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Abstract. The identification of acidic and basic 
fibroblast growth factors (FGFs) in a number of em- 
bryonic tissue extracts has implicated these growth fac- 
tors in the regulation of a variety of embryonic events 
including angiogenesis, eye development, and muscle 
differentiation. Lack of information concerning the 
cellular distribution of the growth factor within these 
tissues has made it extremely difficult to assign de- 
velopmental roles to FGF. We have localized bFGF in 
the developing chick embryo using immunohistochemi- 
cal techniques and our monospecific polyclonal rabbit 
anti-human bFGF IgG. The spatial pattern for bFGF 

localization was highly specific. The anti-human 
bFGF antibodies recognized striated muscle cells and 
their precursors in 2-6-d chick embryos. Myocardium, 
somite myotome, and limb bud muscle all stain posi- 
tively for bFGE In addition, the anti-human bFGF 
antibodies localized specifically to the cell, rather than 
to the extracellular matrix or nucleus of myotubes. 
The localization of bFGF demonstrated here provides 
further support for the hypothesis (Clegg et al., 1987; 
Seed et al., 1988) that this growth factor is involved 
in muscle development. 

ASIC fibroblast growth factor (bFGF) t has a widespread 
distribution in adult tissues as determined by bio- 
chemical, biological, and immunological analysis of 

tissue extracts (see reviews in references 10, 16). However, 
little is known concerning its localization or its physiological 
role in these tissues. In vitro, bFGF has mitogenic activity 
for a variety of mesodermal cells including endothelial cells 
(4, 5, 6) and myoblasts (2), as well as for cells of neurecto- 
dermal origin (6, 23). When supplied exogenously to tissues 
of living organisms such as the chick embryo chorioallantoic 
membrane, bFGF is capable of stimulating angiogenesis (3, 
19, 28). Whether endogenous bFGF is involved in regulating 
these processes in the organism, has yet to be determined. 

More recently, research has begun to focus on possible 
roles of both the acidic and basic forms of FGF in embryo- 
genesis. A role for bFGF in the induction of mesodermal 
tissue, an early developmental event crucial to the normal 
development of the embryo, has been suggested by the dem- 
onstration that bFGF can mimic the effect of vegetal pole 
mesodermal inducing factors in Xenopus blastula (29). In ad- 
dition, mRNA for bFGF has been identified in amphibian 
oocytes and embryos (14). The expression of the int-2 proto- 
oncogene, which is related to FGF, has recently been studied 
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1. Abbreviations used in this paper: aFGE acidic fibroblast growth factor; 
bFGE basic fibroblast growth factor. 

in early mouse embryos, and its pattern of localization sug- 
gests possible roles in cell migration during gastrulation and 
inductive events during neurulation (33). It has been sug- 
gested that FGF may also be important later in development, 
during organogenesis. The acidic form of FGF (aFGF) has 
been identified in embryonic kidney extracts (25), while a 
heparin-binding growth factor which has very similar prop- 
erties to aFGF has been identified in extracts of embryonic 
brain (24). In addition, bFGF has been found in the brain, 
retina, and vitreous of ll-day chick embryos (18). The pres- 
ence of these factors has been temporally correlated with an- 
giogenesis in these tissues, suggesting that aFGF and bFGF 
may regulate embryonic vascularization, bFGF has also re- 
cently been identified in extracts of 2.5-13-d chick embryos 
and in chick embryo limb buds (27). A temporal correlation 
between FGF levels in the limb and muscle cell differentia- 
tion in the same tissue was noted in this study and may sug- 
gest a role for FGF in the regulation of muscle development 
in the embryo, bFGF was previously shown to regulate the 
differentiation of cultured myoblasts (2). 

The identification of FGF in tissue extracts of embryonic 
organs, and the correlation of its presence with particular de- 
velopmental events is suggestive of a role for this growth fac- 
tor in organogenesis. The ability to determine the cellular lo- 
calization of the growth factor within these tissues during 
their development would provide further information which 
would aid in the elucidation of the role played by FGF in de- 
velopment. In this paper, we localize bFGF to striated mus- 
cle cells and their precursors in the embryonic chick using 
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specific polyclonal anti-human bFGF antibodies (11) in con- 
junction with immunohistochemical methods. 

Materials and Methods 

Fertile eggs from White Leghorn chickens were obtained from Spafas Inc. 
(Norwich, CT) and maintained in a humidified incubator at 37°C. Embryos 
were staged according to Hamburger and Hamilton (7) before dissection. 

Preparation of Antibodies 
Polyclonal anti-human bFGF antibodies were raised in rabbits and gamma 
globulin fractions were prepared as previously described (11). 

Affinity-purified anti-human bFGF IgG was prepared by applying anti- 
human bFGF gamma globulins onto a column of human recombinant bFGF 
conjugated to agarose beads (Affigel-10; Bio-Rad Laboratories, Richmond, 
CA). Affinity-purified antibodies were then eluted with 0.1 M glycine (pH 
2.5) after extensive washing of the column with PBS (PBS = 0.15 M NaCl 
in 50 mM sodium phosphate buffer, pH 7.4). Fractions were immediately 
neutralized and dialyzed overnight against PBS. The flow through from the 
affinity column was collected and subjected to two additional rounds of 
chromatography on the bFGF affinity column to prepare anti-human bFGF- 
depleted gamma globulin for use in control studies. When tested in an 
ELISA for immunoreactivity with bFGE the anit-human bFGF-depleted 
antibodies contained no activity. 

Immunocytochemistry 
Chick embryos of appropriate stages were directly fixed in Bouin's fixative 
(15:5:1 saturated aqueous picric acid/formaldehyde/glacial acetic acid) over- 
night. The fixed embryos were dehydrated through a series of ethanol solu- 
tions, cleared in xylene and then infiltrated and embedded in Paraplast Plus 
(Monoject Scientific, St. Louis, MO). Sections were cut using a rotary 
microtome and were then prepared for immunohistochemistry using a 
modification of the method of D. Anderson (personal communication). Sec- 
tions were first placed in xylene and then rehydrated through a series of etha- 
nol solutions (70-100%). Sections were washed in a saturated lithium chlo- 
ride/70% ethanol solution and then were incubated for 30 min at room 
temperature in 0.3% hydrogen peroxide in methanol to quench endogenous 
peroxidase activity. Sections were then incubated for 30 rain at 37°C in PBS 
containing 5% normal goat serum and 0.1% NP-40 (Sigma Chemical Co., 
St. Louis, MO) to block nonspecific antibody binding. 

Sections were then incubated overnight at 4°C in the appropriate primary 
antibody diluted in PBS containing 5 %  normal goat serum and NP-40. 
Anti-human bFGF gamma globulins were diluted 100-1,000-fold while the 
affinity-purified antibodies were diluted to 30/~g/ml. Since the same pattern 
of staining was seen with both the gamma globulin fraction of the anti-hu- 
man bFGF serum and afffinity-purified IgG, we used in most cases the more 
readily available gamma globulin preparation to stain sections. In all cases, 
either nonimmune rabbit gamma globulins or anti-human bFGF depleted 
gamma globulins were included as controls. 

Bound antibody was detected using the ABC method (9) with reagents 
supplied by Vector Laboratories, Inc., (Burlingame, CA) in their Vectastain 
ABC Kit. Sections were incubated for 30 min at 37°C in biotinylated goat 
anti-rabbit IgG, and then for 30 min at room temperature in the ABC re- 
agent (avidin-biotin complex coupled to peroxidase). To visualize the anti- 
gen-antibody complexes, sections were then incubated for 8-10 rain at room 
temperature in 0.4 mg/ml 3-3' diaminobenzidine (Sigma Chemical Co.) in 
PBS containing 0.003% hydrogen peroxide. Sections were counterstained in 
0.125 % methylene blue. Photographs were taken with a Nikon automatic 
camera using Panatomic X black and white film (Eastman Kodak Co., 
Rochester, NY). 

Preparation of Embryo Extracts and Western 
Blot Analysis 
For Western Blot analysis, extracts of embryos at different developmental 
stages were prepared in the following manner. Embryos were dissected from 
the yolk and placed briefly in PBS. When several embryos were collected, 
they were transferred to 20 mM Tris/3 mM EDTA containing 0.5 M NaCI 
and 0.1 mM PMSF and homogenized briefly in a homogenizer (Dounce, 
Vineland, NJ) fitted with a teflon pestle. The homogenized material was 
sonicated at 10 W for a total of 5 min (l-min pulses) while on ice, and then 

centrifuged in an Eppendorf microfuge (Brink, man Instrument Co., West- 
bury, NY) at 16,000 g to pellet insoluble material. The Bradford assay (1) 
was used to determine protein concentrations of the extracts. 

The samples were diluted in sample buffer and subjected to SDS-PAGE 
according to the method of Laemmli (15). Proteins were transferred to nitro- 
cellulose membranes (30) and the membranes were then probed with rabbit 
anti-human bFGF gamma globulin or affinity-purified IgG as previously 
described (11), with the following modifications. To detect antigen antibody 
complex, alkaline phosphatase-conjugated goat anti-rabbit antibody (Pro- 
mega Biotec, Madison, Wl) was used in conjunction with the Protoblot 
Western Blot System (Promega Biotec). 

Results 

Identification of bFGF in Chick Embryo Extracts 
We have recently shown that specific polyclonal anti-human 
bFGF antibodies inhibited bFGF-like activity; that is the 
stimulation of microvascular endothelial cell plasminogen 
activator production from cultured chick embryo fibroblasts 
(20). To determine whether extracts of whole chick embryos 
also contain a bFGF-like molecule, western blot analyses 
were done on extracts of chick embryos at several stages of 
development. A single band with an approximate molecular 
weight of 18,600 was detected in extracts of 4- (stage 24), 
5- (stage 26), and 6-d (stage 29) chick embryos using affinity- 
purified anti-human bFGF IgG (Fig. l, lanes A, B, and C). 
No such reactivity was ever detected on blots probed with 
anti-human bFGF-depleted gamma globulin (Fig. 1, lanes 
D, E, and F). These immunoblots and the inhibition data de- 
scribed above (Moscatelli et al., 1986) demonstrate that 
these antibodies recognize chick bFGF and therefore, might 
be useful in detecting bFGF in the chick embryo by immuno- 
histochemical methods. 

Figure 1, Immunoblot  identification of  b F G F  in extracts prepared 
from chick embryos.  Equal amounts (45 #g) of  extracts from 4-, 
5-, and 6-d chick embryos were e lect rophoresed on SDS polyacryl- 
amide gels and transferred to nitrocellulose. Duplicate blots were 
incubated with either affinity-purified an t i -bFGF ( l a n e s / l - C )  or  
an t i -bFGF-deple ted  antibodies (lanes D-F) at the same concentra-  
tion. A protein with a molecular  weight of  18,600 was present  in 
extracts f rom all stages studied. This protein was not recognized by 
an t i -bFGF-deple ted  antibodies. Lanes A and D, 4-d embryo ex- 
tract; lanes B and E, 5-d embryo extract; lanes C and F,, 6-d embryo 
extract. 
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Figure 2. Immunohistochemical identification of bFGF in myocar- 
dial tissue of the chick embryo. Sections through 2- (stage 12; A 
and a), 3- (stage 19; B and b) and 4-d (stage 24; C and c) embryos 
were incubated with either anti-human bFGF gamma globulins 
(uppercase letters) or anti-bFGF-depleted gamma globulins (lower- 
case letters). In the developing heart, only the myocardium (arrow) 
stained positively for bFGE Although not apparent in these black 
and white photographs, the neural tube (NT) and developing eye (o) 
were counterstained dark blue with methylene blue. E, endocardi- 
um; A, atrium; CC, cardiac cushions. Bars, 0.2 mm. 

Figure 3. A comparison of staining patterns with anti-bFGF gamma 
globulins and afffinity-purified anti-bFGF antibodies in the 5-d 
(stage 26) heart. Anti-bFGF gamma globulin (A) stained embryon- 
ic myocardium at 5 d. Affinity-purified anti-human bFGF antibod- 
ies (B) gave an identical staining pattern as the gamma globulin 
fraction. Anti-human bFGF-depleted gamma globulins did not 
stain the myocardium (C). The liver (L) is not stained with the anti- 
bodies but is counterstained dark blue. A, atrium; CC, cardiac 
cushions. Bars, 0.2 mm. 

Immunolocalization of bFGF in the Chick Embryo 

A striking pattern of  immunoreactivity was obtained with the 
anti-human bFGF antibodies in sections through 2-6-d  em- 
bryos. At all stages studied, the developing heart stained 
positively for bFGF (Fig. 2). Staining was specific for the 
myocardial tissue only. This specificity was readily apparent 
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Figure 4. Immunohistochemical identification of 
bFGF in myotomes of the chick embryo. Sections 
through 3- (stage 19; A and a), 4- (stage 24; B and 
b), and 5-d (stage 26; C and c) embryos were 
incubated with either anti-human bFGF gamma 
globulins (uppercase letters) or anti-bFGF-deplet- 
ed gamma globulins (lowercase letters). The myo- 
tomes (arrow) were the only regions of the somites 
which stained with the anti-bFGF gamma globu- 
lins. Neither the sclerotome nor dermatome was 
stained. Bars: (A) 0.05 mm; (B) 0.3 mm; (C) 
0.2 mm. 

in 48-h embryos (stage 12) when the heart is merely a single 
tube consisting of an outer epimyocardial layer and an inner 
endocardial layer separated by a wide space filled with ex- 
tracellular ground substance. The intensity of the staining 
was constant throughout the myocardium of 2- (stage 12), 
3- (stage 19), and 4-d (stage 24) embryos. However, by 5 d 
(stage 26) (Fig. 3) the intensity of staining was much de- 
creased in the most internal regions of the heart, and this pat- 
tern persisted in 6-, 12-, and 15-d hearts (preliminary obser- 
vations). Interestingly, in sections through 12-d hearts in 
which the dorsal aorta is prominent, it is apparent that the 

anti-bFGF antibodies did not stain the endothelium or 
smooth muscle of the blood vessel wall (data not shown). 

In addition to the myocardium, somite myotome, consist- 
ing of skeletal muscle cell precursors, also stained intensely 
with the anti-bFGF antibodies in sections through 3-6-day 
embryos (stages 19 to 29) (Figs. 4, 5, and 6). The remaining 
two regions of the somites, the sclerotome and dermatome, 
did not react with the anti-human bFGF antibodies. In sec- 
tions through 6-d-old embryos in which the developing ver- 
tebral column can be identified (Fig. 6 A), the myoblasts re- 
maining in the somite area, between adjacent developing 
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Figure 5. bFGF staining in a transverse-section through the myo- 
tome of a 4-d embryo. Anti-bFGF gamma globulins were diluted 
1:1,000 (A) and incubated with sections through a 4-d embryo. A 
positive response was obtained, while no staining was apparent with 
anti-bFGF-depleted antibodies (B). NT, neural tube; NC, noto- 
chord. Bars, 0.2 mm. 

vertebrae, continued to be intensely stained with the anti- 
bFGF antibodies even though some of the cells were begin- 
ning to differentiate into multinucleated myotubes (Fig. 6 B). 
These cells were darkly stained, while neither the nuclei, nor 
the spaces between cells stained with the antibody. This pat- 
tern of staining of myoblasts and myotubes is most consistent 
with a cytoplasmic localization of bFGE The same staining 
pattern was apparent in the myocardial tissue (data not 
shown). 

In sections through 4-d (stage 24) embryos, in which the 
limb buds were easily recognizable, single cells that ap- 
peared to be migrating into the bud, away from the trunk 
were stained with the anti-bFGF antibodies (Fig. 7 A). In 
some regions of the limb bud, adjacent to areas in which 
chondrogenesis was beginning to occur, small groups of 
these cells aggregated into clusters. These are presumably 
myoblasts which go on to form the skeletal muscle of the 
limb. In fact, in some sections through 5- and 6-d limbs, in- 

tensely stained multinucleated myotubes like those described 
above were present (Fig. 7, B, C, and D). In 12-d limbs some 
staining of the skeletal muscle remained but it was not nearly 
so intense as in the earlier limbs (preliminary observation). 

No positively stained structures were identified in sections 
through the head of 3- and 4-d embryos. However, sections 
through the head of 5-d embryos contained small groups of 
stained cells (Fig. 8). At the base of the developing tongue 
were individual stained cells beginning to aggregate (Fig. 8 
A). Adjacent to the ventral surface of the embryonic eye, 
bundles of stained cells (Fig. 8 B) were seen which are the 
developing extra-ocular muscles. 

Discussion 

We have localized bFGF in the chick embryo using specific 
antibodies in conjunction with immunohistochemistry. To 
date, most studies have focused on the identification of FGF 
in tissue extracts or in cultured ceils, neither of which pro- 
vides information on its cellular distribution during devel- 
opment. This study provides information concerning the 
cellular localization of the growth factor within embryonic 
tissues, and to our knowledge, represents the first report on 
the immunohistochemical localization of bFGF in an intact 
embryo during the initial stages of organogenesis. 

Recently, both aFGF and bFGF have been identified in 
extracts of embryonic tissues, suggesting that these growth 
factors may be involved in the regulation of d~velopmental 
processes. The presence of FGF in embryonic brain (aFGF- 
like: 24; aFGF and bFGF: 18) and kidney (aFGF: 25) has 
been correlated with vascularization of these tissues. This is 
consistent with the well-known angiogenic activity of FGF 
in in vivo model systems (3, 19, 28). However, based on the 
myriad of biological activities of FGF demonstrated in vitro, 
such as the promotion of neuronal survival and neurite out- 
growth (8, 31), the stimulation of protease production in 
capillary endothelial cells (19), and the stimulation of prolif- 

Figure 6. Immunohistochemical local- 
ization of bFGF in multinucleated myo- 
tubes of 6-d chick embryo myotomes. 
Sections through a 6-d (stage 29) em- 
bryo were stained with anti-bFGF 
gamma globulins. The cells of the myo- 
tome, which are beginning to differ- 
entiate into intercostal muscle cells 
stained positively (A, arrow). A higher 
magnification (B) of part of the region 
within the box in A, demonstrates the 
multinucleate nature of the myotubes. 
Neither the spinal cord (SC) nor the 
developing vertebral column (VC) 
stained positively with the antibody. 
No staining of the myotubes was ap- 
parent with anti-bFGF-depleted anti- 
bodies. Bars: (.4) 0.2 mm; (B) 10/~m. 
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Figure 7. Anti-bFGF gamma globulins stain a population of cells in the chick limb bud. Sections through 4- (stage 24; A), 5- (stage 26; 
B), and 6-d (stage 29; D) chick embryos were incubated with anti-bFGF gamma globulins. In a cross section through a 4-d limb bud 
(A) single immunoreactive cells (arrow) were seen surrounding areas of chondrogenesis. In a longitudinal section through a 5-d limb (B) 
stained cells aggregated into discrete bundles. In some sections, cells appear as long tubular structures (arrow), which are presumably 
differentiating myotubes. In a longitudinal section through a 6-d limb bud (D), bundles of myotubes stained positively with anti-bFGF 
gamma globulin. The multinucleate structure of the myotubes can be seen more clearly at higher magnification (C). No staining was ob- 
served when anti-bFGF-depleted antibodies were used. C, areas of chondrogenesis. Bars: (A, B, and D) 0.2 mm; (C) 0.02 mm. 

eration of a wide variety of  mesodermal cells including endo- 
thelial cells (4) and skeletal muscle myoblasts (2), it seems 
likely that the regulation of angiogenesis may not be the only 
role for FGF during development. In fact, a recent report 
demonstrates that FGF can act as a mesodermal-inducing 
factor during amphibian embryogenesis (14, 29). 

The regulation by FGF of  multiple events associated with 
organogenesis, has been suggested by the identification of 
FGF in a variety of embryonic tissues. Mascarelli et al. 08)  

have identified both aFGF and bFGF in l l -d chick embryo 
retina and vitreous, neither of  which is a vascularized tissue. 
They have suggested that FGF may be involved in some in- 
ductive events in the eye. In addition, Seed et al. (27) have 
identified FGF in chick limb buds and have hypothesized a 
role for FGF in muscle differentiation. 

The demonstration here that bFGF can be localized to de- 
veloping myocardium, somite myotome, and differentiat- 
ing muscle in head, trunk, and limbs, not only extends the 
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Figure 8. bFGF-containing cells are 
present in the head region of the 5-d 
chick embryo. When sections through 
5-d (stage 26) chick embryos were in- 
cubated with anti-bFGF gamma glob- 
ulins only the developing muscle at the 
base of the tongue (A, arrow) and the 
extra-ocular muscles (B, arrow) stained 
positively for bFGE Bars, 0.2 mm. 

finding of Seed et al. (27) by identifying a source for the FGF 
which can be detected in the chick embryo limb bud, but also 
provides a further example of a spatial pattern for bFGF in- 
consistent with a sole role for this growth factor in angiogen- 
esis. In the developing heart, the formation of the endocar- 
dium, which is made up of endothelial cells, precedes the 
appearance of the myocardium (17), which stained intensely 
with our anti-bFGF antibodies (Fig. 2). In several sections, 
blood vessels are apparent in regions in which no anti-bFGF 
antibody staining was detectable (Figs. 4-7). However, it 
must be kept in mind that other tissues may contain bFGF, 
but in quantities too small to be detected with our antibodies, 
and that these antibodies recognize only the basic form of 
FGF (11). In addition, we have looked at early organogenesis 
in the chick embryo (days 2-6), and cannot comment on the 
role of bFGF in embryonic events occurring after this time. 

The presence of bFGF in embryonic chick striated muscle 
is consistent with the results of Kardami et al. (12, 13), who 
have purified a bFGF-like protein from adult skeletal muscle. 
Receptors for FGF have been detected on a cultured myoblast 
cell line (21). Both aFGF and bFGF stimulate the prolifera- 
tion of these cells and repress their terminal differentiation 
(2). In addition, a recent study demonstrates that a loss of 
FGF binding to the surface of these cells is correlated with 
their terminal differentiation (22). These data seem to sug- 
gest a possible autocrine role for FGF in myoblast differenti- 
ation. Further evidence for the importance of FGF in the 
regulation of muscle differentiation comes from studies on 
the effect of FGF on primary clonal cultures of chick embryo 
myoblasts (26). While FGF delayed the terminal differentia- 
tion of myoblasts derived from 7-12-d-old chick embryo 
wings, some myoblasts derived from 4- and 5-d chick em- 
bryo wing buds were actually dependent on FGF for their 
differentiation. The detection of bFGF in striated muscle myo- 
blasts by immunohistochemistry suggests the possibility that 
bFGF may regulate muscle development in the embryo. Since 
the localization of bFGF does not distinguish between the 
myoblast as a source and/or target for this protein, whether 
bFGF may act to regulate muscle differentiation in an auto- 
crine manner cannot be commented on. It is possible that 
bFGF may be at work early in muscle development, stimulat- 
ing the migration of cells from the myotome. Although there 

has been no report of the stimulation of myoblast migration 
by bFGF it is known that bFGF stimulates chemotaxis of 
capillary endothelial cells (19). The detection of bFGF in 
small groups of cells which seem to be migrating from the 
somites into the limb bud, suggests such a role for bFGF. 

Recently, bFGF has been identified in the extraceUular 
matrix of bovine aortic and corneal endothelial cells (32). 
However, in our studies, bFGF seems to be mainly intracel- 
lular. It is possible that small amounts of this protein are 
present in the matrix of embryonic striated muscle but is un- 
detectable at the level of sensitivity of the immunohistochem- 
ical technique. However, it is also possible that during the 
particular developmental stages studied here (stages 12-29), 
bFGF is not deposited into the matrix. 

The highly specific spatial pattern for bFGF localization 
generated by staining with both a gamma globulin fraction 
of anti-bFGF serum and afffinity-purified anti-bFGF anti- 
bodies has aided in the generation of a testable hypothesis for 
the role of bFGF in organogenesis. 
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