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Dimeric heat shock protein 40 binds radial spokes
for generating coupled power strokes and recovery

strokes of 9 + 2 flagella
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-shape radial spokes regulate flagellar beating.

However, the precise function and molecular mech-

anism of these spokes remain unclear. Interestingly,
Chlamydomonas reinhardtii flagella lacking a dimeric
heat shock protein (HSP) 40 at the spokehead-spokestalk
juncture appear normal in length and composition but
twitch actively while cells jiggle without procession, re-
sembling a central pair (CP) mutant. HSP40™ cells begin
swimming upon electroporation with recombinant HSP40.
Surprisingly, the rescue doesn’t require the signature DnaJ
domain. Furthermore, the His-Pro-Asp tripeptide that is

Introduction

The axonemes in cilia and flagella are microtubule-based super
complexes constructed from hundreds of different polypeptides.
In general, proteins belonging to each molecular complex are
synthesized and assembled into precursors in the cell body be-
fore they are delivered into flagella by intraflagellar transport
toward the tip of flagella (Fowkes and Mitchell, 1998; Qin et al.,
2004). One central question that remains to be answered is how
these precursors are assembled into the macromolecular frame-
works, which not only support these organelles but, in the case
of 9 + 2 cilia, act as eukaryotic nanomachines that generate
powerful propulsive force with alternate power strokes and re-
covery strokes in the viscous aqueous environment.

Molecular chaperones responsible for various protein-
folding events are among the top contenders for the assembly of
axonemes. Chaperones, including heat shock protein (HSP) 60,
70, and 90, are present in cilia and flagella (Bloch and Johnson,
1995; Stephens and Lemieux, 1999; Seixas et al., 2003). Also
present are J proteins (Ostrowski et al., 2002; Pazour et al., 2005;
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essential for stimulating HSP70 adenosine triphospha-
tase diverges in candidate orthologues, including human
DnaJB13. Video microscopy reveals hesitance in bend
initiation and propagation as well as irregular stalling
and stroke switching despite fairly normal waveform. The
in vivo evidence suggests that the evolutionarily conserved
HSPA40 specifically transforms multiple spoke proteins into
stable conformation capable of mechanically coupling
the CP with dynein motors. This enables 9 + 2 cilia and
flagella to bend and switch to generate alternate power
strokes and recovery strokes.

Satouh et al., 2005; Yang et al., 2005), the obligatory cochaper-
ones that assist HSP70 ATPases in recruiting protein substrates
and stimulating ATP hydrolysis with the signature DnaJ domain
(for review see Craig et al., 2006).

The disparate numbers and locations of HSP70s and
J proteins, however, suggest that the dynamic interplay and the
functional mechanism of the chaperone machinery in these or-
ganelles may differ from the norm. For example, proteomic
studies of Chlamydomonas reinhardtii flagella revealed multi-
ple peptide hits for at least three HSP70s but only a single
J protein (Pazour et al., 2005). The most well characterized of the
HSP70s, HSP70A may be enriched at the tip of flagella (Bloch
and Johnson, 1995), where assembly of axonemes primarily
occurs (Rosenbaum and Child, 1967; Dentler and Rosenbaum,
1977; Johnson and Rosenbaum, 1992), implicating HSP70A in
ciliogenesis. In addition, a fraction of HSP70A is constitutively
associated with the C1b central pair (CP) projection that an-
chors enzymes for ATP synthesis (Mitchell et al., 2005). Ironi-
cally though, the sole J protein is located in a different complex,
the T-shaped radial spokes (RS) that were known for motility
control rather than protein folding (Yang et al., 2005).

The spoke J protein is RS protein (RSP) 16, one of the
spoke-specific components. It is also present in the RS of sperm
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flagella in Ciona intestinalis, a deuterostome (Satouh et al., 2005).
Notably, both contain all of the molecular modules characteristic
of type I J proteins (HSP40s), including the signature DnaJ
domain with the His-Pro-Asp (HPD) tripeptide essential for stimu-
lating HSP70 ATPase activities, the G/F region, and the DnaJ
C domain for peptide binding and dimerization, but both lack the
cysteine-rich domain in type I HSP40 (Fig. 1 A). In addition,
RSP16 undergoes homodimerization (Yang et al., 2005) as ex-
pected of HSP40s, which assume a U-shape-like dimeric con-
formation critical for protein binding (Sha et al., 2000; Borges
et al., 2005). Consistent with the transient interaction between
J proteins and client substrates, RSP16 homodimer is transported
into flagella separately from the 12S spoke precursors, which
are first preassembled in the cell body and contain the other
identified RSPs (Qin et al., 2004; Yang et al., 2005). The major
distinction is that J proteins usually dissociate from client poly-
peptides after folding, whereas RSP16 becomes integrated into
the mature 20S spoke complex in the axonemes.

Comparison of protein defects in spoke mutants suggests
that spoke HSP40 likely interacts with RSP2, a DPY-30 domain
protein, and RSP23, a nucleoside diphosphate kinase (Fig. 1 B).
The levels of these three proteins are diminished in the C. rein-
hardtii RSP2 mutant pf24, in which the spokehead and head end
of the stalk appear defective, whereas they are normal in mutants
lacking only the spokehead (Huang et al., 1981; Patel-King et al.,
2004; Yang et al., 2004, 2005). These findings, along with immuno-
gold electron microscopy (Satouh et al., 2005), suggest that the
trios are stalk proteins, possibly forming a subcomplex located
at the head—stalk juncture of the spoke.

The addition of HSP40 underneath the spokehead sug-
gests that HSP40 is involved in either the assembly or func-
tion of the head domain. The importance of spokeheads and RS
is verified by the C. reinhardtii mutants. Flagella defective in
spokeheads only or in entire spokes are paralyzed similarly
(Huang et al., 1981), suggesting that spokeheads mediate a cen-
tral function of the entire complex. Notably, RS tilt and lengthen
(Fig. 1 B, 6 and 9) slightly only at the bend of cilia, suggesting
that RS engage CP transiently and strain occurs during the
engagement (Warner and Satir, 1974; Goodenough and Heuser,
1985). It is postulated that the transient engagement is a part of
the mechanical feedback converting dynein-driven interdoublet
sliding into local bend formation and propagation (Warner and
Satir, 1974) or switching opposing active outer doublets to
generate oscillatory beating with planar waveform (Satir and
Matsuoka, 1989; Yagi et al., 1994; Sakakibara et al., 2004;
Yokoyama et al., 2004; Lechtreck and Witman, 2007; Lindemann,
2007; Lindemann and Mitchell, 2007). Possibly, the engage-
ment enables the distribution of the signal between the asym-
metrical CP through RS and specific subsets of outer doublets
(Mitchell, 2003; Wargo and Smith, 2003). Genetic and biochemi-
cal evidence suggests that the CP and RS constitute a control
system governing dynein motors through dynein regulatory
complex on the outer doublets as well (Huang et al., 1982;
Piperno et al., 1994). The prediction was further supported by the
structural contiguity among these molecular complexes by elec-
tron microscopy and tomography (Gardner et al., 1994; Nicastro
et al., 2006). In addition, the second messengers that change
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Figure 1. Schematic picture depicting spoke HSP40 and the radial spoke
in the 9 + 2 axoneme. (A) Spoke HSP40 contains the signature domains
of the type Il HSP40. (B) A model highlights the predicted position of
HSP40 relative to RS, CP, and the dynein motors. Outer and inner dynein
arms (ODA and IDA) power the interdoublet sliding that is subsequently
converted to bend and oscillatory beating. It is postulated that the conver-
sion is locally controlled by transient interactions of RS with CP resulting
in tilt (8), lengthening (3), and strain of the engaged RS (Warner and
Satir, 1974). The shape and size of the spoke HSP40 homodimer are
largely based on the U-shaped dimeric type Il HSP40 SIST (3 x 7 x 9 nm;
Sha et al., 2000) relative to the ~40-nm-long RS (Witman et al., 1978).
Dimeric HSP40 possibly interacts with RSP2 and/or RSP23 (2 and 23,
gray ovals) underneath the bulbous spokehead. The latter two are de-
picted as homodimers as well, based on the predicted resemblance of their
DPY-30 domain to the homodimerized Rlla domain of cAMP-dependent
protein kinase. The unfilled circles in the spokehead represent the five
head proteins.

flagellar beating may partly act through the control system (for
review see Porter and Sale, 2000).

Despite the predicted key role and mechanism, motile 9 + 0
cilia and reactivated paralyzed flagella indicate that CP-RS is
not required for the oscillatory beating or asymmetrical wave-
form (Omoto et al., 1996; Wakabayashi et al., 1997; Yagi and
Kamiya, 2000). The question is what the proposed control sys-
tem of CP-RS actually contributes to a basic nine outer dou-
blets that could already beat. Studies of suppressors and in vitro
reactivation primarily revealed their role in generating asym-
metrical waveform for powerful propulsive force (Brokaw
1982; Hosokawa and Miki-Noumura, 1987; White et al., 2005),
although mutant axonemes with impaired CP or RS could be
reactivated to beat with asymmetrical waveform under altered
conditions (Wakabayashi et al., 1997). Conversely, phenotypes
of various CP and RS mutants, ranging from paralysis, jiggling,
partial swimming, or reduced beat frequency (Dymek et al.,
2004; Yokoyama et al., 2004; Mitchell et al., 2005; Yang and
Yang, 2006; Lechtreck and Witman, 2007; for review see Smith
and Yang, 2004), argue for a broader role but have not yet shed
light on the proposed mechanism. One major challenge for
interpreting the motility mutants is that the molecules involved
in the CP-RS interactions have not been identified. Furthermore,
most of the existing mutants of single-gene mutations are defec-
tive in multiple, possibly coassembled, proteins, resulting in loss
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of an entire complex, a part of the complexes, or absence of
engagement. The ideal mutants are defective in a single protein
and retain partial CP-RS interactions.

We reason that reverse genetics of spoke HSP40 could
address this problem because the molecule is not coassembled
with the other RSPs in the cell body and the spoke complex is
quite stable (Yang et al., 2005). An RNAI strategy is taken to
determine the roles of spoke HSP40 in the assembly and func-
tion of RS complex, in ciliogenesis, and in flagellar HSP70s.
The phenotypes from the seemingly single-protein defect pro-
vide the in vivo evidence supporting the central role of the con-
trol system and shed light on molecular chaperones in cilia
and flagella.

Results

Generation of RSP16 RNAIi strains
Vector-based RNAi was performed to knock down RSP16.
To create a hairpin construct, RSP16 genomic DNA from exon 6
to 7 and the corresponding cDNA were ligated in opposite ori-
entation flanking a 400-bp Arabidopsis thaliana EARLI] gene
(Bubier and Schlippi, 2004). The hairpin fragment was inserted
into the pSI103 plasmid upstream of the paromomycin (PMM)-
resistant aphVIII cassette (Fig. 2 A). The rationale of this design
was to use the promoter activity (Fig. 2 A, double-headed arrows)
of the Rubisco 3’ untranslated region in the cassette (Sizova
et al., 2001) to drive the transcription of the hairpin-containing
400-bp double-stranded RNA and two loops from the sixth
intron and antisense strand of EARLII fragment. The hairpin con-
struct was confirmed by restriction digest and sequencing.

The construct was transformed alone or cotransformed
with pSI103 into wild-type cc124 cells and the transformants
selected by PMM resistance. The resistant clones were first
screened for flagellar phenotypes because presence of RNAi
transgenes in C. reinhardtii frequently failed to cause sufficient
protein reduction (Rohr et al., 2004). All of the colonies from
the single transformation swam like the parental strain, whereas
in the cotransformation group, four flagellar phenotypes could
be distinguished among 400 resistant strains collected from two
independent experiments, including three clones that had en-
tirely paralyzed flagella (Fig. 2 B, P), four that had flagella that
twitched actively (Fig. 2 B, T), and at least five that didn’t have
flagella (Fig. 2 B, N). The cell body extract from these strains
and a swimmer (Fig. 2 B, S) was assessed by Western blots.
The RSP16-enriched wild-type axoneme was the positive control
(Fig. 2 B, arrow). Despite the pronounced 50-kD protein (Fig. 2 B,
arrowhead) and others that were also recognized by anti-RSP16
serum, the 40-kD RSP16 was not discernable in the four clones
with twitching flagella but was detectable in the other trans-
formants. Importantly, RSP16 was not detectable in ~20-ug
axonemes from all four twitching clones in contrast to the
obvious bands in 20- or 5-ug wild-type axonemes (Fig. 2 C,
compare top and middle blots). Quantification of RSP16 levels
in the cell body was not suitable because RSP16 could not be
detected reliably because of a weak RSP16 signal and the strong
50-kD bands. Furthermore, some cells, like 12D5, may have
less RSP16 polypeptide (Fig. 2 B), but the reduction was not
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Figure 2. Vector-based RNAi of RSP16. (A) The design of the RNAi con-
struct. The RSP16 genomic DNA and cDNA fragments spanning exons
6 and 7 were ligated in an opposite orientation (black arrows) at each
end of a spacer DNA that was PCR amplified from the A. thaliana EARLIT
gene. The hairpin fragment was cloned into the EcoRl site of the pSI103
vector upstream of the AphVIIl expression cassette. The promotor activity in
the opposite strand of the Rubisco 3’ untranslated region (T) should drive
the expression (double-headed arrow) of the inverted sequence. Gray ar-
rows and lines are reverse transcription primers and RT-PCR products for
diagnosis of the transcript by RT-PCR. Dashed lines indicate the control,
which detects amplification of genomic DNA. (B) Western blot screening
RSP16 in the cell body extract from transformants displaying flagellar
phenotypes. N, no flagella; P, paralyzed flagella; T, twitching flagella; and
S, swimmers (control). The 50D cell body protein (arrowhead), which is also
recognized by anti-RSP16 serum, served as a loading indicator and RSP16
in axonemes (arrow) was the positive control. Note that the 40-kD RSP16
was not discernable in the four twitching clones. (C) Western blots showed
that the RSP16 band easily detected in the 20- and 5-pg wild-type axo-
nemes was not defectable in ~20-pg axonemes from the twitching clones.
(bottom) Ponceau stain. (D) Transcription of hairpin construct was detected
by RT-PCR of the exogenous loop using total RNA prepared from12E8 and
the sense reverse transcription primer that could anneal to the predicted
transcript. Control was using antisense primer (AS) that only annealed to
genomic DNA.

enough to affect the amount in axonemes. To test if the hairpin
construct was transcribed in the RSP16~ clones as designed,
RT-PCR was performed to amplify the exogenous antisense
EARLII loop rather than the double-stranded region that was
the target of Dicer (Meister and Tuschl, 2004) and was derived
from the endogenous gene. Total RNA used as a template was
prepared from 12E8 and treated with DNase to degrade residual
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Figure 3. RT-PCR revealed that the endogenous RSP16 messages were
transcribed and cleaved. (A) The schematic depicts the location of the primers
(arrows) and products from the RT-PCR. (B) 3’ UTR was amplified from wild
type and 12E8. No products were present in the control lacking reverse
transcription. (C) RT-PCR of the seventh exon from 12E8 was much less
robust than the wild type. Full-length cDNA was amplified from wild-type
reverse transcription but not from 12E8.

genomic DNA. The product was present but faint if reverse
transcription was primed by the sense primer (Fig. 2 A, S) that
annealed to the antisense FARLII sequence in the transcript
(Fig. 2 D). Absence of the band in the control using antisense
primer (Fig. 2 A, AS) indicated that the product was amplified
from a transcript, not DNA from the hairpin construct.

To test that the hairpin transcript is correlated with cleav-
age and decay of endogenous mRNA (Orban and Izaurralde,
2005), RT-PCR of 12E8 and wild type using the reverse tran-
scription primer annealing specifically near polyA of RSP16
messages was performed (Fig. 3 A). The 35-cycle amplification
was chosen to detect RSP16 messages. The 3" UTR fragment
was amplified from both the wild-type and 12ES8 reverse tran-
scription sample but not from both controls lacking reverse tran-
scription (Fig. 3 B), which indicated that genomic DNA was
degraded. Exon 7, which was included in the double-strand con-
struct, was amplified as well but less efficiently from 12E8 than
wild type (Fig. 3 C, top). Full-length message was only ampli-
fied (Fig. 3 C, bottom) from the wild-type reverse transcription
sample, as previously reported (Yang et al., 2005), and was not
amplified from 12ES. Collectively, the RT-PCR results indicated
that the hairpin construct was transcribed, RSP16 messages
were cleaved at the region where small RNA complemented,
and decay of cleaved mRNA fragments was incomplete.

The twitching phenotype was distinct. Despite the differ-
ent degrees of defects, the spoke mutants pfl14, 1, 17, and 24
had flaccid flagella that bent slowly and occasionally (Huang
etal., 1981; for review see Kamiya, 2002), whereas the RSP16~
twitching flagella appeared to be much more active but still
insufficient to support cell procession. Interestingly, we found
that the mutants that resembled RSP16~ flagella best were two
pfo alleles that lacked the Cla CP projection. Notably though,
a portion of cells swam regardless of a point mutation or dele-
tion in the PF6 gene (Dutcher et al., 1984; Rupp et al., 2001).

No additional protein defects detected in
the RSP 16  axonemes

To assess the assembly of RS and the other major complexes,
Western analyses of axonemes purified from two of the twitching
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B 20% 5% Figure 4. RSP16 depletion did not result in gross assembly
1 3 5 7 9 113 15 17 1921 23 p defect of the RS complex. (A) Western analyses of axonemes
RSP2 oo oo — — -~ 18 using specific RSP antibodies (left and right) and an anti-spoke
complex antibody (middle) revealed that in 12E8 and 13B3
—-— w— (arrowheads), the RSPs in the spokehead (RSP1) and spoke-
RSP3 == 8 stalk were normal, whereas RSP16 was not detectable. These
RSP1 - 130 proteins were normal in entirely paralyzed flagella (12D5
RSPY == — 100 and 13F3). The spokeless mutant pf14 was a negative con-
- trol. RSP2 and 23, which were diminished as RSP16 in pf24
RSP3 = - 70 axonemes, were also normal in 12E8 (right). The blot was
RSPS — — probed sequentially for RSP23 and RSP2. RSP12, positive
RSP7- s aon eu= = control. (B) Western blots probed with anti-RSP2, anti-RSP3,
Tubulin? - 35 and anti-spoke complex showed that RS in 12E8 Kl extract
A sediment in 20S fractions in 5-20% sucrose gradient as wild-
20S 128 type spokes but distinct from the 12S spoke precursors.
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strains (12E8 and 13B3) and the two paralyzed strains (12D5
and 13F3) were performed (Fig. 4). IC140 of inner dynein arm I1
served as a loading control. Spokeless pf14 axoneme was the
negative control. RSP16 was present in the paralyzed flagella
of 12D5 and 13F3. Importantly, although RSP16 was absent in
the twitching flagella, the other RSPs in the head and stalk were
normal, which was revealed by monospecific (Fig. 4 A, left
and right) or antispoke complex antibodies (Fig. 4 A, middle).
The faster migration of RSP11 and 16 (Fig. 4 A, left) in 12D5
strain was caused by slight irregular electrophoresis as revealed
by protein staining. In particular, RSP2 and 23, which were
diminished along with RSP16 in RSP2 mutant pf24, were normal
in 12E8 (Fig. 4 A, right). To test whether RSP16 was involved
in the conversion of 12S cytoplasmic precursor complex into
mature 20S spoke complex, RS were extracted with 0.5 M KI
from 12E8 and sedimented through 5-20% sucrose gradient.
Western analyses showed that 12E8 RS lacking RSP16 still
sediment at 20S (Fig. 4 B), similar to wild-type RS (Yang et al.,
2001). Western analyses probing proteins from outer dynein
arm (IC69), inner dynein arm (IC140), and CP (cpcl, HSP70,
and pf20) indicated that these major axonemal complexes were
normal (Fig. S1, available at http://www.jcb.org/cgi/content/full/
jcb.200705069/DC1).

Collectively, these data showed that the RSP16~ twitching
flagella had no obvious defects in any major axonemal complexes,
including RS.

Twitching flagella are caused by depletion

of RSP16

To test whether the twitching flagella were caused by the lack of
RSP16 or by accidental insertional mutagenesis, two indepen-
dent approaches were taken.

First, 12E8 was backcrossed with wild-type strain cc620.
10 progenies were randomly selected for analyses of motility
and flagellar RSP16 (Fig. 5 A). Six had twitching flagella and
lacked RSP16, whereas the rest swam like wild-type cells and
contained the same amount of RSP16 as wild type. Among the
twitching group, only three were resistant to PMM. Thus, the
phenotype of twitching flagella cosegregated with RSP16 de-
pletion and was not correlated with the cotransformed pSI103.
Consistently, transformation with the hairpin construct alone did
not result in any RSP16~ strains.

Independently, we adopted protein electroporation that
was successfully used to rescue dynein mutants with recombi-
nant dynein light chains (Hayashi et al., 2002). If RSP16 deple-
tion caused twitching flagella, the RSP16~ 12E8 cells would
start swimming as RSP16 was restored. To test this, His-tagged
RSP16 was purified from bacteria with Ni-NTA affinity chro-
matography (Fig. 5 B, left; Yang et al., 2005) and electroporated
into 12E8 cells. Immediately after electroporation, swimmers
were visible among jiggling cells (Fig. 5 B, right). The rescue
efficiency (Fig. 5 B, % rescue) improved with increased protein
concentration and time for up to 12 h after electroporation.
Fewer swimmers were observed the next day, likely because of
electroporation-related cell death. Swimming cells were never
observed in controls electroporated with buffer only or with
recombinant RSP11.
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Figure 5. Backcross and rescue with recombinant proteins indicated that
RSP16 depletion resulted in twitching flagella. (A) RSP16~ 12E8 was back-
crossed with the wildHype strain cc620. 10 randomly picked progenies were
scored for motility, antibiotic resistance, and the presence of RSP16 in flagella.
Swimming cells (S) contained RSP16, whereas those with twitching flagella
(T) did not. Absence of RSP16 was not correlated with PMM resistance.
RSP11, loading control. (B) Coomassie protein gel showed Ni-NTA-purified
recombinant RSP16-6his used for rescue of 12E8 (left). Approximately
2% of cells that were electroporated with 1 mg/ml of recombinant RSP16
became swimmers upon electroporation. The percentage of swimmers
gradually increased within the first 12 h and decreased in 24 h or later.
The efficiency of rescue was concentration dependent.

DnadJ domain in RSP 16 was not required
for motility rescue

To test whether the signature DnaJ domain was required, we
engineered a construct expressing RSP16ADnal-his lacking the
corresponding N-terminal 70-aa residues. The soluble truncated
protein in the bacterial extract (Fig. 6 A, left) precipitated upon
Ni-NTA purification (not depicted). Thus, electroporation was
performed using soluble fractions of bacterial extract. Interest-
ingly, the supernatant containing recombinant RSP16-his or
RSP16ADnal-his rescued the twitching phenotype but super-
natant alone or supernatant with RSP11-his did not (Fig. 6, B and C,
compare data with asterisks for similar amount of molecules).
The velocity of swimmers rescued by ADnal was slightly slower
(Fig. 6 D; P < 0.001). However, both groups were comparable
to the electroporated wild-type cells (mean, 74.0 + 27.5 pym/s
from 100 cells) but all were significantly slower than the non-
electroporated wild-type control (111.2 +21.4 um/s from 34 cells;
P =0.000). The lower velocity may be related to cell death from
electroporation. See Videos 1 and 2 (available at http://www
.jeb.org/cgi/content/full/jcb.200705069/DC1) for rescue with
RSP16ADnal-his and control RSP11-his.

Diverged HPD tripeptide among candidate
spoke HSP40 orthologues

The dispensable DnaJ domain suggested that the conserved
features for stimulating ATPase may diverge among the spoke
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Figure 6. The DnaJ domain in recombinant RSP16 was dispensable for
rescue of RSP16™ cells. (A) Coomassie protein gel showed the bacterial
extract used for electroporation. Purified RSP16ADnal-his precipitated and,
thus, was not suitable for the experiment. The extract was prepared from
IPTG-induced bacteria expressing truncated RSP16 (RSP16ADnal-his),
RSP16-his, and the control RSP11-his (dots) or pET28(a) vector only.
The percentage of recombinant protein was based on digital quantification
of the protein gel. (B) The table lists the protein concentration and the re-
sults obtained at 30 min and 2 h after electroporation. Extract containing
RSP16, both with or without the DnaJ domain, restored swimming ability to
some 12E8 cells. No swimmers were found in the negative controls. Cells were
digitally recorded 2 h after electroporation. Randomly selected swimmers
(numbers indicated in parentheses) were analyzed for velocity. (C and D)
For clarity, the percentage of swimmers (asterisks in B) was plotted as a histo-
gram (C), as was velocity of swimmers rescued by similar concentration of
recombinant proteins (D). The RSP16ADnal-his group was slightly slower
than the intact RSP16 group (error bars represent SD; P < 0.001).

HSP40 orthologues. Previous BlastP with C. reinhardtii or
C. intestinalis spoke HSP40 showed that DnaJB13 (TSARG6)
enriched in mammalian testis may be the orthologues (Satouh
et al., 2005; Yang et al., 2005). Reverse Blastp using human
DnaJB13 revealed a phylogenic tree of ~288 HSP40s. Notably,
grouped into a branch were C. intestinalis HSP40, RSP16, and
one TSARG6-like HSP40 per species ranging from single cell
organisms to vertebrates (Fig. 7 A). Interestingly, the sequence
at the exposed loop between helix II and III in the DnaJ domain
(Szyperski et al., 1994), including HPD tripeptide and the sub-
sequent R and N (Fig. 7 B, dots) residues that were crucial for
stimulating HSP70s (Genevaux et al., 2002), diverged signifi-
cantly (Fig. 7 B). Actually, HPD in this region was only present
in C. reinhardtii, C. intestinalis, and sea urchin. The divergence
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was significant because among 19 human type I and 11 J proteins
(HSP40s), DnaJB13 was the only one lacking HPD (Qiu et al.,
20006). Collectively, these results suggested that the members
in the HSP40 subfamily lacking the HPD domain are RSP16
orthologues crucial for flagellar motility and that the feature for
stimulating HSP70s is not absolutely required for spokes.

Morphology of HSP40™ RS

To assess the morphology, transmission electron microscopy
was performed. Negative-stained RS from splayed wild-type fla-
gella were easily recognized based on doublets of the T-shaped
structure with a condensed electron-translucent spokehead
(Fig. 8 A). Sometimes spokeheads appeared less typical (Fig. 8 B).
Nonetheless the spokeheads remained distinctive. RSP16™ axo-
nemes did splay well; however, we had not encountered the typi-
cal T-shaped spokes. The 3 best images among 11 revealed that
spoke-like doublets tended to flop or appear stretched, whereas
the spokehead region seemed less distinctive (Fig. 8, C-E).
However, the variation may be caused by the force that ripped
the associated outer doublets, the orientation as splayed doublets
settled on the grids, or how the metal stain was deposited.

To evaluate spoke morphology in original context, sec-
tioned flagella were observed. In wild-type flagella, RS an-
chored at the outer doublets projecting inward with the bulbous
spokeheads abutted against CP (Fig. 8 F, top). HSP40™ sections
could be differentiated because of less homogeneous RS. Some
spokes were indistinguishable from wild-type ones, whereas
one to three spokes in most sections had a wider or bent spoke-
head and a shorter spokestalk, rendering Y-, J-, or stunted
T-shaped spokes that were located a greater distance from the CP
than those in wild type (Fig. 8 F, bottom, arrowheads). The pref-
erential orientation of the asymmetrical CP toward a specific
outer doublet in disintegrating axonemes and bending flagella
(Wargo and Smith, 2003; Mitchell and Nakatsugawa, 2004) was
not so obvious in isolated flagella (unpublished data). Overall,
there were no obvious defects in composition and morphology.

Distinct motility phenotypes of RSP16"
flagella
To characterize the defective motility, high-speed video micros-
copy of HSP40™ and wild-type cells were compared (Fig. 9).
Images of wild-type flagella beating at ~60 Hz were captured
at a frame rate of 500 Hz to show breast stroke-like asymmetri-
cal waveform in 9-10 frames. As shown previously (Ringo,
1967; Brokaw and Luck, 1983; Brokaw and Kamiya, 1987), for
power stroke (Fig. 9 A, p), flagella bent near flagellar base but
the rest remained fairly straight to generate maximal forward
propulsive force (Fig. 9 A and Video 3, available at http://www
jeb.org/cgi/content/full/jcb.200705069/DC1). For recovery stroke
(Fig. 9 A, r) that restored flagella to the original position, bend
propagated from base to tip, bringing flagella near the cell body
to reduce backward movement. Importantly, recording of bi-
flagellate cells clearly showed that power stroke started before
recovery stroke completed, rendering a curved flagellar tip
(Fig. 9 A, first and last panels).

The HSP40™ cells were first filmed at 10-12 Hz for an
~2-Hz irregular twitching rate. In general, flagella were found
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Figure 7. HPD residues crucial for stimulation of HSP70
ATPase activity diverged in candidate orthologues of spoke
HSP40. (A) Blastp in NCBI with human TSARS revealed
a branch of an HSP40 phylogenic tree. The branch con-
tained C. reinhardtii RSP16 (arrow), C. intestinalis spoke
HSP40, and one TSAR6-like molecule from evolutionarily
diverse organisms. Partial or redundant sequences were
removed for clarity. (B) Multiple sequence alignment of DnaJ
domains in TSARG-like molecules from A demonstrated
extensive sequence homology. However, the residues in the
loop between the sequence corresponding to helixes |l
and III diverged significantly. Notably, the HPD tripeptides
(asterisks) were only retained in the spoke HSP40 from
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in various positions (Fig. 9 B; and compare Videos 4 and 5, avail-
able at http://www.jcb.org/cgi/content/full/jcb.200705069/DC1)
in contrast to the hands-up position of most paralyzed CP and
RS mutants (Lechtreck and Witman, 2007; Video 4). Notably,
two flagella often crossed each other in front of the cell body
(Fig. 9 B, cell 3), a pattern not seen in wild-type cells but ob-
served in CP kinesin-knockdown cells (Yokoyama et al., 2004).
Analyses of the time-lapse images of three cells and flagella
traced from the fourth cell as examples demonstrated the actual
anomaly. First, the two flagella were not coordinated (Fig. 9 B,
cells 1-3). Second, bend initiation between strokes was often
delayed. Consequently recovery strokes were fully completed
so that flagella passed midline and often times crossed each
other (Fig. 9 B, cells 1 and 3). Normally, power strokes occur-
ring before the completion of recovery strokes prevented such
incidence in wild-type cells (Fig. 9 A). Delayed recovery strokes
made flagella appear obstructed by the cell body (Fig. 9 B, cells
1, 2, and 4, lines point to the flagellar tip). Third, stalling oc-
curred randomly, between or during strokes, and could last for
seconds. The stalled flagella appeared to be struggling. Most
interestingly, those stalled in the middle of the power stroke
often aborted the stroke and switched to the recovery stroke
(Fig. 9 B, cell 2, second and third panels; and cell 4). Fourth,
bend propagation rate varied. The sluggish ones, often of recov-
ery strokes, captured at 12 Hz (Fig. 9 B, cells 1 and 4), showed
similar bend propagation to the wild type, albeit slower.
For analyzing the occasional fast strokes (Fig. 9 B, cell 2, frames
3 and 4; cell 3, frames 1 and 2; and cell 4), HSP40™ cells were

recorded at a 500-Hz frame rate. A power stroke was completed
in 0.016 s, about half as slow as the wild type, and occurred
primarily near the base (Fig. 9 C). The crossed flagella, some-
times with a seemingly large reverse bend (Fig. 9 C, first two
frames), were first interpreted as a symmetric waveform but
were actually crossed because of overextended recovery strokes
of asymmetrical waveform based on frame-by-frame analyses.
Collectively, the video microscopy showed uncoordinated and
uncoupled power strokes and recovery strokes, and the wave-
form was predominantly asymmetrical.

Discussion

It has been assumed that RS and CP confer the motile capacity
of 9 + 2 axonemes that 9 + 0 axonemes lack and are preferred
wherever powerful propulsion is desired. By taking reverse
genetics, removing spoke HSP40 without grossly affecting the
composition of RS or axonemes, this study suggests that one
HSP40 is positioned to fine tune the RS, enabling the structural
complex to coordinate dynein-driven interdoublet sliding to pro-
duce alternate strokes of 9 + 2 cilia and flagella.

RNAi and rescue with recombinant
proteins

Three independent lines of evidence indicate that absence
of RSP16 (the spoke HSP40) results in the twitching flagella.
First, two HSP40 ™~ clones were recovered from >200 trans-
formants in each of two independent experiments. Second, the
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Figure 8.

Electron microscopy of negative-stained splayed or sectioned flagella. Doublets of the typical well-defined T-shaped RS with a compact spoke-

head and a thin stalk vertical to outer doublets (A) or less typical spokes (B) identified in wild-type samples. In RSP16 flagella, the doublets of spoke-like
images were present but the head region appeared less defined and the stalks tilted more frequently (C-E). (F) Cross sections showed wild-type RS with a
bulbous spokehead abutted against CP and a long stalk associated to outer doublets (top). The RSP16~ RS appeared less homogenous. A few spokes in
each section often appeared with a Y, J, or stunted T shape with a shorter stalk and a deformed head farther away from the CP apparatus (arrowheads).

twitching phenotype from transformants and backcross prog-
enies are strictly linked to the absence of RSP16 but irrelevant
to the cotransformed antibiotic-resistant plasmid (Figs. 2 B and
5 A). Most importantly, recombinant RSP16, but not control
protein or buffer alone, restores the motility with little delay
(Figs. 5 B and 6).

Two properties in RSP16~ cells are unusual for RNAi
in C. reinhardtii (Rohr et al., 2004; Schroda, 2006). First, the
phenotypes of the four strains have remained stable without
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selection pressure for 2 yr. Second, RSP16 is undetectable in
axonemes. Great care was taken to demonstrate the transcription of
hairpin construct and cleavage of endogenous RSP16 mRNA in
RSP16~ cells by using DNase-treated RNA template and proper
controls. The cleavage is likely mediated by the complex RNAi
mechanism recently recognized in C. reinhardtii (Molnar et al.,
2007). Comprehensive characterization of the RNAi mecha-
nism in C. reinhardtii may shed light on effective knockdown
in this study.
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Figure 9. Video microscopy demonstrated the uncoupled power and recovery strokes of HSP40~ twitching flagella. (A) Images recorded at 500 Hz
revealed the asymmetrical waveforms of power (p) and recovery strokes (r) in each beat cycle of a forward-swimming wild-type cell. Note that the power
stroke bends near the flagellar base before the recovery stroke is completed, rendering a curved flagellar tip (first and last panels). (B) HSP40~ jiggling
cells were taken at a frame rate of ~12 Hz. The four cells that were not stuck to the slide (left) were further analyzed. (1) Two flagella crossing each other at
the anterior end of the cell body after sequentially undergoing a sluggish full recovery stroke without the subsequent power stroke. The next powerful stroke
without subsequent recovery stroke sent one flagellum underneath the cell body (lines point to the flagellar tips). (2) One flagellum stalled at the beginning
of an active stroke. Upon completion, both flagella recovered to the normal position. (3) Both flagella beat alternately first but then stalled at the end of
recovery stroke, rendering crossed flagella as well. (4) A traced diagram showed that one flagellum, after stalling, bent near the base but stalled again in
the middle of the power stroke. After wavering, the flagellum underwent recovery stroke followed by a swift power stroke and stalled. (C) Recording at 500 Hz
showed that swift power strokes also bend near the base but ~50% slower than wild type. The recording was stamped in seconds.

Rescue with recombinant proteins is a compromise for the
dominant-negative nature of RNAi. As in transformation with
DNA, only a small fraction of electroporated cells can take in a
sufficient amount of proteins and survive. The rescue is tran-
sient as well. Nonetheless, the few rescued swimming cells are
easily noted amid paralyzed cells. This method provides an
alternative for confirming motility defects from RNAi.

Unique roles and mechanisms of HSP40/
HSP70 in cilia and flagella

RSP16 is certainly an unusual HSP40. In addition to being a
constitutive component of a structural complex unrelated to
protein-folding machinery, its DnaJ domain is not essential and
the HPD tripeptide diverges in candidate orthologues in higher
deuterostome. Consistently, recombinant RSP16 fails to help
HSP70 refold denatured luciferase (unpublished data). The nor-
mal length of RSP16~ twitching flagella and immediate rescue
of motility by electroporated protein also indicates that spoke
HSP40 is not involved in ciliogenesis or elaborate assembly pro-
cess but specifically serves the purpose of RS. These results in-
dicate that the role of spoke HSP40s is not to help HSP70s to
fold a broad spectrum of polypeptides with the signature domain
at the N terminus. Rather, it is to bind and buttress the structural

complex through the dimeric C terminus. Nonetheless, it is pre-
mature to conclude that J domain is useless or to exclude HSP70.
The sequences of DnaJ domain are highly homologous among
candidate orthologues and the truncated spoke HSP40 is less
soluble. We speculate that J domain, although not essential, may
recruit additional molecules, such as HSP70, to help the binding
of electroporated or endogenous RSP16 with RS.

This conclusion raises questions related to flagellar chap-
erones, especially HSP70 ATPase, which can’t fold protein ef-
ficiently by itself (Laufen et al., 1999). Are there other J proteins
in these organelles? Are flagellar HSP70s dependent on J pro-
teins after all and what could HSP70s do without an HSP40?
Some flagellar HSP70s, such as HSP70A in CP (Mitchell et al.,
2005), may not necessarily mediate constant protein folding as
RSP16 does and do not rely on J proteins. It is likely that the
properties of some chaperone molecules are used differently in
cilia and flagella.

Final touch of RS by HSP40

Assembly of 128 precursors, 125 to 20S conversion, and incor-
poration of 20S spokes into axonemes are independent of HSP40.
Binding of HSP40 occurs near the end of the assembly process.
The predicted location of RSP16 in RS is in contrast to broad
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client polypeptides of HSP40s. Notably, the theoretical isoelectric
point of proteins near the spokehead are around five or fewer, in
contrast to seven for HSP40, the most basic RSP (Yang et al.,
2000). C. intestinalis spoke HSP40 was particularly basic as
well (Satouh et al., 2005). Thus, unlike the hydrophobic inter-
action of HSP40s and client polypeptides (for review see Craig
et al., 2006), ionic interaction may also be involved in the spe-
cific binding of spoke HSP40.

The binding does not obviously change conformation or
morphology of RS. The result is reasonable considering the
dimeric HSP40 is only 1/15 of the ~1,200-kD spoke particles
(Padma et al., 2003). In addition, HSP40s are known to bind
and release client peptides rather than to alter protein conforma-
tions. Perhaps spoke HSP40 may simply secure molecular inter-
action of the spokehead region.

Roles of RS

Despite inconsistent predictions regarding the roles of CP and
RS, the simplest, yet inclusive, model is that the CP—RS system
governs the rudimentary motile machinery of nine outer dou-
blets (for review see Kamiya, 2002) to produce regulated power-
ful beating by acting as a mechanochemical transducer (for
review see Smith and Yang, 2004). Faulty mechanical transduc-
tion could adequately explain the HSP40™ flagellar phenotype.

In contrast to the paralyzed pf17 flagella in which spoke-
heads are absent, the active twitching flagella suggest that HSP40™
20S RS actually could engage CP but the engagement is in-
sufficient or inappropriate. Regardless of the abnormal cross-
ing of two flagella, frame-by-frame image analysis revealed no
major changes in the asymmetrical waveform. Instead, the anomaly
includes delay in bend initiation and propagation as well as
sporadic stalling. These observations indicate that the primary
defect is the timing rather than the order of sequential dynein
activation around the circumstance and along the length of
axonemes. The shaking of stalled flagella shows that forces are
evident but cannot be coordinated, supporting the predicted
antagonistic dynein-driven forces that are supposed to be co-
ordinated by CP-RS but become apparent when CP-RS is de-
fective (Yagi et al., 1994; Sakakibara et al., 2004; Lindemann,
2007). The untimely stroke switching, perhaps caused by the
unregulated competing force, is consistent with the demonstration
of interdoublet sliding triggered by forced bend (Morita and
Shingyoji, 2004). The waveform, which sometimes deviated from
the typical ones, (Fig. 9 C) is likely also because of the occa-
sional uncoordinated force.

The mechanistic flaw of HSP40™ spokes is unclear. It is
possibly at the cyclic engagement and disengagement of CP-RS
(Warner and Satir, 1974) or at the subsequent transduction that
possibly redistributes t-force or maneuvers outer doublets lead-
ing to oscillation of flagellar diameter (Sakakibara et al., 2004;
Lindemann, 2007). HSP40™~ RS that deform more readily may
not execute at either level consistently and precisely. Perhaps
the peptide binding regions of dimeric HSP40 bundle the multi-
ple spoke proteins into a stable distal end (Fig. 1) that exposes
the proper interface, provides the appropriate elasticity and ri-
gidity for distortion or force distribution, or prevents the spoke-
head from falling apart upon encountering strain.
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The prediction may be partly applicable to the twitching
flagella of pf6, which lacks Cla projection and the correspond-
ing five polypeptides (Dutcher et al., 1984; Rupp et al., 2001;
Wargo et al., 2005). Importantly, some pf6 cells swim but
HSP40™ cells can’t, suggesting that Cla projection and additional
CP components, such as kinesin- or hydin-associated com-
plexes (Yokoyama et al., 2004; Lechtreck and Witman, 2007), are
involved in the same regulatory pathway as spoke HSP40.
Perhaps any defect interfering with the transduction between
CP and dynein motors will be manifested as twitching flagella
of various severities. Collectively, the evidence suggests that the
coordination of dyneins by CP-RS is so fundamental that it not
only dictates bend formation and propagation (Warner and Satir,
1974) but also the switching of active dyneins to generate cou-
pled power strokes and recovery strokes of planar waveform
characteristics of 9 + 2 axonemes. Although other elements of the
pathway may play a decisive role in stroke switching (Yokoyama
et al., 2004; Lechtreck and Witman, 2007; Lindemann, 2007)
and waveform determination, HSP40 at the head—stalk juncture
is central to the fundamental mechanical feedback mediated by
intermittently interacting CP-RS for timely coordinated activa-
tion of dynein motors. The timely coordination is likely crucial
for effective beating that requires consistency in repeated bend
formation and smooth propagation of bend at high frequency.
The HSP40 specifically committed to RS at the end of spoke
assembly is rightfully retained for the 9 + 2 nanomachine
throughout evolution.

Materials and methods

Strains and culture conditions

C. reinhardtii strains, including wild-type strains cc124 (—) and cc620 (+)
and the defined RS mutants pf14, pf17, and pf24 and the CP mutant pf18
cc1036(+), were acquired from the Chlamydomonas Genetics Center.
The pf28pf30 strain lacks both the 20S outer arm dynein and inner arm
dynein |1 as described previously (Piperno, et al., 1990). All cells were grown
in liquid Tris-acetate-phosphate (TAP) medium under aerated photohetero-
trophic growth condition in 14/10 light/dark cycle (Witman, 1986).

Molecular biology
Construction of plasmids with an inverted repeat. A 400-bp PCR product,
serving as the spacer of the hairpin, was amplified from the A. thaliana
EARLIT gene (Bubier and Schléppi, 2004) using the following primer pair
with builtin double restriction sites (in italics): 5'+CCATGGgaagatctaccita-
accgctgcaacag-3' (Ncol and Bglll) and 5'+CATATGgggtaccgaagaacact
gagagatatc-3’ (Ndel and Kpnl). The spacer was cloned into pGEM-Teasy
vector (Promega) and subsequently released by EcoRI digest. The band-
purified fragment was ligated into the same site in the MaaZ/x IR vector
(obtained from J. Rohr and H. Cerruti, University of Nebraska, Lincoln, NE;
Rohr et al., 2004), resulting in the following multiple cloning sites flanking
the spacer: 5"-EcoRl, Spel, Ncol, and Bglll; and 3’Kpnl, Ndel, and EcoRI.
To construct inverted sequences, cDNA and genomic DNA fragment
of RSP16 were ligated sequentially into the cloning sites flanking the EARLIT
spacer in an opposite orientation. A cDNA fragment of ~500 bp was am-
plified from the construct pET28-RSP16-his (Yang et al., 2005) by using the
following primer pairs with builtin restriction sites: sense 16s5, aggtacccttct-
gttcagcggegagtacgtggag (Kpnl); and antisense 16s3, acatatgggeggaagg-
aagaacgegctgegtag (Ndel). The cDNA fragment was ligated into the same
restriction sites downstream of the spacer. Genomic DNA of ~750 bp was
amplified from wild-ype genomic DNA by using the following primer pairs:
sense 16gs5, aagatctaccatggcetictgttcageggeg (Bglll); and antisense 16s3.
The PCR product was ligated into pPGEM-Teasy vector first and subsequently
released by Bglll and Spel digest. The genomic fragment was cloned into
the same sites upstream of the spacer fragment. The hairpin construct was
transformed into GC10 competent cell (GeneChoice, Inc.) and cultured
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for 24 h at 30°C. The hairpin fragment containing cDNA, spacer, and ge-
nomic DNA was released by EcoRl digest and ligated into pSIT03 vector at
the same site (Sizova et al., 2001) for transformation rescue.

Construction of expression vectors. The coding sequence for
RSP16ADnal-his construct was amplified using the pET28-RSP16-6his ex-
pression vector (Yang et al. 2005) as a template and the following primer
pairs: sense T16S-Ncol, cccatggegaaggggttttatgacctatacggag; and antisense
16fix3’EcoRl, ggggaattcctataccgcettgaacagee. The 860-bp PCR product
was directionally cloned into the same sites of the expression vector pET28(a).
The RSP11~ 6his expression vector was described previously (Yang and
Yang, 2006).

Expression vectors were transformed into BL21(DE3) cells (EMD)
and protein expression was induced with 1 mM IPTG at room temperature
for 3-5 h. Soluble proteins were purified by Ni-NTA agarose (QIAGEN) in
the native condition based on the manufacturer’s instructions.

RT-PCR. Reverse franscription with gene-specific reverse transcrip-
tion primers was catalyzed by SuperScript Ill reverse transcription (Invitrogen)
using total RNA extracted from 5-10 x 10° liquid-cultured cells with
TRIZOL LS reagent (Invitrogen) and DNase treated with TURBO DNA-free
kit (Ambion). The procedures followed the instruction of manufacturers.
For amplifying the RSP16 transcript, the 3 end reverse transcription primer
was agctcaggctgacggeatagaag. PCR primer pairs for 3" UTR fragment
were the following: sense, aggcgctggataaggacatgtgtac; and antisense,
agaagcagggtgctgaagattactee; for exon 7: sense, catcggcaccacgcttgatatec;
and antisense, gtagcagcatctitigegtetee; and for complete cDNA: sense, cgge-
gagcittgggegatiggta; and antisense agctcaggetgacggeatagaag.

For amplifying the spacer sequence in the hairpin transcript, reverse
transcription primers were the following: sense, gttgcaacccaagtectaagea-
caag; and control antisense, ccaaaccttggatgagegageaaca. PCR primer pairs
were the following: sense, aacccaagtcctaagcacaagect; and antisense,
agcaacatggttgagcetgatggetg.

Biochemistry
Axonemal extraction and purification of 20S RS were performed as de-
scribed previously (Yang et al., 2001).

Cell body extract. Cells cultured on TAP plates were harvested and
washed once with TAP medium. The cell pellets were suspended ata 1:1 ra-
tio with 10 mM Hepes, pH 7.4, containing the following protease inhibitors
(buffer A): one tablet of Complete protease inhibitor cocktail (Roche), 50 pg/ml
aprotinin (Sigma-Aldrich), and 40 pl of saturated PMSF (Sigma-Aldrich) in
isopropanol per 7 ml of buffer. The cell suspension was briefly sonicated until
95% of the cells were lysed (Sonicator W-225R; Ultrasonics Inc.). After cen-
trifugation at 15,000 g for 15 min, the supernatant was diluted with 4 vol of
buffer A and fixed by the addition of 5x sample buffer for SDS-PAGE.

Antibodies. Anti-HSP70A monoclonal antibody was purchased from
Affinity BioReagents (MA3-006). Polyclonal rabbit antibodies for RSP1, 2,
3, and 6 (obtained from D. Diener and J.L. Rosenbaum, Yale University,
New Haven, CT); for RSP23 (obtained from S.M. King, University of Con-
necticut, Storrs, CT); for RSP8, 11, 12, and 16 (Patel-King et al. 2004; Qin
et al., 2004; Yang et al., 2005, 2006); for CP protein CPC1 (obtained
from D.R. Mitchell, State University of New York Upstate Medical Univer-
sity, Syracuse, NY; Zhang and Mitchell, 2004) and PF20 (obtained from
E.F. Smith, Dartmouth College, Hanover, NH; Smith and Lefebvre 1997);
and for inner dynein subunits p28 (Sigma-Aldrich) and IC140 (Yang and
Sale, 1998) were described previously. Anti-outer dynein IC69 was pro-
vided by D.R. Mitchell. Chicken yolk antibody was raised against the 20S
RS complex (Yang et al., 2005).

Genetics

Transformation. The RSP16 hairpin construct was transformed or cotrans-
formed with the pSI103 plasmid that confers PMM resistance (Zorin et al.,
2005) into C. reinhardltii wild-type strain cc124(—) using the glass beads
method (Kindle, 1990). Cells were plated on TAP plates with 10 pg/ml
PMM after recovery under light overnight. Single colonies that formed after
4-5 d were saved on TAP plates and suspended later in TAP medium in
96-well plates for motility analysis using stereo microscopy.

Backcross. The RNAI strain was crossed with wild-type strain cc620(+)
according to the standard procedure (Yang and Yang, 2006), except that
2.5% agar (A-7921; Sigma-Aldrich) plates were used for zygote maturation
and tetrad dissection.

Electron microscopy

Negative staining of splayed axoneme was performed as previously de-
scribed (Yang et al., 2001). For sectioning, flagella were prepared for
transmission electron microscopy as previously described (Mitchell and

Sale, 1999). Silver sections were cut with a diamond knife using an ultra-
microtome (Ultracut E; Reichert) and collected on 200 mesh copper grids.
Silver sections were stained with 1% uranyl acetate and Reynold’s lead
citrate. Images were taken at 25-100 K using a transmission electron micro-
scope (H-600; Hitachi) operating at 75 kV.

Protein electroporation

Electroporation was performed as previously described (Hayashi et al.,
2002) with minor modifications. In brief, autolysin-treated cells were washed
with solution E (0.2 mM ATP, 0.8 mM imidazole, 0.1 mM CaCl,, 0.5 mM
2-mercaptoethanol, and 60 mM sucrose, pH 7.5) and suspended with the
same buffer into 1-2 x 10% cells/ml. Aliquots of suspensions were mixed
with purified proteins in solution E or equal volumes of bacterial lysate in lysis
buffer (50 mM NaH,PO, 300 mM NaCl, and 10 mM imidazole, pH 8.0).
A 125l aliquot was placed in a 2-mm electroporation cuvette (model
620; BTX Technologies, Inc.) and subjected to an electric pulse (ECM 600
electroporation apparatus; BTX Technologies, Inc.) of 500 V/capacitance
and resistance, 1,200 pF capacitance, 24 Ohms, and 240 V. The cells were
then allowed to recover in a water bath at room temperature for 30 min.
The mixture was further diluted with 300 pl TAP medium and then trans-
ferred into a 1.5-ml tube for continued recovery under light. After 1 h, the
cells were gently spun down by centrifugation and washed three times with
TAP buffer. Cell suspension was observed immediately or at indicated time
points after electroporation by compound light microscopy at 100x.
The percentage of rescued cells was calculated as the ratio of swimming cells
out of a total of ~1,000 cells observed from randomly selected fields.

Motility assessment

For initial motility analysis, the mutant cells were digitally recorded under
400x bright field light microscopy using a charge-coupled device camera
(CoolSNAP ES; Photometrics) at a maximum rate of ~12 frames per sec-
ond and a Plan Apo 40x objective with a 0.95 NA (Nikon). RNAi cells
were observed affer electroporation using 100x bright field light micros-
copy and were recorded similarly. Mean velocity of swimming cells was
defermined by tracing swimming paths of 20-30 swimming cells using
MetaMorph 1.02 software (MDS Analytical Technologies) as previously
described (Yang and Yang, 2006). The statistical analysis was performed
using SPSS 10.0 (SPSS, Inc.) for Windows at one-way analysis of variance.
For capturing fast movement, a high speed video camera (MotionPro HP-3;
Redlake) was used at a rate of 500 frames per second.

Online supplemental material

Fig. S1 shows Western analyses of axonemes from various strains, which
showed that RSP16 depletion did not affect the assembly of dyneins or
the CP apparatus. Video 1 Shows that some HSP40™ cells became swim-
ming after electroporation with bacterial extract containing truncated re-
combinant RSP16 lacking the DnaJ domain. Video 2 shows that HSP40~
cells remained jiggling affer electroporation with control bacterial extract
containing recombinant RSP11. Video 3 shows high-speed video micros-
copy of wild-type C. reinhardltii cells, which revealed the waveform of
power strokes and recovery strokes in each beat cycle at the rate of
~60 Hz. Video 4 shows that the flagella of spoke HSP40™ cells twitched
irregularly at the rate of ~2 Hz. Video 5 shows that the mutant pf17
that lack radial spokeheads had paralyzed flagella that waved occa-
sionally. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200705069/DC1.
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