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Plasma membrane deformation by circular arrays of
ESCRTII protein filaments
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ndosomal sorting complex required for transport |II

(ESCRT-IIl) proteins function in multivesicular body

biogenesis and viral budding. They are recruited
from the cytoplasm to the membrane, where they assem-
ble into large complexes. We used “deep-etch” electron
microscopy to examine polymers formed by the ESCRT-III
proteins hSnf7-1 (CHMP4A) and hSnf7-2 (CHMP4B).
When overexpressed, these proteins target to endosomes
and the plasma membrane. Both hSnf7 proteins assemble
into regular approximately 5-nm filaments that curve and
self-associate to create circular arrays. Binding to a co-
expressed adenosine triphosphate hydrolysis—deficient

Introduction

Multivesicular bodies (MVBs) are mid-stage endosomes that
contain intraluminal vesicles (ILVs). ILVs are generated by
invagination and scission from the limiting membrane of the
endosome. Ultimately, most ILVs are delivered to lysosomes,
enabling degradation of transmembrane proteins and lipids
(Katzmann et al., 2002; Gruenberg and Stenmark, 2004; for
reviews see Babst, 2005; Hurley and Emr, 2006). However, in
certain specialized cells, MVBs also fuse with the plasma mem-
brane to secrete their ILVs as entities called exosomes, which
subserve a variety of important functions in the immune sys-
tem and elsewhere (Stoorvogel et al., 2002; Thery et al., 2002;
Fevrier and Raposo, 2004). A great deal of attention has recently
focused on understanding how proteins are sorted into MVBs
and how ILVs actually form.

Among the proteins involved in creating ILVs are at least
18 that were identified via genetic studies of vacuolar protein
sorting in the yeast Saccharomyces cerevisiae. Interfering with
the function of any these proteins leads to missorting of cargo
normally destined for the ILV, causing it to accumulate on
the limiting membranes of abnormal compartments that form
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mutant of VPS4B draws these filaments together into tight
circular scaffolds that bend the membrane away from
the cytoplasm to form buds and tubules protruding from
the cell surface. Similar buds develop in the absence of
mutant VPS4B when hSnf7-1 is expressed without its
regulatory C-terminal domain. We demonstrate that
hSnf7 proteins form novel membrane-attached filaments
that can promote or stabilize negative curvature and
outward budding. We suggest that ESCRT-IIl polymers
delineate and help generate the luminal vesicles of multi-
vesicular bodies.

adjacent to the yeast vacuole (its lysosome equivalent), the so-
called class E compartments (Raymond et al., 1992). Homologues
of these class E proteins are present in mammalian cells and their
role in the formation of MVBs appears to be well conserved
(for reviews see Hurley and Emr, 2006; Williams and Urbe,
2007). Most of the class E proteins have also been implicated in
the topologically similar process of viral budding (Demirov and
Freed, 2004; Morita and Sundquist, 2004).

All but one of the class E proteins are intrinsically soluble,
cycling on and off the membrane as peripheral membrane pro-
teins. Most are components of three large complexes, termed
endosomal sorting complexes required for transport (ESCRTS),
including ESCRT-I, -II, and -III (for reviews see Babst, 2005;
Hurley and Emr, 2006; Slagsvold et al., 2006; Williams and Urbe,
2007). These complexes are thought to cooperate with each
other (and with additional factors) to promote cargo selection and
ILV formation. Signals that bring ESCRT complexes to the mem-
brane include ubiquitin and phosphatidylinositol-3-phosphate,
with current models suggesting that ESCRT complexes are
recruited sequentially to ubiquitinated cargo on the endosomal
membrane (for review see Hurley and Emr, 2006). It is not yet
clear how ESCRT complexes orchestrate ILV formation but it is
thought that they mostly dissociate from the invaginating mem-
brane before the ILV is released because none end up at a high
concentration within the lumen of the vesicle or viral particle
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(for review see Olver and Vidal, 2007). The release of ESCRT
complexes from the membrane is probably driven by the AAA+
(ATPases associated with a variety of cellular activities) protein
VPS4, of which there are two isoforms in mammalian cells,
VPS4A and VPS4B/SKDI1 (Babst et al., 1998).

ESCRT-I and -II are stable heterooligomeric complexes
(Katzmann et al., 2001; Babst et al., 2002b). Each has recently
been crystallized both in pieces and as a complex (Hierro et al.,
2004; Teo et al., 2004, 2006; Kostelansky et al., 2006, 2007)
and a reasonable understanding of how these complexes inter-
face with ubiquitin, the membrane, and other components of the
MYVB sorting machinery is emerging (for reviews see Hurley
and Emr, 2006; Williams and Urbe, 2007).

Less is known about the organization and interactions of
proteins within the ESCRT-III complex. This complex consists of
several related proteins that are recruited from the cytosol to the
endosomal membrane, where they assemble into large detergent
insoluble polymers (Babst et al., 2002a). Yeast has six ESCRT-III
proteins, each a 200-250-residue protein with basic N-terminal
and acidic C-terminal halves. Four of these proteins are thought
to form the core ESCRT-III complex (Snf7p, Vps20p, Vps2p,
and Vps24p), whereas two others (Did2p and Vps60p) associate
with the core complex and may play regulatory roles (Babst
et al., 2002a; Nickerson et al., 2006). The ESCRT-III family is
expanded to 11 proteins in humans, which are referred to either
as human orthologues of their yeast counterparts or as charged
MYVB proteins (CHMPs). Although each of the six ESCRT-1II
proteins in yeast is needed for normal MVB biogenesis, there
may be some functional redundancy among the 11 human proteins.
Understanding how ESCRT-IIT components work together and
why so many related proteins are needed for MVB biogenesis
clearly requires additional insight into the organization and func-
tion of the complex or complexes that they form.

A recent crystal structure of part of the ESCRT-III protein
hVps24 (CHMP3) showed that it consists of an ~7-nm-long
a-helical hairpin buttressed by three shorter helices (Muziol
et al., 2006). Based on homology, it seems likely that other
ESCRT-III proteins share a similar structural core. Clues about
how ESCRT-III proteins assemble into large complexes come
from the several types of contacts between hVps24 protomers
in the crystal, any or all of which could be involved in ESCRT-IIT
polymerization.

Recent studies support the idea that individual ESCRT-IIT
proteins have an intrinsic ability to bind to membranes that is
regulated by autoinhibitory sequences located near their C termini
(Muziol et al., 2006; Zamborlini et al., 2006; Shim et al., 2007).
In one case (the crystallized fragment of hVps24), basic residues
spread along a gently curved surface have been shown to be
necessary for membrane binding (Muziol et al., 2006) and similar
charge-based interactions may be at least partially responsible
for association of the other ESCRT-III proteins with membranes.
Binding to the membrane is thought to coincide with assembly
of the ESCRT-III complex, leading to a model in which “closed”
ESCRT-III proteins are soluble, whereas “open”” ESCRT-III pro-
teins on the membrane are available for interaction with other
ESCRT components. Experimentally, membrane binding and
complex assembly can be elicited by deleting C-terminal auto-
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inhibitory sequences (Shim et al., 2007). Such deletions are
thought to mimic the action of cellular ESCRT-III binding partners.
One example of a binding partner that recruits and activates an
ESCRT-III protein is the ESCRT-II subunit Vps25 (EAP2S in
mammalian cells), which binds to the N-terminal half of Vps20
(Teo et al., 2004; Yorikawa et al., 2005; Langelier et al., 2006).
Other examples of interacting proteins opening ESCRT-III proteins
seem likely to emerge.

Once assembled into complexes on the membrane, it is
not yet clear how ESCRT-III proteins contribute to luminal vesicle
formation or viral budding. Genetic studies in the yeast S. cere-
visiae suggest that they act late in the process, after ESCRT-I
and ESCRT-II. Missing from current models is an understanding
of which factors drive the required membrane deformation and
eventual separation of ILVs from the limiting membrane of the
endosome (for reviews see Hurley and Emr, 2006; Williams and
Urbe, 2007). In the present study, we find that the ESCRT-III
proteins hSnf7-1/CHMP4A and hSnf7-2/CHMP4B assemble
into circular membrane-associated polymers that can be engaged
to deform the membrane to which they are attached. We pro-
pose that membrane-associated ESCRT-III polymers similar
to these may contribute to delineating and generating vesicles
within the lumen of the MVB.

Results

hSnf7 assembles into homopolymeric
filaments on the membrane
To study the organization of ESCRT-III-containing polymers
by quick-freeze deep-etch EM (DEEM), we took advantage of
our previous observation that overexpressed hSnf7 (CHMP4)
proteins accumulate in patches on or adjacent to the plasma
membrane as well as on internal, mostly endosomal, compart-
ments (Lin et al., 2005; Shim et al., 2007). The plasma mem-
brane is more accessible to DEEM than internal organelles
because cells need only be “unroofed” to obtain expansive
images of it and structures attached to it (Heuser, 2000a,b).
The anaglyph in the top of Fig. 1 shows a typical image of the
inner surface of the plasma membrane of a COS-7 cell, which
in this case is transiently transfected with a plasmid encoding
full-length FLAG-tagged hSnf7-1 (CHMP4A). Visible on the
membrane are the usual cortical cytoskeletal components, in-
cluding actin filaments and polygonal clathrin lattices, but, in
addition, there are abundant filaments that are curved and inter-
connected to form a variety of circular arrays. In some areas,
these new filaments intermingle with actin and clathrin, whereas
in other areas they are so abundant that they displace these nor-
mal residents of the plasma membrane. It is important to note
that transiently transfected COS-7 cells produce ESCRT-III
proteins at levels that greatly exceed the concentration of their
endogenous counterparts (unpublished data), creating a situa-
tion in which we can study the behavior of transfected proteins
without significant contributions from endogenous proteins or
binding partners.

Higher magnification DEEM views of cells expressing
hSnf7-1 or the related hSnf7-2 (CHMP4B) show that the novel
filaments have a unit diameter of ~5-6 nm (including the ~2-nm
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thickness of the platinum replica that coats them) and appear to
be tightly associated with the plasma membrane (Fig. 1 B).
Transverse striations can be seen faintly in many regions along
the filaments. When most distinct, these striations repeat every
~4 nm (Fig. 1 C, a). The filaments frequently associate with
each other laterally, either forming focal contact points between
single filaments (Fig. 1 C, b; and Fig. 1 D, b) or generating wider
strands that contain two or more intertwined filaments. Larger bun-
dles containing four or more strands tend to be less tightly asso-
ciated with the membrane but are split into single-diameter
filaments at the membrane (Fig. 1 C, ¢ and d; and Fig. 1 D, ¢).
Sometimes filaments branch without apparently changing their
diameter, which suggests that there are numerous ways in
which hSnf7 protomers interact with each other. The length of the
hSnf7 filaments offers a straightforward explanation for why

Figure 1. hSnf7 proteins form curved fila-
ments on the plasma membrane. Shown in
3D are anaglyphs of the inside of the plasma
membrane of COS-7 cells expressing the con-
structs indicated. Use view glasses for the 3D
structure (left = red). (A) Plasma membrane
of cell expressing FLAG hSnf7-1. (B) Higher
magnification views of membrane coated with
filaments of FLAG hSnf7-1 (left), FLAG hSnf7-2
(center), and FLAG hSnf7-1 (right). Bars, 100 nm.
(C) High magnification views of FLAG hSnf7-1
filaments. (D) Clathrin lattice (a), two additional
panels of FLAG hSnf7-1 filaments (b and ¢, and
three views of actin filaments (d, e, and f). Fila-
ments in C and D have been highlighted for clarity.
Panels in C and D are each 100 nm across.

overexpressed hSnf7-1 remains insoluble after treatment with
nondenaturing detergents (Lin et al., 2005; Shim et al., 2007).
The connections between adjacent filaments may contribute
to stabilizing the circular patterns formed by the filaments.
Particles corresponding at least in part to transmembrane pro-
teins appear to be confined both at the center of the hSnf7 arrays
and between the filaments, which suggests that one function
of hSnf7 polymers may be to control the distribution of pro-
teins in the membrane in a manner similar to that previously
proposed for actin filaments close to the plasma membrane
(Morone et al., 2006).

Several observations indicate that these novel filaments
are predominantly homopolymers of hSnf7. Most striking is
their altered appearance when GFP is fused to the C terminus of
hSnf7-1 (Fig. 2). Filaments built from hSnf7-1-GFP are wider and
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Figure 2. Filaments containing hSnf7-1-GFP
show their GFP. Adding GFP to the C termi-
nus of hSnf7-1 (hSnf7-1-GFP) creates bumpy,
tightly wound filaments on the inner surface of
the plasma membrane. Bar, 100 nm.

bumpier than those formed by hSnf7-1 alone, as would be expected
from doubling the mass of each subunit (both hSnf7-1 and GFP
are ~25 kD in mass). Additional support for the idea that the
filaments are primarily polymers of hSnf7 includes the fact that
the filaments are present only in a subset of cells after transient
transfection with hSnf7 and the fact that the filaments can be
decorated specifically with gold-labeled antibody recognizing
an epitope tag on hSnf7 (see Fig. 4, top; and not depicted).

A difference between the filaments formed by hSnf7-1 with
no tag or a small epitope tag and those formed by hSnf7-1-GFP
is that the latter are frequently tightly associated with each other,
often to the point of creating compact circular arrays that appear
as confluent domains of protein. Such tight structures are not seen
in cells overexpressing hSnf7-1 without GFP (compare Figs.
1 and 2). Their formation is not caused by the dimerization of
GFP because mutating GFP to reduce its affinity for itself (Snapp
et al., 2003) does not change their appearance (not depicted).
Fusing GFP to the C terminus of hSnf7-1 must therefore expose
something within hSnf7-1 that enhances lateral interactions
between filaments.

Two limitations to imaging unroofed cells are, first, that
we can only examine the bottom or ventral surface of the cell
where changes in the shape of the membrane are constrained
and, second, that we have to lyse the cells during sample prepara-
tion. To look instead at the dorsal or top surfaces of nondisrupted
cells, we switched to freeze-drying and platinum-replicating
whole cells. As expected, cells overexpressing hSnf7-1 dis-
play areas with subtle circular patterns on their top surfaces
that are comparable in size and organization to the curved fila-
ment arrays seen on the plasma membrane of unroofed cells
(Fig. 3, top).

To study the top surface of the cell in more detail, we ap-
plied a method for imaging the cell cortex in which cells are
chemically fixed and then treated with a mixture of Triton X-100
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and saponin to extract plasmalemmal lipids (Heuser and Kirschner,
1980). In nontransfected cells, this procedure provides views of
a subplasmalemmal cytoskeleton that has been converted by
chemical fixation into a microtrabecular meshwork (Fig. 3, middle,
see cell on the right; Heuser, 2002). Cells expressing hSnf7-1
additionally contain characteristic domains of interconnected,
roughly circular arrays of filaments (Fig. 3, middle and bottom).
These filaments can be immunodecorated with a gold-conjugated
antibody against a FLAG epitope tag on hSnf7-1, confirming that
they contain hSnf7-1 (not depicted).

Both on unroofed plasma membranes and along the top
surface of hSnf7-expressing cells, there is considerable variation
in the curvature of individual filaments and the spacing be-
tween adjacent filaments that create a range of hSnf7-based
arrays. A consequence of this variation that is most apparent
when viewing the tops of cells is that in the closely spaced
arrays, central rings tend to rise above those at the periphery
(Fig. 3, bottom left). This phenomenon is particularly strik-
ing with polymers formed from GFP-tagged hSnf7-1 (Fig. 3,
bottom right).

An important functional difference between hSnf7-1 with
and without GFP fused to its C terminus is that overexpressed
hSnf7-1-GFP strongly inhibits MVB maturation and viral
budding, whereas hSnf7-1 lacking GFP does not (von Schwedler
et al., 2003). This could be caused by the attached GFP per-
turbing the protein’s normal closed conformation, effectively
locking hSnf7 into an open state. Alternatively, the GFP might
interfere with recruitment of specific C-terminal binding part-
ners. Either way, we wondered whether there might be a corre-
lation between the arrangement of hSnf7 filaments, membrane
eversion, and the normal functioning of ESCRT-III proteins in
the MVB pathway. We therefore decided to study the effects of
manipulating hSnf7’s C terminus by either adding binding part-
ners or deleting domains.
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A hydrolysis-defective mutant of VPS4B
binds to hSnf7 polymers and promotes

membrane eversion

Among proteins that interact with ESCRT-III family members,
the most general appears to be the AAA+ ATPase VPS4 (of
which there are two isoforms in mammalian cells, VSP4A and
VPS4B/SKD1). This ATPase binds to most if not all of the indi-
vidual ESCRT-III proteins, albeit with varying affinity (von
Schwedler et al., 2003; Scott et al., 2005b; Lottridge et al., 2006;
Tsang et al., 2006; Zamborlini et al., 2006; Shim et al., 2007).

Figure 3. hSnf7 filaments on the top surface
of the cell. (top) Patterns created by hSnf7-1
filaments on the outer surface of whole cells.
Shown is the top surface of a COS-7 cell
transfected with FLAG hSnf7-1, fixed, and
replicated without disruption. Note the subtle
circular patterning of particles within the mem-
brane. (middle) Views of hSnf7-1 filaments in
the subplasmalemmal “membrane skeleton”
revealed by extracting fixed whole cells with
detergent. The cell on the left expresses FLAG
hSnf7-1, whereas the one on the right does
not. (bottom left) Fixed and extracted cell ex-
pressing higher levels of FLAG hSnf7-1. (bot-
tom right) Fixed and extracted cell expressing
hSnf7-1-mGFP. Bars, 100 nm.

VPS4 is thought to hydrolyze ATP and disassemble ESCRT-III
complexes, most likely by unfolding and removing individ-
ual protein subunits from the polymeric ESCRT-III complex.
Recent studies reveal that VPS4 binds directly to a microtubule
interacting and trafficking—interacting motif present near the
C termini of CHMP1, CHMP2, and CHMP3 (Obita et al., 2007;
Stuchell-Brereton et al., 2007). Other sequences are likely to be
responsible for VPS4 binding to hSnf7 (CHMP4) proteins.

To gain insight into how VPS4 might affect the hSnf7
polymers examined here, we coexpressed a “substrate trap”
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Figure 4. hSnf7/CHMP4 filaments bind
VPS4B(E235Q). Anaglyphs of plasma mem-
branes from COS cells expressing FLAG
hSnf7-1 and VPS4B(E235Q)-GFP. (fop) Immuno-
decoration with antibodies against FLAG tag on
FLAG hSnf7-1 (left) and GFP in VPS4B(E235Q)-
GFP (right). Yellow circles have been super-
imposed on the 18-nm gold particles for clarity.
Note that gold particles obscure individual
VPS4B particles only in the right panel. (middle)
Circles of hSnf7-1 filaments with an increasing
number of VPS4B(E235Q)-GFP particles bound.
(bottom) Low magnification survey view of COS-7
cell plasma membrane showing hSnf7-1 arrays
heavily decorated with VPS4B(E235Q)-GFP.
Note that all three have small central holes.
Bars, 100 nm.

mutant of VPS4B, VPS4B(E235Q), with hSnf7-1 in COS-7 cells.
This mutant form of VPS4B is unable to hydrolyze ATP be-
cause of a change in its Walker B motif and therefore binds
tightly to its protein substrates (Hanson and Whiteheart, 2005).
We found that VPS4B(E235Q) with or without a GFP tag ac-
cumulated on hSnf7 filaments, where it appeared as a large
particle along the cytoplasmic surface of the filaments (Fig. 4).
These particles were recognized by antibodies against epitope
tags or GFP attached to VPS4, which confirms that, as expected,
they are VPS4B(E235Q) (Fig. 4, top). Their sizes range from
~10 to ~~16 nm, which is significantly larger than expected for
a VPS4B-GFP monomer and could instead be consistent with

JCB « VOLUME 180 « NUMBER 2 « 2008

models of VPS4B operating as an oligomer (Scott et al., 2005a).
Although the density of VPS4B particles varied widely, there
were many arrays on which the particles were essentially con-
fluent. These VPS4B oligomers not only obscured the under-
lying hSnf7-1 filaments but also tightened the arrays to create
compact circular structures on the membrane.

Importantly, the change in the hSnf7 filament arrays
caused by binding to VPS4(E235Q) was accompanied by the
appearance of distortions in the membrane at the center of the
arrays. This could be glimpsed in views of unroofed plasma
membranes, where dense hSnf7 arrays had small central gaps
or holes that appeared slightly everted (presumably limited by
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the fact that the ventral surface of the cell cannot extend far
before reaching the glass on which the cells are growing;
Fig. 4). Much more obvious changes could be seen on the
tops of freeze-dried whole cells. There, it was apparent that co-
expressing hSnf7 and VPS4B(E235Q) led to the formation of
buds and occasionally tubules that extended out from the cell
(Fig. 5). These measured ~100-120 nm in diameter and ex-
tended to varying heights. They could easily be distinguished
from microvilli by their comparatively large size because micro-
villi are only ~50 nm in diameter. Similar tubules developed on
cells coexpressing hSnf7-2 and VPS4B(E235Q)-GFP as well as
hSnf7-1 and VPS4B(E235Q)-myc (unpublished data).

We examined the protein scaffold lining these tubules by
again extracting fixed cells with detergents, which revealed
closely spaced and highly regular subplasmalemmal filaments
with a unit diameter similar to the filaments seen on top of cells
expressing only hSnf7 (Fig. 6). These filaments could be immuno-
decorated with antibodies against epitope tags on either hSnf7
or VPS4B (unpublished data). Note that there are no visible

Figure 5. Buds and tubules protrude from the
top surface of cells coexpressing hSnf7-1 and
VPS4B(E235Q)-GFP. (top) Overview of fixed
whole cell. (bottom) Higher magnification views
of selected buds and tubules showing the range
of observed structures. Bars, 100 nm.

VPS4B(E235Q) particles on the detergent-extracted scaffolds
because these are external views of the filaments and would
not be expected to show proteins attached to the opposite cyto-
plasmic surface.

The subplasmalemmal scaffolds could also be seen to
good advantage in replicas of unextracted cells when and where
the membrane happened to peel back during the freeze-drying
process (Fig. 7). This is a fortuitous occurrence that provides
clean and undistorted views of submembranous protein lattices
(unpublished data). In the case of cells expressing hSnf7 and
VPS4B(E235Q), these views confirm that hSnf7 filaments ex-
tend beyond the perimeter of the buds and tubules to create a
circular base. Examination of the spacing between adjacent fila-
ments shows that the filaments are tightly and regularly packed
within and directly around the everting tubules and may become
less interconnected as the lattice extends further away from
the tubule. Not all of the lattices have central eversions, per-
haps because those that recruit less VPS4B do not undergo the
required structural change.

PROPERTIES OF HSNF7 POLYMERS ¢ HANSON ET AL
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Figure 6. Protein scaffolds line buds and
tubules in cells coexpressing hSnf7-1 and
VPS4B(E235Q)-GFP. Fixed whole cells extracted
with detergents after fixation show submembra-
nous skeleton. (top) Uniform budlike structures
on region of a cell. (bottom) Buds and tubules
of varying lengths along the surface of another
cell. Bars, 100 nm.

Polymers formed by an hSnf7-1 fragment
suggest a role for the N-terminal region in
bud formation

To further explore the relationship between hSnf7 and membrane
eversion, we studied the effects of removing the C-terminal half
of the hSnf7-1 protein. We used an N-terminal hSnf7-1 fragment
(residues 1-116) that we previously showed associated well with
the plasma membrane (Lin et al., 2005). This fragment retains
the core a-helical hairpin predicted by the CHMP3/hVps24 crys-
tal structure (Muziol et al., 2006) but is constitutively open and
does not interact with VPS4B (Lin et al., 2005). Strikingly, whole
cells expressing hSnf7(1-116) have regions on their dorsal sur-
faces that are abundantly studded with distinctive buds (Fig. 8).

JCB « VOLUME 180 « NUMBER 2 « 2008

These look similar to the buds seen on cells coexpressing full-
length hSnf7 and VPS4B(E235Q), although they are narrower in
diameter (~80 vs. ~100-120 nm) and only rarely elongate into
tubules. Again, concentrated at the centers or apices of these
buds are particles that probably correspond to trapped transmem-
brane proteins. Not surprisingly, plasma membrane buds were
easier to find in cells that expressed a mutant form of hSnf7(1-116)
in which a cysteine replaces serine at residue two because this
mutant undergoes palmitoylation and is more efficiently targeted
to the plasma membrane than normal (Lin et al., 2005).

Further examination of cells expressing hSnf7(1-116) (with
either cysteine or the wild-type serine at residue two) revealed that
fine filaments are visible on the plasma membrane. These can be
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seen on the inner surface of the membrane in unroofed cells
(Fig. 8, top right) as well as in freeze-fracture images of cells
grown on sapphire (Fig. 8, middle right) and on top of fixed
whole cells that have been extracted with detergent (Fig. 8, bottom
right). In many cases, the filaments associate laterally with each
other and curve into circular arrays. The fact that the pattern of
these filament arrays is particularly evident in freeze-fracture
images demonstrates that the protein directly or indirectly affects
the structure of the membrane bilayer. A peculiarity of the hSnf7
(1-116) filaments visible in unroofed cells is that they are often
decorated on their cytoplasmic surfaces with many copies of
an unusually large particle (>20 nm in diameter). Whether these
particles are normal binding partners for the ESCRT-III machin-
ery (i.e., ESCRT-I and ESCRT-II complexes) or are something
unrelated has yet to be determined.

VPS4B(E2350) mutant accumulates in
rings on membranes of cells even with no
exogenous ESCRT:-Ill expression

To determine whether filaments or scaffolds anything like those
shown in the previous section form in cells expressing only
endogenous levels of ESCRT-III components, we finally exam-
ined stable tetracycline-inducible HEK293 cell lines in which
the ESCRT pathway can be inhibited by regulated expression of
VPS4B(E235Q)-GFP (Lin et al., 2005). A few hours after adding
tetracycline (when endosome biogenesis and viral budding are

Figure 7. Spontaneous tears along the top sur-
face of fixed whole cells reveal the fine structure
of the underlying membrane skeleton (with no
detergent treatment). (top) Survey view. (bottom)
Higher magnification views. Bars, 100 nm.

already impaired and endogenous ESCRT proteins are associated
with VPS4B(E235Q); Lin et al., 2005), we prepared unroofed
plasma membranes for DEEM, taking advantage of the fact that
VPS4B(E235Q) can also be found on both endosomes and the
plasmalemma (Lin et al., 2005; Booth et al., 2006). On these
membranes, immunoreactive VPS4B(E235Q)-GFP again appears
as particles 10-16 nm in diameter (Fig. 9). These particles typi-
cally appear in chains, as if they are decorating an underlying
threadlike polymer on the membrane (likely one composed of
endogenous ESCRTs, although we cannot rule out other pos-
sibilities). The chains of VPS4B(E235Q) particles often curve to
form circles ~100 nm or more in diameter, reminiscent of indi-
vidual rings created by overexpressed full-length hSnf7. Some-
times, the circles of mutant VPS4B particles surround circular or
helical arrays of filaments that distort the plasma membrane,
pushing it outwards. One possibility is that these represent
endogenous ESCRT-III filaments “corralled” by mutant VPS4.
Alternatively, these could be coat components of an unidentified
virus that is intrinsic to our cultured cells and whose budding has
been blocked by expression of the mutant VPS4.

Discussion

MVB biogenesis is governed at least in part by transient recruit-
ment of ESCRT complexes and associated proteins to the limiting
membrane of the endosome. Among the proteins involved in
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Figure 8. hSnf7-1 N-terminal fragment (1-116)
drives formation of everting buds. (left) Top sur-
face of a fixed whole cell expressing hSnf7-1
(1-116). (top right) Filaments and large particles
on the inner surface of the plasma membrane
of cells expressing hSnf7-1(1-116). (right, mid-
dle) Freeze fracture image of membrane from
cells expressing hSnf7-1(1-116) grown on sap-
phire. (bottom right) Selected views from fixed
whole cells extracted with detergents after fixa-
tion. Bars, 100 nm.

formation of ILVs must be factors that select membrane and
cargo for incorporation into the ILV and factors that promote
the membrane deformation needed to drive ILV formation.
Here, we found that the ESCRT-III proteins hSnf7-1 (CHMP4A)
and hSnf7-2 (CHMP4B) assemble into filamentous polymers
on membranes. The circles formed by these filaments may con-
tribute both to defining the contents of a nascent ILV and de-
forming the membrane to create it. Insight into the function of
ESCRT-III proteins has been slow in coming (Russell et al., 2006)
and the novel properties of the subset of ESCRT-III proteins
described here should form the basis for further exploration of
their role in ILV formation.

Figure 9. VPS4B(E235Q)-GFP forms large
corral-like rings on the plasma membrane of
cells expressing only endogenous ESCRT-III
proteins. (top) Overview of plasma membrane
from a cell expressing only VPS4B(E235Q)-
GFP. A GFP tag on VPS4 was used to selec-
tively immunodecorate these particles with 18
nm gold. (bottom) Selected higher magnifica-
tion views of rings formed by VPS4B(E235Q)-
GFP. Bars: (top) 500 nm; (bottom) 100 nm.
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Structure of hSnf7 (CHMP4) polymers,
novel filaments on the membrane

The most significant observation in this study is that hSnf7 pro-
teins assemble into novel filaments that attach to the membrane
and are capable of distorting it. Although we cannot define the
arrangement of protein subunits within these filaments, some
possibilities can be gleaned from the recent crystal structure of
a fragment of another ESCRT-III protein, hVps24 (CHMP3)
(Muziol et al., 2006). The core of this ESCRT-III protein is an
~7-nm-long a-helical hairpin, which in the crystal binds to a
partner subunit to form an antiparallel dimer. To fit such dimers
into the smallest filaments seen here, the long axes of the helical
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hairpins would have to run roughly parallel to the filament.
This could be accomplished by a simple tip-to-tip interaction
between dimers as occurs in the crystal or by opening up the
hairpins to allow other types of intersubunit interactions not
seen in the crystal. The variety of interconnections that we see
between adjacent hSnf7 filaments indicates that there is more
than one way for these subunits to interact with each other, and
coassembly of hSnf7 with other ESCRT-III proteins is likely to yet
further expand the ways in which the subunits associate with each
other. Our finding that filaments also form when the N-terminal
half of hSnf7-1 (which contains little besides the a-helical hairpin)
is expressed (Fig. 9) suggests that the N-terminal helical hairpin
domain by itself is sufficient to allow polymer assembly.

Once assembled and attached to a membrane, hSnf7 fila-
ments have an intrinsic tendency to curve (Figs. 1-3). This ap-
pears to derive from the shape of the subunits and/or the way in
which they interact with each other. The degree of curvature is
not fixed because the path taken by individual filaments varies
widely (e.g., compare the curvature of a filament near the center
of an array with that of one at its periphery). Interfilament con-
tacts may contribute to stabilizing or even creating the circular
arrays. When the filaments are tightly associated with each
other and the membrane, their shape could play a role in de-
forming the membrane, as will be further discussed in the final
section of the Discussion.

Relevance of hSnf7/CHMP4 polymers to a
native ESCRT-IlIl complex

It is important to emphasize that the polymers studied in this
paper arise from overexpressed proteins and do not necessarily
correspond to normal intermediates in the ESCRT pathway.
Both up- and downstream components of the ESCRT pathway
have been bypassed or overwhelmed by hSnf7 overexpression,
allowing unopposed growth of hSnf7 polymers that may ex-
aggerate or even change their normal effects on membranes.
There are, however, several reasons to believe that these over-
grown polymers reveal important characteristics of ESCRT-III
proteins that are relevant to understanding how these proteins
contribute to MVB biogenesis. These include the facts that the
filaments (a) are highly organized, (b) bind specifically to rele-
vant proteins such as VPS4B (Figs. 4-7), (c) bind tightly to both
the plasmalemma and endosomes (this paper; Lin et al., 2005;
Shim et al., 2007), (d) do not form nonspecific aggregates with
other cellular proteins, (e) share properties with complexes of
endogenous ESCRT proteins trapped by inhibiting the path-
way in yeast, including being detergent insoluble and extremely
large, and (f) resemble structures trapped by expressing mu-
tant VPS4B(E235Q) on its own (Fig. 9). The fact that individual
hSnf7 proteins homooligomerize into regular structures leads us
to suggest that ESCRT-III complex could be either a defined
heteropolymer, as is currently assumed, or a series of intercon-
nected homopolymers. Our preliminary studies of other ESCRT-III
proteins support the idea that each can form homopolymers that
when opened or activated recruit other ESCRT-III components
(Shim et al., 2007). Further exploration of the structure of com-
plexes containing multiple ESCRT-III proteins and their effects
on membranes will clearly be an important next step.

Although we focused our study on plasma membrane
polymers for technical reasons (e.g., ease of visibility), there is
good evidence that ESCRT proteins can function on the plasma
membrane as well as on the endosome. Most proteins involved
in MVB biogenesis (including hSnf7 and VPS4) have been
implicated in the budding of several enveloped viruses, which
at least in some cases happens on the plasma membrane (von
Schwedler et al., 2003; Fisher et al., 2007; Fraile-Ramos et al.,
2007). Moreover, several recent studies have shown that there
are endosome-like domains in the plasma membrane, which
in turn has led to the proposal that exosome-like vesicles
might bud directly from the plasmalemma (Booth et al., 2006;
Nydegger et al., 2006). Finally, the ESCRT machinery has
recently been shown to be necessary for completing cytokine-
sis, again requiring function at the plasma membrane (Carlton
and Martin-Serrano, 2007; Morita et al., 2007). Thus, at least
in certain situations, the ESCRT machinery, probably includ-
ing the ESCRT-III complex, is recruited to and operational at
the plasma membrane.

ESCRT-Ill scaffolds and membrane
deformation

Current thinking is that one way in which proteins deform
membranes is by attaching tightly to them and imposing their
intrinsic geometry upon them. Well-studied examples of this
include the curved polymers formed by coat proteins (i.e., the
binding of clathrin lattices to the plasmalemma during coated
pit formation; Heuser, 1989a; Hinrichsen et al., 2006) and viral
structural proteins (i.e., the binding of viral matrix proteins to
the plasmalemma to form viral particles; Karacostas et al., 1989;
Morita and Sundquist, 2004) as well as the more localized
deformations associated with curved helical proteins containing
Bin/amphiphysin/Rvs (BAR) domains and related structural
motifs (Peter et al., 2004; McMahon and Gallop, 2005; Itoh and
De Camilli, 2006; Shimada et al., 2007).

In the case of the ESCRT pathway and ILV formation,
there has been to date little structural evidence for involvement
of complexes with the ability to distort the membrane. Our im-
ages suggest that ESCRT-III subunits assembled into filaments
and circular lattices may be able to drive and/or stabilize nega-
tive membrane curvature such as is needed to generate vesicles
that bud away from the cytoplasm. The mechanism for these ef-
fects could be similar to that used by BAR domain—containing
proteins (Peter et al., 2004; McMahon and Gallop, 2005), with
the shape of the ESCRT-III polymers promoting negative rather
than positive curvature. The idea that proteins with an “inverse”
BAR domain shape might promote negative curvature (and mem-
brane evolution) has been proposed (McMahon and Gallop,
2005) and, very recently, demonstrated in a study of two actin
binding proteins involved in the formation of filopodia, missing
in metastasis, and IRSp53 (Mattila et al., 2007). These proteins
contain a gently curved helical domain and create everting tubules
lined on their interior with the proteins. It is not difficult to imagine
that dimers of the a-helical hairpin at the core of ESCRT-III
subunits would use a positively charged, gently convex surface
(Muziol et al., 2006) to create the kind of membrane distortions
described in the present paper.
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There are several questions that need to be answered be-
fore we can propose a specific model for the role of ESCRT-III
polymers in MVB biogenesis. The most important is when and
where the polymers assemble and are subsequently removed.
Defining when ESCRT components dissociate from each other
and the membrane is particularly important because their con-
tinued presence on the membrane of a vesicle after it is released
from the limiting membrane would trap them inside the lumen
of the vesicle. This is inconsistent with current data showing
that ESCRT proteins are not present at a high concentration in
either viral particles or ILVs and exosomes (for review see Olver
and Vidal, 2007). One way out of this dilemma would be for
ESCRT-III polymers to initiate membrane deformation but
remain only at the perimeter or evolving neck of the vesicle,
perhaps as a result of ongoing and closely coupled VPS4-driven
disassembly of the ESCRT complexes. Changes in the lipid
composition of the evolving vesicle could play a role in vesicle
evolution, as has been previously suggested for lysobisphospha-
tidic acid, a cone-shaped lipid known to be present at high con-
centrations in ILVs (Matsuo et al., 2004).

The Snf7 subfamily of ESCRT-III proteins may have a
unique and particularly important role in the steps leading to
creation of ILVs, particularly if they recruit other ESCRT-III
proteins and their specific binding partners to join the poly-
mers they form. Indeed, evidence for a special role for hSnf7
comes from studies of viral budding, where recent data shows
that the late domain-interacting protein Alix only functions in
viral release when its ability to recruit hSnf7 is intact (Fisher
et al., 2007).

Current understanding of how membrane budding into
the MVB is driven is clearly limited. Although ESCRT-III pro-
teins have been implicated in this process, evidence for their
involvement has been indirect and primarily based on the
development of a class E compartment in yeast when ESCRT-III
function is impaired. The images presented here of hSnf7
show that even without upstream regulatory factors, this pro-
tein is capable of forming uniform circular structures that can
be induced to drive formation of everting buds and tubules.
These images are the first to show that an ESCRT-III polymer
is associated with changes in the curvature of a membrane.
Important future steps will be to compare the structure of other
ESCRT-III homo- and heteropolymers with those of hSnf7 to
determine how these polymers interface with other compo-
nents of the ESCRT machinery and finally to visualize the ac-
tual events that occur on isolated, functional MVBs as they
actively form and involute their ILVs.

Materials and methods

Plasmids

pcDNAS. 1-FLAG-hSnf7-1 full length (residues 1-222), pcDNA3. 1-FLAG-hSnf7-1
(residues 1-116) with residue two either Ser or Cys, pEGFP-hSnf7-1-GFP,
pEGFP-VPS4B(E235Q)-GFP, pEGFP-VPS4B-GFP, and pcDNA4-VPS4B(E235Q)-
Hissmyc were used as described previously (Lin et al., 2005). Note that
VPS4B is synonymous with SKD1. pcDNA3.1-FLAG-hSnf7-2 full length
(residues 1-222) was used as described previously (Shiels et al., 2007).
Finally, a QuikChange site-directed mutagenesis kit (Stratagene) was used to
mutate leucine 221 of GFP fo lysine in hSnf7-1-GFP to create hSnf7-1-mGFP
(Snapp et al., 2003).
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Cell growth

COS-7 cells were grown in DME (Invitrogen) containing 5% fetal bovine
serum (Invitrogen), 5% supplemented calf serum (Thermo Fisher Scientific),
and 2 mM iglutamine. TRExHEK293 cells expressing VPS4B(E235Q)-GFP
were grown in DME containing 10% tetracycline-free fetal bovine serum
(Atlanta Biologics), 2 mM tglutamine, 5 ug/ml blasticidin, and 100 pg/ml
zeocin as described previously (Lin et al., 2005). Expression of VPS4B(E235Q)
in these cells was induced by adding 0.5 pg/ml tetracycline for 4-6 h.

Transfections and sample preparation for DEEM

For DEEM, cells were grown on 3 X 3-mm glass (or where indicated, sap-
phire) coverslips. COS-7 cells were transfected with plasmids using Lipo-
fectamine 2000 (Invitrogen) according to the manufacturer’s instructions
and were used 18-24 h after transfection. To prepare unroofed cells, cover-
slips were briefly rinsed in serum-free, Hepes-buffered Ringer solution (30 mM
Hepes, pH 7.4, 100 mM NaCl, and 2 mM CaCl,) and then unroofed
using a brief pulse of ultrasound as described previously (Heuser, 2000a)
in an intracellular buffer (30 mM Hepes, pH 7.2, 70 mM KCI, 5 mM
MgCl2, and 3 mM EGTA). Samples were immediately fixed in the same
buffer containing 2% glutaraldehyde or 4% paraformaldehyde. To prepare
whole cells, cells on coverslips were simply fixed in Ringer solution contain-
ing 2% glutaraldehyde or 4% paraformaldehyde. To extract fixed whole
cells with detergent, fixed coverslips were incubated for at least 2 h in buf-
fer containing 1% Triton X-100 (Sigma-Aldrich) and 0.1% saponin.

Immunogold antibody decoration

For antibody decoration, samples fixed in formaldehyde were quenched in
50 mM NH,CI, 50 mM lysine, and 50 mM glycine. Samples were then
blocked in 30 mM Hepes, pH 7.4, 100 mM NaCl, and 2 mM CaCl, con-
taining 1% bovine serum albumin, incubated in primary antibody for 1 h,
washed, incubated with 18-nm gold-conjugated goat anti-rabbit or anti-
mouse, washed again, and postfixed in buffer containing 2% glutaralde-
hyde. Primary antibodies used were rabbit anti-GFP and rabbit and mouse
(M2) anti-FLAG (Sigma-Aldrich).

Freezing, replicafing, and imaging samples

Coverslips with samples to be frozen were washed in water and then
quick-frozen by abrupt application (slamming) of the coverslip onto a liquid
helium—cooled copper block using a cryopress (Heuser etal., 1979, 198%b).
Coverslips were stored in liquid nitrogen until mounting in a freeze-etch
device (Oerlikon Balzers), where they were immediately warmed to —80°C,
freeze-dried for 15 min in vacuo, and replicated with 2 nm of platinum,
which was vacuum evaporated onto them from 24° above horizontal while
they rotated at 20 rpm. For freeze-fracture of cells grown on sapphire, the
coverslip was frozen upside down, stored in liquid nitrogen, mounted in
the freeze-etch device, warmed to —105°C, fractured by popping the sap-
phire off with the knife, etched by sitting for 2 min in vacuo, and then repli-
cated as above.

In all cases, replicas were separated from the coverslips by flotation
on concentrated hydrofluoric acid, and washed briefly with 4% sodium hy-
pochlorite (bleach) and several rinses of water before being retrieved on
400-mesh Formvar-coated grids (Electron Microscopy Sciences). These were
then viewed with a standard transmission EM (JEOL) operating at 100 kV
and imaged at two different degrees of tilt (=10°) with standard EM film.
Thereafter, the stereo pairs of film were aligned by superimposition on
a copy stand and rerecorded as 4,492 x 3,328-pixel (17-Mp) digital
images with a digital single-lens reflex camera (EOS-1Ds Mark II; Canon).
Finally, the digital image pairs were converted (one to red and the other
to green), layered on top of each other with the screen blending mode in
Photoshop (Adobe), aligned to each other, and, where necessary, adjusted to
equalize their brightness and contrast to create the final 3D anaglyphs
shown here (Heuser, 2000b).
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