K2403, downstream of the internal dileucine-based
sequence (ETEWLM). GST-A96.YA and GST-A96.E—A.LM—AA were sub-
sequently made by mutating the YSKV and ETEWLM sequences to ASKA
and ATEWAA, respectively. GST-YSKV was constructed by mutating amino
acid E2373, upstream of the ETEWLM sequence, to a stop codon. The GST-A9
and -A71 constructs have been previously described (Ghosh and Kornfeld,
2004). GST-Arf-1 was made by PCR from a cDNA clone (provided by D.
Haslam, Washington University, St. Louis, MO) and inserted into the BamHI
and Xhol sites of the vector pGEXéP1 (GE Healthcare). All mutant con-
structs were made, using primers incorporating the desired mutations,
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with the QuikChange system (Stratagene). All constructs and mutations
were confirmed fo be correct by dideoxynucleotide sequencing.

The anti-n1 subunit polyclonal antibody RY/1 was provided by
L. Traub (University of Pittsburgh School of Medicine, Pittsburgh, PA). The
anti-HA mAb was purchased from Covance, whereas the anti-FLAG-tag mAb
was purchased from Stratagene. The mAbs 100/3 and 100/2 against the
clathrin adaptors AP-1 and AP-2, respectively, were obtained from Sigma-
Aldrich. Anti-ARF mAb 1D9 was purchased from Affinity BioReagents. Trypsin
and -a-phosphatidylcholine from soybeans containing 20% phosphatidyl-
choline were purchased from Sigma-Aldrich. Glutathione Sepharose 4B was
obtained from GE Healthcare, whereas GTPyS was purchased from Roche.
Frozen bovine brain and adrenal glands were purchased from Pel-Freez Bio-
logicals. All peptides were synthesized by Biomolecules Midwest. The amino
acid sequences of the peptides used in this study are as follows (bold, WT
and mutated residues): ETEWLM — CEADENETEWLMEEI (WT CI-MPR
peptide); ATEWAA—CEADENATEWAAEE| (mutant CI-MPR peptide);
YQTI-CRKRSHAGYQTI (WT Lamp1 peptide); AQTA—CRKRSHAAQTA
(mutant Lamp1 peptide); ERRNLL—SVKSERRNLLEDD (WT Vamp4 peptide);
and WNSF—SLDGTGWNSFQSSDAT (WT GGA1 hinge peptide).

Protein expression and purification

All GST fusion proteins were expressed in the Escherichia coli strain BL-21
(RIL; Stratagene) and purified essentially as described previously (Doray
and Kornfeld, 2001). Myristoylated Arf-1 was made by coexpression of
bovine Arf-1 and human N-myristoyltransferase in E. coli strain BL21 (DE3)
as previously described (Liang and Kornfeld, 1997). The expression of the
y1/01A and B1/p1A hemicomplexes in Sf9 cells has been previously
described (Doray et al., 2007). BBC, bovine adrenal cytosol (BAC), and
bovine brain CCVs were prepared from frozen tissue as previously described
(Zhu et al., 1998). AP-1 was purified from BAC by coupling the anti-y sub-
unit mAb 100/3 to cyanogen bromide-activated glutathione Sepharose
4B as previously described (Zhu et al., 1998).

Liposome recruitment and binding assays

AP-1 recruitment assays were performed with soybean liposomes essentially
as previously described (Zhu et al., 1999). GST pulldown assays with BBC
and BAC in assay buffer were performed as previously described (Doray and
Kornfeld, 2001). For insect cell-expressed proteins, typically 100-150 pl of
total cell lysates (5-10 mg/ml) was used for each GST pulldown assay. Typi-
cally, 40% of pellet fractions and 3% of unbound fractions were analyzed by
SDS-PAGE and Western blotting. Nitrocellulose membranes were routinely
stained with Ponceau solution to ascertain equal loadings of fusion protein.

Controlled tryptic digestion

Controlled tryptic digestion of AP-1 was performed using the previously
described procedure (Traub et al., 1995) with some modifications. AP-1
from BAC was first immunoisolated using the 100/3 mAb and protein G-
Sepharose. After several wash steps, protein bound to beads was diluted
into 50 pl of assay buffer containing 5 pg/ml trypsin with either 0.5 or
1 mM of the ETEWLM peptide or 1 mM of the ATEWAA peptide. Samples
were incubated at 37°C for 15 min, after which SDS sample buffer was
added and the samples were boiled before being subjected to SDS-PAGE
and Western blotting.
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