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Abstract. Myogenic cells provide excellent in vitro 
models for studying the cell growth and differentiation. 
In this study we report that lysophosphatidic acid 
(LPA), a bioactive phospholipid contained in serum, 
stimulates the growth and inhibits the differentiation of 
mouse C2C12 myoblast cells, in a distinct manner from 
basic fibroblast growth factor (bFGF) whose mitotic 
and anti-differentiation actions have been well investi- 
gated. These actions of LPA were both blocked by per- 
tussis toxin, suggesting the involvement of Gi class of G 
proteins, whereas bFGF acts through receptor tyrosine 
kinases. 

Detailed analysis revealed that LPA and bFGF act 
differently in regulating the myogenic basic helix-loop- 
helix (bHLH) proteins, the key players in myogenic dif- 
ferentiation process. LPA stimulates the proliferation 

of undifferentiated myoblasts allowing the continued 
expression of MyoD, but in contrast, bFGF does so 
with the MyoD expression suppressed at the mRNA 
level. Both compounds maintain the myf-5 expression, 
and suppress the myogenin expression. In addition, 
while LPA did not inhibit cell-cell contact-induced dif- 
ferentiation, bFGF strongly inhibited this process. Fur- 
thermore, LPA and bFGF act cooperatively in their mi- 
togenic and anti-differentiation abilities. 

These findings indicate that LPA and bFGF differ- 
ently stimulate intracellular signaling pathways, result- 
ing in proliferating myoblasts each bearing a distinct 
expression pattern of myogenic bHLH proteins and 
distinct differentiation potentials in response to cell- 
cell contact, and illustrate the biological significance of 
Gi-mediated and tyrosine kinase-mediated signals. 

T 
HE growth and differentiation of cells in organisms 
are subject to tightly concerted regulation that has 
long been a major focus of interest. Myogenic cell 

lines provide excellent in vitro models for studying the 
control of growth and differentiation mainly for two rea- 
sons. First, their growth and differentiation are easily con- 
trolled by manipulating the culture medium components 
(for review see Florini et al., 1991). Second, the MyoD 
family of basic helix-loop-helix (bHLH) 1 factors, which 
play essential roles in myogenic differentiation, have been 
cloned and well characterized (for reviews see Weintraub 
et al., 1991; Buckingham, 1992; Olson, 1992; Weintraub, 
1993): these consist of MyoD (Davis et al., 1987), myoge- 
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nin (Wright et al., 1989), myf-5 (Braun et al., 1989), and 
MRF-4/myf-6/herculin (Rhodes and Konieczney, 1989; 
Braun et al., 1990; Miner and Wold, 1990). 

Serum and certain fibroblast growth factors (FGFs) are 
able to stimulate the growth and prevent the terminal dif- 
ferentiation of a number of established myoblast cell lines 
(Clegg et al., 1987; Lathrop et al., 1985; Spizz et al., 1986). 
FGFs (mainly basic [b-] or acidic [a-] FGF) are the most 
investigated and the most characterized compounds that 
possess these activities (Florini et al., 1991). Other than 
FGFs, epidermal growth factor (EGF) and thrombin have 
been described to have these effects on a particular cell 
line, BC3H1, but detailed analyses have not yet been done 
(Wang and Rubenstein, 1988; Kelvin et al., 1989b). 

Several findings indicate that serum regulates myoblast 
growth and differentiation by mechanisms independent of 
bFGF. A rat myoblast line, L6 (Yaffe, 1968), grows under 
high serum conditions, but does not respond to FGF. In 
addition, the serum activities are blocked by pertussis 
toxin (PT), which specifically inhibits the Gi class of G 
proteins (Kelvin et al., 1989a,b; Salminen et al., 1991), 
while FGF signals, which are transduced through receptor 
tyrosine kinases (RTK), are unaffected by PT (Fantl et al., 
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1993; Jaye et al., 1992; Burgess and Maciag, 1989). Indeed, 
the FGF family of proteins have a strong affinity for the 
extracellular matrix and their contents in serum is very low 
(Klangsbrun and Baird, 1991; Burgess and Maciag, 1989). 

Lysophosphatidic acid (LPA) is a phospholipid con- 
tained in serum (Gerrard and Robinson, 1989; Eichholtz 
et al., 1993), and has been revealed to elicit a variety of bi- 
ological responses on a wide range of cells and organisms, 
including the stimulation of fibroblast proliferation (for 
reviews see Moolenaar, 1994, 1995). It functions by acti- 
vating a number of intracellular signal transduction sys- 
tems through putative cell surface receptor(s) coupled to 
G-proteins (van Corven et al., 1989, 1992; Jalink et al., 
1990; van der Bend et al., 1992a; Thomson et al., 1994). 

In this study, we report that LPA stimulates the growth 
and inhibits the differentiation of mouse C2C12 myoblast 
cells in a PT-sensitive manner. Detailed analyses in this 
study demonstrated that LPA and bFGF act on C2C12 
cells by distinct mechanisms. In contrast to bFGF, which 
stimulated proliferation of undifferentiated myoblasts by 
repressing MyoD, as previously reported (Vaidya et al., 
1989), LPA did so with MyoD expression maintained. In 
confluent cultures, while LPA could not inhibit the cell- 
cell contact-induced differentiation, bFGF strongly inhibited 
this process. In addition, LPA and bFGF acted coopera- 
tively, suggesting that they stimulated different intracellu- 
lar signaling pathways. This study illustrates distinct roles 
of Gi- and RTK-mediated signaling pathways in prolifer- 
ating myoblasts. 

Materials and Methods 

Cells and Cultivations 
The C2C12 mouse myoblast cell line (Yaffe and Saxel, 1977; Blau et al., 
1983) was obtained from the Amer. Type Culture Collection (Rockville, 
MD). A subclone of C2C12 was obtained by limiting dilution for use in 
this study. C2C12 cells were maintained in DMEM supplemented with 
10% FCS and kanamycin (60 p~g/ml). To induce differentiation or to test 
the effects of the experimental reagents, the cells were cultured on col- 
lagen-coated tissue culture plates (Corning, NY/Iwaki, Tokyo, Japan), 
and then switched to a serum-free ITS medium, consisting of DMEM sup- 
plemented with insulin (10 p,g/ml), transferrin (5 p,g/ml), sodium selenite 
(10 nmol), and bovine serum albumin (BSA, 1 mg/ml). BSA was added to 
prevent the precipitation of LPA in the presence of calcium ion (Jalink et 
al., 1990). 

Reagents 
FCS and platelet poor plasma-derived serum were purchased from More- 
gate Gr. Co. (Melbourne, Australia) and Biomedical Technologies Inc. 
(Stoughton, MA), respectively. Insulin (human), transferrin (human), and 
BSA were purchased from Sigma Chem. Co (St. Louis, MO). All lipids in- 
cluding LPA (synthesized L-ct-monooleoyl phosphatidic acid) were also 
purchased from Sigma. bFGF (human, recombinant) were from GIBCO 
BRL (Gaithersburg, MD) and Pertussis Toxin was from Kaken Pharma- 
cology Co (Chiba, Japan). Anti-MyoD (5.8A), anti-Myogenin (F5D), and 
anti-Troponin T (NT302) monoclonal antibodies were kindly provided by 
Drs. P. Houghton (Dias et al., 1992), W. Wright (Wright et al., 1991), and 
T. Obinata (Abe et al., 1986), respectively. 

Fusion Index~Nuclear Number Determination and 
BrdU Incorporation 
C2C12 cell cultures were fixed and dehydrated with methanol at room 
temperature for 10 miu, and then stained with Giemsa and Wright solu- 
tions (E. Merck, Darmstadt, Germany). The number of nuclei in mononu- 
cleated cells and in myotubes, defined as syncytia containing three or 

more nuclei, were counted using an optical microscope at a magnification 
of 100x or 200x. Three independent fields of 1 mm 2 were counted to cal- 
culate the total number of nuclei per square millimeter and the fusion in- 
dex (percent of total nuclei incorporated in myotubes). BrdU incorpora- 
tion was assayed using a Cell Proliferation Kit (Amersham Corp., 
Arlington Heights, IL). Cells were labeled with BrdU for 4 h followed by 
immediate fixation with acid ethanol. BrdU incorporated into DNA was 
visualized by indirect enzymatic immunocytostaining and counterstaining 
with methyl green. 

Immunostaining 
Cultured cells were fixed with 2% paraformaldehyde in phosphate-buff- 
ered saline at room temperature for 10 min. They were then permeabi- 
lized by 0.25% Triton X-100 (room temperature, 20 min) and reacted with 
the first antibody (4°C, overnight). After incubation with the second anti- 
body (FITC-conjugated anti-mouse IgG), the cells were washed, DNA 
stained with 4, 6,-diamidino-2-phenylindole (DAPI), and observed under 
a fluorescent microscopy. In some cases, biotinylated anti-mouse IgG was 
used as the second antibody followed by visualization using a Vecstain 
ABC detection kit (Vector Labs., Burlingame, CA). 

RNA Analysis 
Poly (A) RNA was isolated from the cells using a QuickPrep mRNA Puri- 
fication Kit (Pharmacia LKB Biotechnology, Piscataway, N J) according to 
the manufacturer's recommendation. Five micrograms of poly(A) RNA 
per lane were electrophoretically separated in a 1.5 % agarose gel contain- 
ing 7% formaldehyde, and then blotted onto Hybond N+ nylon mem- 
brane filter (Amersham) by microcapillary transfer. Phosphate-labeled 
double-stranded DNA probes specific for each transcript were generated 
using a Megaprime labeling kit (Amersham) and [c~-32P] deoxycytidine 
5'-triphosphate (Dupont). Hybridization was performed at 42°C, over- 
night, in a hybridizing solution consisting of 5 x SSPE, 0.1% sodium dode- 
cylsulfate and 50% formamide, containing 5x Denhardt's solution and 
100 txg/ml of denatured salmon sperm DNA as blocking reagents. Filters 
were then washed under stringent conditions (0.2x SSPE, 65°C, 30 min). 
Imaging was performed by autoradiography or the BAS2000 Imaging Sys- 
tem (Fuji Film, Tokyo, Japan). The filters were routinely deprobed and 
rehybridized with other radioprobes. 

The probes used in this study were as follows: for MyoD and myogenin, 
3' noncoding HindlII-EcoRI and EcoRI-EcoRl fragments of the mouse 
cDNAs were used, respectively (Fujisawa et al., 1990). In other cases, 
fragments were prepared by reverse transcriptase-PCR from cDNA pre- 
pared from C2C12 total RNA primed with random hexanucleotides, sub- 
sequently subcloned and sequenced. Primers used for PCR amplification 
were described in Hannon et al. (1992) for myf-5; G3PDH primers were 
purchased from Clontech Co. (Palo Alto, CA) (Arcari et al., 1984); MCK 
primers were CCACAGACAAGCATAAGACCGACC (position 377- 
401) and AACCTCCTTCATATTGCCTCCCI'FC (position 819-795), 
(Buskin et al., 1985). Id primers were CACTCTGTI'CTCAGCCTCCTC 
(position 39-59) and GGCTGGAGTCCATCTGGTCCCT (position 567- 
546) (Benezra et al., 1990). 

LPA Quantitation in Serum Samples 
Total lipids were extracted from the samples by the method of Bligh and 
Dyer after acidification with hydrogen chloride to pH 2.5 (Bligh and Dyer, 
1959; Tokumura et al., 1994), and subjected to a two-dimensional thin 
layer chromatography system using a silica gel 60 coated plate (Merck). 
The solvents used were chloroform/methanol/20% ammonium hydroxide 
(60:35:8, vol/vol/vol) for the first, and chloroform/acetone/methanol/acetic 
acid/water (6:8:2:2:1, vol/vol/vol/vol/vol) for the second dimensional devel- 
opment (Tokumura et al., 1994; Tigyi and Miledi, 1992). Phospholipids 
were made visible by spraying with Dittmer-Lester reagent, and color in- 
tensities of the LPA spots were measured against the standard LPA using 
Atto Densitograph (Atto, Tokyo, Japan). 

Results 

Mitogenic and Anti-Differentiation Activities of LPA 

To assess the effects of LPA on myoblasts, we used a se- 
rum-free condition where C2C12 mouse myoblast cells 
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(Yaffe and Saxel, 1977; Blau et al., 1983), withdrew from 
the cell cycle and underwent differentiation. When C2C12 
cells were cultured in serum free ITS medium (containing 
insulin, transferrin, and selenite, see Materials and Meth- 
ods), they differentiated and fused to form multinucleated 
myotubes within three days (Fig. 1, A-a). Addition of  LPA 
(10 i~g/ml) to the medium markedly suppressed myotube 
formation (Fig. 1, A-b), creatine kinase (CK), and tropo- 
nin T expression (data not shown). The same results were 
obtained when bFGF (10 ng/ml) or FCS (10%) was added 
to the medium (Fig. 1, A-c and e). Time course of the pro- 
liferation (indexed by number  of nuclei) and differentia- 
tion (indexed by fusion index) of C2C12 cells in the pres- 
ence of L P A  or bFGF was examined (Fig. 1, B and C, 
respectively). In ITS medium, cells ceased to proliferate 

and differentiated to form myotubes by culture day three. 
In the presence of  L P A  or bFGF they continued to prolif- 
erate and did not form multinucleated myotubes during 
the same culture period. A bromodeoxyuridine (BrdU) in- 
corporation experiment (Fig. 1 D) showed that L P A  and 
bFGF stimulated D N A  synthesis in a way that corre- 
sponds to the growth rates shown in Fig. 1 B. On the basis 
of these observations, we conclude that LPA,  as well as 
bFGF, can stimulate the proliferation and inhibit the dif- 
ferentiation of  C2C12 myoblasts. 

LPA Activities Are Specific among Structurally 
Related Lipids 

The effects of  lipids which are structurally related to LPA 
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Figure 1. Mitogenic and anti-differentiation effects of LPA and bFGF in C2C12 cells. (A) Morphological effects of LPA and bFGF. 
C2C12 cells cultured in DMEM containing 10% FCS were seeded onto collagen coated 24-well cell culture plates at the density of 104 
cells/well. 24 h later the medium was switched to ITS medium (a) or ITS supplemented with LPA (10 ixg/ml, b), bFGF (10 ng/ml, c), 
LPA plus bFGF (10 Ixg/ml and 10 ng/ml, respectively, d) or FCS (10%, e). After 3 d in culture with daily medium changes, the cells were 
fixed and Giemsa-stained. Bar represents 100 ixm. (B and C) Time course of proliferation and differentiation of C2C12 cells in ITS me- 
dium (open square), or ITS supplemented with LPA (closed square), bFGF (open circle), or FCS (closed circle). Culture conditions were 
described in the legend of A. Day 0 represents the day when the medium was switched to experimental medium. Cultures were fixed at 
24-h intervals and the total nuclei number and fusion index were determined. (D) Effect of LPA and bFGF on DNA synthesis of C2C12 
cells. Cells were cultured as in A. At 42 h, the cultures were labeled with BrdU for 4 h, and then fixed, stained with anti-BrdU antibody, 
and counted. Three independent fields of 1 mm 2 and at least 1,000 nuclei were counted for each data point. The error bars indicate SEM 
of the three determinations. 
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Figure 2. Specificity, dose response patterns and cooperative effects of LPA and bFGF. (A) Effect of LPA and structurally related lipids 
on proliferation and differentiation of C2C12 cells. Cells cultured as in Fig. 1 were switched to ITS media supplemented with LPA, 
L-et-dioleoyl phosphatidic acid (PA), 1-monooleoyl-rac-glycerol (monoacylglycerol, MG), L-et-oleoyl lysophosphatidyl-choline (LPC), 
L-ct-lysophosphatidyl-L-serine (LPS), or L-et-lysophosphatidyl-inositol (LPI). After 3 d, with daily media changes, cultures were fixed 
and the total number of nuclei (a) and the fusion index (b) were determined. The concentration of the lipids used was 10 i~g/ml except 
MG which was 50 ixg/ml. (B) Dose-response curves of anti-differentiation and mitogenic effects of LPA and bFGF. After 3 d of culture 
as described in Fig. 1 in the presence of the indicated concentration of LPA (a and c) or bFGF (b and d), cultures were processed to 
their fusion index (a and b) and total number of nuclei (c and d) determination. (C) Effects of simultaneous addition of LPA and bFGF 
on mitogenic and anti-differentiation activities. The same procedures were performed as described in Fig. 1 in the presence of the fac- 
tors indicated below each column. SEM of the three independent determinations is indicated by the error bars throughout this figure. 

on C2C12 myoblasts were examined. As shown in Fig. 2 A, 
the growth promoting and anti-differentiation activities of 
the lipids examined were limited to L P A  and phosphatidic 
acid (PA), suggesting that L PA functions as a bioactive 
ligand. This is compatible with the previously described 
functions of L P A  (van Corven et al., 1989; Jalink et al., 
1990; van Corven et al., 1993; Jalink et al., 1993). PA has 
been revealed to have similar effects to L P A  in other sys- 
tems (van Corven et al., 1989; Jalink et al., 1990), actually 
due to LPA which was present as a contaminant or a deg- 
radation product of  PA. Indeed, we detected a significant 
amount  (5-10%) of L PA contaminated in our P A  samples 
(data not shown). Therefore,  it may be that the PA activi- 
ties revealed here are also due to the contaminated LPA. 

Dose-Response Profiles 

As shown in Fig. 2 B, L P A  stimulated growth and inhib- 
ited differentiation in a dose-dependent manner,  and its 
effective concentration was higher than 1 I~g/ml (2.3 I~M). 
This is about the same dose required to evoke certain cel- 
lular responses including D N A  synthesis in fibroblasts 
(van Corven et al., 1989, 1993). Throughout  this study, we 
used 10 ~g/ml as the standard concentration of LPA,  be- 
cause higher concentrations (20-50 t~g/ml) sometimes 
caused cell lysis. Indeed, myogenic differentiation, indi- 
cated by fusion index (Fig. 2, B-a) and CK activity (data 

not shown), was almost completely blocked at 10 txg/ml, 
indicating that this concentration provides almost full 
LPA activity. In case of bFGF, the dose-response proper- 
ties were essentially the same as previously reported (Fig. 
2, B-b and d, Clegg et al., 1987). The concentration of 
bFGF was fixed at 10 ng/ml. 

Cooperative Effects of LPA and bFGF 

We tested the proliferation and differentiation of C2C12 
cells when both LPA and bFGF were added. Fig. 2, C-a 
shows that mitogenic effect of the simultaneous addition 
of the two agents is stronger than the separate effects of 
each agent. BrdU incorporat ion experiments provided 
essentially the same results (data not shown). Such a coop- 
erative effect is also observed in the inhibition of differ- 
entiation indicated by the expression of the terminal dif- 
ferentiation markers (discussed later in Fig. 4). Figs. 1, A-d 
and 2, C-b did not demonstrate this combined effect on 
differentiation inhibition, because the fusion illustrated 
had already been repressed to below the basal level (<5%) 
by either treatment. Since the doses of LPA and bFGF 
used here can each cause a full effect, as discussed above, 
their combined effects suggested that LPA and bFGF acti- 
vate distinct intracellular machineries that can act in coop- 
eration with the control of growth and differentiation of 
C2C12 cells. 
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LPA but Not bFGF Functions through Gi Proteins 

In a number of systems, LPA evokes a wide variety of cel- 
lular responses through a putative cell surface receptor(s) 
coupled to G proteins (Moolenaar, 1994, 1995). Some of 
them are blocked by pertussis toxin (PT), indicating the in- 
volvement of Gi proteins, while others are mediated by 
other classes of G proteins and are resistant to PT (van 
Corven et al., 1989; Ridley and Hall, 1994). We, therefore, 
investigated the PT sensitivities of LPA in our system to 
test the possible involvement of Gi (Fig. 3). 

The growth stimulatory and differentiation inhibitory 
effects of LPA (indexed by myogenin expression here) 
were canceled by the presence of PT in the culture at con- 
centrations above 5-10 ng/ml (Fig. 3), indicating that LPA 
actions are mediated by Gi proteins. This data agrees with 
previous observations that the mitogenic activity of LPA 
in fibroblasts is PT-sensitive (van Corven et al., 1989, 
1993). In contrast, the effects of bFGF were not affected 
by PT at any concentration tested; this result was expected 
because FGF receptor tyrosine kinases do not usually acti- 
vate Gi proteins (Fantl et al., 1993; Jaye et al., 1992). The 
growth stimulation and differentiation inhibition by FCS 
were also repressed by PT as reported by others (Kelvin et 
al., 1989a,b; Salminen et al., 1991). Judging from these re- 
sults, we conclude that LPA stimulates growth and sup- 
presses differentiation of C2C12 myoblasts by a Gi-medi- 
ated mechanism(s), whereas hFGF's effects are independent 
of Gi proteins. 

Differential Regulation of Myogenic bHLH 
Factors and Id 

To address the target of the anti-differentiation activity of 
LPA, we examined the expression of myogenic bHLH fac- 
tors. Series of investigations have revealed the roles of 
these factors which control myogenic determination and 
differentiation (for reviews see Weintraub, 1993; Olson 
and Klein, 1994). MyoD and/or myf-5 are expressed in 

proliferating myoblasts and are involved in their mainte- 
nance, while myogenin plays important roles when the 
cells decide to withdraw from the cell cycle and differenti- 
ate (Braun et al., 1992; Rudnicki et al., 1992, 1993; Na- 
beshima et al., 1993; Hasty et al., 1993). MRF4 may be im- 
portant in the later steps of differentiation. 

In culture medium containing 10% FCS, the majority of 
our C2C12 cells expressed MyoD protein and mRNA 
(identical to the results from ITS plus 10% FCS shown in 
Fig. 4, A-e, B, and C). When they were switched to bFGF 
medium, both MyoD protein and mRNA were dramati- 
cally reduced (Fig. 4, A-c, B, and C), as observed by 
Vaidya et al. (1989). In contrast, in LPA medium, the pro- 
liferating myoblasts expressed significant levels of MyoD 
protein and mRNA (Fig. 4, A-b, B, and C). Unlike MyoD, 
myf-5 mRNA was expressed at a relatively constant but 
low level under all the mitogenic conditions (Fig. 4 C). The 
expression of myogenin and MCK was strongly induced 
upon differentiation in ITS medium, but greatly suppressed 
under all the mitogenic conditions. The coexistence of LPA 
and bFGF caused a greater suppression of MCK and myo- 
genin expression, suggesting some concerted effects of the 
two factors. MRF-4 mRNA could not be detected in any 
of the conditions tested (data not shown). 

We conclude that LPA- and bFGF-stimulated growth 
and inhibition of differentiation of C2C12 cells occur in 
distinct manners that result in two modes of myogenic 
bHLH factor expression: LPA mainly results in MyoD pos- 
itive, myf-5 positive, and myogenin negative cells, while 
bFGF mainly results in MyoD negative, myf-5 positive, and 
myogenin negative cells. These two modes in C2C12 cells 
can be reversed by switching the LPA medium to bFGF me- 
dium, and vice versa (data not shown). 

We also examined the expression of the Id gene, which 
encodes an HLH factor which lacks the basic region and 
inhibits the MyoD family and other bHLH factors (Ben- 
ezra et al., 1990). Myoblasts growing in a FCS-containing 
medium expressed a high level of Id mRNA, but, when in- 
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Figure 3. Effects of pertussis 
toxin on mitogenic and anti- 
differentiation activities of 
LPA and bFGF. The same 
protocol was used as in Fig. 
1, except that the initial cell 
density was 1.5 × 104 cells/ 
well. 24 h after seeding in 
growth medium, cultures 
were switched to the experi- 
mental media containing mi- 
togens and the titrated con- 
centration of PT. After 48 h, 
cultures were fixed and 
stained for myogenin. Media 
were changed after 24 h. The 
total number of nuclei (a) 
and % myogenin positive nu- 
clei (b) were determined for 
three independent fields. 
Bars indicate SEM. 
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myogenin proteins. C2C12 cells were cultured for 2 d in ITS (a and f), ITS supplemented with LPA (b and g), bFGF (c and h), LPA and 
bFGF (d and i), or FCS (e and j). Cells were then fixed and subjected to indirect immunocytochemistry with anti-MyoD and anti-Myo- 
genin antibodies, and then counterstained with DAPI. Photographs were taken under a fluorescent microscopy with a magnification of 
200x. Each upper and lower panel shows anti-MyoD or myogenin staining (FITC) or DNA staining with DAPI of the same representa- 
tive field, respectively. Bar indicates 100 t~m. (B) Quantitation of MyoD (a) and Myogenin (b) positive nuclei. The same protocols as de- 
scribed in A was used and MyoD and myogenin positive nuclei were counted. Each data point was based on three independent determi- 
nations and shown as mean percent _-2-SEM. (C) Northern blotting analysis. Poly(A) RNA were isolated from C2C12 cells grown for 2 d 
in ITS (lane 1) or ITS supplemented with LPA (lane 2), bFGF (lane 3), LPA and bFGF (lane 4), or FCS (lane 5). 5 txg of poly(A) RNA 
was applied to each lane and Northern hybridizations were done as described in Materials and Methods. Identical filters were prepared 
and hybridizations were performed with the radioprobe indicated on the right. MCK, muscle creatine kinase; G3PDH, glyceroaldehyde- 
3-phosphate dehydrogenase. 

duced to differentiate in ITS, Id level decreased dramati- 
cally (Fig. 4 c), a result consistent with previous observa- 
tion (Benezra et al., 1990). When C2C12 cells were kept 
undifferentiated in the presence of L PA and/or bFGF, Id 
m R N A  levels were significantly lower than in FCS and 
comparable to that in ITS (Fig. 4 C), indicating that Id is 
unlikely to play a major role in LPA- and bFGF-induced 
differentiation inhibition. 

Distinct Differentiation Potentials in Response to 
Cell-Cell Contact 

LPA and bFGF also differ in their effects on C2C12 cells 

when the cells are cultured to confluence. It has been 
known that C2C12 myoblasts grown in a media containing 
high concentration of serum spontaneously differentiate 
to produce myotubes after reaching confluence. Similarly, 
C2C12 cells grown to confluence in LPA differentiated 
and formed large myotubes that expressed Troponin T 
(Fig. 5, A-b and e). Under  these conditions, myogenin and 
MCK m R N A s  were also expressed at high levels (Fig. 5 
B). In contrast, confluence-induced differentiation was 
dramatically suppressed by bFGF; only small myotubes in- 
corporating a few nuclei were formed (Fig. 5, A-c), and the 
expression of myogenin and MCK were very low (Fig. 5 
B). The inhibition of differentiation caused by bFGF was 

Yoshida  et at. Myogenesis Controlled by Lysophosphatidic Acid ] 87 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/132/1/181/1479586/181.pdf by guest on 24 April 2024



Figure 5. Differentiation of the confluent C2C12 cells in the presence of 
LPA and bFGF. (A) Troponin T staining of the confluent cultures. C2C12 
cells were cultured as described in the legend of Fig. 1, in ITS medium (a), 
ITS supplemented with LPA (b), bFGF (C), LPA plus bFGF (d), or FCS 
(e). After 5 d with changing the media once a day, all cultures except for a 
reached confluence. Cultures were then fixed and stained with anti-Tropo- 
nin T antibody by an enzymatic immunocytochemical technique. Bar indi- 
cates 100 i~m. (B) Northern blotting analysis. C2C12 cells were cultured as 
described in A. Isolation of poly(A) RNA and Northern blotting are de- 
scribed in the legend of Fig. 4 C. 

augmented  when L P A  and b F G F  were added  simulta- 
neously; only a small  popula t ion  of  mononuc lea ted  cells 
(<0 .1%)  became positive for Troponin  T (Fig. 5, A-d), 
and, myogenin  and MCK m R N A  expression were sup- 
pressed to an almost undetec table  level (Fig. 5 B). In con- 
trast to L P A  or  FCS, b F G F  downregula ted  MyoD in con- 
fluent cultures. Unl ike  MyoD or myogenin,  the expression 
of myf-5 transcripts was less influenced by these extracellu- 
lar signals (Fig. 5 B). 

These results suggest that  L P A  and b F G F  each affect 
prol iferat ing myoblasts  differently in such a manner  that  

results in distinct modes in their  expression pat tern  of  myo- 
genic b H L H  factors and results in different  competence  
for differentiat ion in response to cel l -cel l  contact. 

Contribution of  LPA to Serum Activities 

As descr ibed above, L P A  shares a number  of proper t ies  
with serum, which lead us to evaluate its contr ibut ion to 
serum activities. We  measured  the L P A  amount  in our se 
rum sample to be ~1 .8  p,g/ml (4.1 ~M).  This is consistent 
with o ther  groups '  previous reports  (Eichholtz  et al., 1993; 
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Tokumura  et al., 1994) and within the effective range for 
eliciting the growth-promoting and differentiation-inhibiting 
effects on C2C12 cells that we have demonstrated (Fig. 2 B). 

We then examined the activities of  platelet poor  plasma- 
derived serum (PPP). To generate PPP, platelets, which 
release the majority of serum L PA when activated upon 
clotting (Eichholtz et al., 1993), were removed before clot- 
ting. Thus, PPP contains reduced quantities of  LPA while 
retaining most other serum components.  Indeed, we iden- 
tified the concentration of L P A  in PPP to be 0.19 i~g/ml 
(0.44 ~M), one tenth that found in FCS. We found that 
PPP possesses some growth-promoting and differentia- 
tion-inhibiting activities, but these activities are weaker 
than those found in FCS (Fig. 6 A), and that addition of 
LPA to PPP strengthens both activities (Fig. 6 B). More- 
over, we also observed that addition of  suramin, an LPA 
antagonist (van Corven et al., 1992) inhibits these serum 

activities (data not shown), although it must be noted that 
suramin can antagonize not only LPA but a broad spec- 
trum of ligands (Coffey et al., 1987). Altogether,  these re- 
suits suggest that L P A  is one of the components  of serum 
that contribute to the control of  growth and differentiation 
of myoblast cells. 

Discussion 

LPA Has Mitogenic and Anti-Differentiation 
Effects on Myoblasts 

We have demonstrated the mitogenic and differentiation- 
inhibiting actions of LPA on C2C12 myoblasts. Among the 
wide variety of biological activities of L P A  reported (for 
reviews see Moolenaar,  1994, 1995), this study is the first 
report to show that LPA controls both cell growth and dif- 
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Figure 6. Effects of the plate- 
let poor plasma-derived se- 
rum on C2C12 cells. (A) 
Growth-promoting (a) and 
differentiation-inhibiting (b) 
activities of FCS and platelet 
poor plasma-derived serum 
(PPP). After C2C12 cells 
were cultured as described in 
Fig. 1 in the ITS medium 
containing titrated concen- 
trations of FCS or PPP for 3 d 
with the daily changes of me- 
dium, the resulting total 
number of nuclei (a) and fu- 
sion index (b) were deter- 
mined. LPA contents in 
these FCS and PPP samples 
were 1.8 txg/ml and 0.19 i.Lg/ 
ml, respectively. (B) Addi- 
tion of LPA to PPP raised its 
growth-promoting and differ- 
entiation-inhibiting activities. 
C2C12 cells were cultured 
and subjected to total nuclei 
number and fusion index de- 
termination, in the ITS me- 
dium containing indicated 
concentrations of PPP in the 
presence or absence of LPA 
(10 ~zg/ml). Each data point 
is represented as the mean -4- 
SEM of three determina- 
tions. 
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ferentiation. We also demonstrated that LPA actions were 
structure-specific and dose dependent. Both properties 
agree with previous studies indicating that LPA acts, 
through cell surface receptor(s), as a bioactive ligand (van 
Corven et al., 1989, 1992; Jalink et al., 1990). 

LPA can elicit a variety of cellular responses, most of 
which are evoked by nanomolar concentrations of LPA, 
including Ca 2+ mobilization (Jalink et al., 1990) and the 
formation of focal adhesions/actin stress fibers (Ridley 
and Hall, 1992, 1994). Because LPA-binding sites with kD 
on the nanomole order were detected in the membranes of 
Swiss 3T3 fibroblasts and rat brain (Thomson et al., 1994), 
it seems reasonable that LPA evokes these responses 
through activating this putative LPA receptor. But, in con- 
trast, micromolar doses are required for the mitogenic ac- 
tion of LPA on fibroblasts (van Corven et al., 1989, 1993), 
and we figured out that mitogenic and anti-differentiation 
effects of LPA on myoblasts also require micromolar con- 
centrations of LPA (Fig. 2 B). Intracellular signaling path- 
ways leading to cell proliferation or differentiation inhibi- 
tion might be activated only by higher concentrations of 
LPA through unidentified cell surface receptor(s). Alter- 
natively, since these responses take long periods lasting for 
hours to days, LPA could be degraded and the actual con- 
centration might be reduced as observed by van der Bend 
et al. (1992b). Further investigations are needed to clarify 
this issue. 

Gi-mediated LPA and RTK-mediated bFGF Inhibit the 
Differentiation by Distinct Mechanisms 

Both growth-promoting and differentiation-inhibiting sig- 
nals activated by LPA are blocked by PT, indicating the 
involvement of Gi proteins. On the other hand, bFGF is 
known to act through cell surface RTKs (for reviews see 
Fantl et al., 1993; Jaye et al., 1992). Thus, C2C12 myoblasts 
have proved to be controlled by two distinct classes of mi- 
togens; the Gi- and RTK-mediated mitogens. Such dual 
control of Gi- and RTK-mediated mitogens has been of- 
fered by others: thrombin and FGF on lung fibroblasts, 
and bombesin and PDGF on Swiss 3T3 fibroblasts (Cham- 
bard et al., 1987; Pouyssegur and Seuwen, 1992; Letterio et 
al., 1986). Those investigations demonstrated that both mi- 
togens induce proliferation and early response gene ex- 
pression in fibroblastic cells, but were unable to clarify a 
qualitative difference between these mitogens. 

Our results provide an evidence that actions of these Gi- 

and RTK-mediated mitogens are different in the control 
of the transcription network composed of the MyoD fam- 
ily of bHLH proteins; the MyoD gene is transcriptionally 
active in LPA-stimulated cells, but not in bFGF stimulated 
cells (Fig. 7). Upon terminal differentiation process, MyoD 
protein can transactivate the myogenin gene, without re- 
quiring de novo protein synthesis, which is considered to 
be among the earliest and the most important events in 
this process (Hollenberg et al., 1993). In the nuclei of the 
C2C12 cells proliferating in LPA, the MyoD protein is 
present but the myogenin gene is not activated (Fig. 4). 
Therefore, LPA must activate mechanisms that inhibit 
MyoD from activating the myogenin gene. The target of 
bFGF is different in that it inhibits the expression of 
MyoD at the transcriptional level (Fig. 5; and Vaidya et 
al., 1989). Coexistence of LPA and bFGF results in the 
suppression of MyoD, the bFGF-type phenotype (Fig. 4), 
suggesting that the action of bFGF dominates that of LPA, 
as shown in Fig. 7. 

LPA and bFGF Proliferate the C2C12 
Cells as Myoblasts 

It should be mentioned that both LPA and bFGF prolifer- 
ate the C2C12 cells with the myogenic potential main- 
tained. Both the cells grown in LPA and/or bFGF were 
positive for Desmin, a marker for myogenic lineage; and 
they underwent differentiation to form myotubes when 
deprived of these factors (Yoshida, S., unpublished data). 
Considering that MyoD is expressed in LPA-stimulated 
cells but not in bFGF-stimulated cells, and that myf-5 is 
expressed in both cells (Fig. 4), we postulate that myf-5 
plays an essential role to maintain the myogenic potential 
of the proliferating myoblasts, especially in the presence of 
bFGF. On the other hand, MyoD might play a role in 
maintaining the cells in a proliferating but ready-to-differ- 
entiate state to regulate the timing of terminal differentia- 
tion, in our in vitro system. Because myf-5 can activate the 
entire myogenic differentiation program in several non- 
muscle cells and MyoD knock-out mice (Braun et al., 1989, 
1992), myf-5's activity to promote differentiation is inhib- 
ited in myoblasts growing in LPA or bFGF (Fig. 7). 

We investigated the expression of Id, a negatively regu- 
lating HLH factor (Benezra et al., 1990; Jen et al., 1992), 
because it would throw light on the mechanism(s) with 
which LPA and bFGF keep the cells undifferentiated (Fig. 
4 C), C2C12 cells growing in LPA and bFGF expressed 

bFGF LPA 

Putative ~ ~ Downstream 
Upstream Regulator(s)",...~ ~ ' M y o g e n i n  -I~ Regulator & 

Structural Myf5 ~ Genes 

0 
proliferating myoblasts postmitotic myotubes 

Figure 7. A schematic diagram of the probable 
target points of the anti-differentiation action of 
LPA and bFGF, LPA targets the transcriptional 
activation of the myogenin gene by the MyoD 
protein through a Gi protein dependent path- 
way. While bFGF, through receptor tyrosine ki- 
nases, inhibits not only activation of the myoge- 
nin gene by MyoD or myf-5, but also inhibits the 
expression of MyoD per se. The main transcrip- 
tional cascade of the MyoD family of bHLH pro- 
teins during differentiation is essentially the 
same as that proposed previously (Weintraub, 
1993; Olson and Klein, 1994). Gi, Gi class of G 
protein; TyK, protein tyrosine kinase activities 
associate with FGF receptors. 
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only comparable levels of Id mRNA to that in differentiat- 
ing cells in ITS, suggesting that Id is not always required 
for the inhibition of terminal differentiation. Other pro- 
posed mechanisms for differentiation inhibition, including 
induction of early response gene products, Jun, Fos or 
Myc (Rahm et al., 1989; Lassar et al., 1989; Bengal et al., 
1992; Li et al., 1992a; Falcone et al., 1985; Denis et al., 
1987), or activation of protein kinase C, which can phos- 
phorylate and inhibit the function of myogenic bHLH fac- 
tors (Li et al., 1992b), could be involved. Further investiga- 
tions are needed to solve this issue. 

Differentiation Induced by Cell-Cell Contact 

LPA and bFGF provide the C2C12 cells with distinct dif- 
ferentiation potentials in response to cell-cell contact; dif- 
ferentiation induced by cell-cell contact was inhibited by 
bFGF, but not by LPA. These findings suggest that intrac- 
ellular signals activated by cell-cell contact, whose nature 
remains to be understood, can dominate the LPA signal- 
ing pathways that lead to growth stimulation and differen- 
tiation inhibition; but they do not affect, or are repressed 
by, signals activated by bFGF. Downregulation of the 
LPA receptors might be involved here since LPA binding 
ability has been shown to decrease in confluent cultures of 
Swiss 3T3 cells (Thomson et al., 1994). Investigations are 
still needed to reveal the mechanisms underlying these 
phenomena. 

Contribution of LPA to Serum Activities 

LPA is contained in serum (Eichholtz et al., 1993; Toku- 
mura et al., 1994) and was detected in a significant amount 
in our serum preparation. Then, we examined its contribu- 
tion to the serum mitogenic and anti-differentiation activi- 
ties, to determine if it can fully substitute for serum. We 
observed that PPP, which contained one tenth the LPA of 
FCS, had much lower activities than FCS in growth-pro- 
motion and differentiation-inhibition of myoblasts, and 
that addition of LPA to PPP increased these activities 
(Fig. 6). Moreover, suramin, an antagonist of LPA, re- 
pressed these effects of FCS (Yoshida, S., unpublished re- 
sults). These findings support the idea that LPA is one of 
the serum components acting in its growth promotion and 
differentiation inhibition of myoblasts. 

It is clear that LPA is not the only component responsi- 
ble to the mitogenic and anti-differentiation actions of se- 
rum; the mitogenic activity of LPA, indexed by growth 
rate and BrdU incorporation, was significantly lower than 
that of serum in our study (Fig. 1). In addition, PT treat- 
ment was unable to completely inhibit the actions of se- 
rum (Fig. 3), and PPP promoted growth and inhibited dif- 
ferentiation to smaller extent than FCS (Fig. 6). Moreover, 
induction of Id requires serum component(s) other than 
LPA (Fig. 4). These indicate that a component(s) other 
than LPA is also involved in the growth-stimulating and 
differentiation-inhibiting effects of serum. 

Possible Roles In Vivo 

LPA is thought to play an important role in wound healing 
and tissue regeneration because it is released by activated 
platelets upon clotting (Eichholtz et al., 1993; Tigyi and 

Miledi, 1992), and evokes a number of responses which 
seem to be important for wound repairing (discussed in 
Moolenaar, 1995). We and others (Eichholtz et al., 1993; 
Tokumura et al., 1994) have actually detected sufficient 
concentrations of LPA in serum to evoke mitotic response 
in myoblasts in vitro, indicating that platelets are capable 
of producing such high concentration of LPA upon clot- 
ting. Therefore, LPA might be involved in muscle regener- 
ation; LPA is likely to be produced in the damaged muscle 
as a result of blood clotting and inflammation, and might 
stimulate the proliferation of resting myoblasts, the satel- 
lite cells, which is an initial and indispensable event for 
muscle regeneration (Allbrook, 1981). It is possible that 
LPA is also involved in embryonic myogenesis. Indeed, we 
have observed that LPA can stimulate the growth of L6 
embryonic myoblast cells (Yoshida, S., unpublishedre- 
sults). The distribution of LPA and the LPA receptor, 
which has yet to be cloned during development, should be 
investigated to know whether LPA plays a role in embry- 
onic myogenesis. 

FGF has also been suggested to be involved in both 
muscle regeneration and embryonic myogenesis (Joseph- 
Silverstein et al., 1989; Gonzalez et al., 1990; Guthridge et 
al., 1992; Anderson et al., 1991). We speculate that if myo- 
blasts are under the dual regulation of LPA and FGF, the 
distinct reactivities of LPA and bFGF to cell-cell contact 
would play an important role in the coordinated growth 
and differentiation of myoblasts; in the earlier stage of 
muscle formation, myoblasts might be required to prolifer- 
ate to expand their population even in the differentiation 
promoting environment created by, for example, cell--cell 
contact, bFGF could provide myoblasts with this power. In 
later stages, on the other hand, myoblasts might have to 
proliferate with high differentiation potentials, preparing 
for timed growth arrest and terminal differentiation in re- 
sponse to extracellular cues. Myoblasts cultured in LPA 
might illustrate these properties in vitro. 
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