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Abstract. Interaction of the vascular cell adhesion 
molecule (VCAM-1) with its counter-receptor very late 
antigen-4 (VLA-4) (integrin ot4fl0 is important for a 
number of developmental pathways and inflammatory 
functions. We are investigating the molecular mecha- 
nism of this binding, in the interest of developing new 
anti-inflammatory drugs that block it. In a previous 
report, we showed that the predominant form of 
VCAM-1 on stimulated endothelial cells, seven-domain 
VCAM (VCAM-7D), is a functionally bivalent mole- 
cule. One binding site requires the first and the other 
requires the homologous fourth immunoglobulin-like 
domain. Rotary shadowing and electron microscopy of 
recombinant soluble VCAM-7D molecules suggests 
that the seven Ig-like domains are extended in a slightly 
bent linear array, rather than compactly folded to- 
gether. We have systematically mutagenized the first 

domain of VCAM-6D (a monovalent, alternately 
spliced version missing domain 4) by replacing 3-4 
amino acids of the VCAM sequence with correspond- 
ing portions of the related ICAM-1 molecule. Specific 
amino acids important for binding VLA-4 include 
aspartate 40 (D40), which corresponds to the acidic 
ICAM-1 residue glutamate 34 (E34) previously re- 
ported to be essential for binding of ICAM-1 to its 
integrin counter-receptor LFA-1. A small region of 
VCAM including D40, QIDS, can be replaced by the 
similar ICAM-1 sequence, GIET, without affecting 
function or epitopes, indicating that this region is part 
of a general integrin-binding structure rather than a 
determinant of binding specificity for a particular inte- 
grin. The VCAM-1 sequence G65NEH also appears to 
be involved in binding VLA-4. 

T 
~E interaction of cells with one another via their mem- 
brane-bound adhesion molecules is a dynamic pro- 
cess with multiple physiologic and pathologic conse- 

quences. Molecular regulation of cellular adhesion and 
de-adhesion is responsible for modeling of the tissues and or- 
gans during development, and many of the same molecules 
continue to be important in both repair and normal function 
in the adult. Since its discovery a few years ago, the vascular 
cell adhesion molecule-1 (VCAM-1)l/very late antigen-4 
(VLA-4) adhesion pathway has been shown to be involved 
in embryonic development of skeletal muscle (Rosen et al., 
1992), and in hematopoiesis (Miyake et al., 1991), in addi- 
tion to its originally described function as an inducible vas- 
cular adhesion pathway involved in migration of mononu- 
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clear leukocytes to sites of inflammation (Osborn et al., 
1989; Elices et al., 1990). It has been implicated in the 
pathology of disorders affecting a wide range of processes, 
including metastasis of tumors (Rice and Bevilacqua, 1989), 
atherosclerosis (Cybulsky and Gimbrone, 1991), and auto- 
immune encephalitis (Yednock et al., 1992). 

VCAM-1 (also called INCAM-110) (Rice and Bevilacqua, 
1989) is an Ig superfamily protein which is synthesized by 
endothelial cells in response to IL-1, TNF, LPS, or IL-4, and 
is found constitutively on a few other cell types, such as fol- 
licular dendritic cells in lymph nodes (Freedman et al., 
1990) and bone marrow stromal cells (Miyake et al., 1991). 
The first counter-receptor identified for VCAM 1 was a 
member of the heterodimeric integrin family known as VLA-4 
or a4~1, found on most mononuclear leukocytes, but not on 
neutrophils. VLA-4 can also bind to an alternately spliced 
site in fibronectin called CS-1 (Wayner et al., 1989; Guan 
and Hynes, 1990). The ct4 integrin chain in association with 
a different beta chain, a4f17 or ol4flp, appears to be capable 
of binding to both VCAM-1 and fibronectin (Ruegg et ai., 
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1992; Chan et al., 1992), as well as to another recently dis- 
covered Ig molecule known as mucosal addressin cell adhe- 
sion molecule-1 (MAdCAM-1) (Briskin et al., 1993; Berlin 
et al., 1993). 

Within the Ig superfamily, VCAM-1 belongs to a growing 
subfamily of cell surface molecules including ICAMA, -2, 
and -3, and MAdCAM-1, that bind leukocyte int~grin 
ligands. Members of this family are distinguished by the 
presence of four cysteine residues instead of the usual two, 
in domains important for counter-receptor binding. Here we 
show by rotary shadowing and electron microscopy that 
purified recombinant VCAM-1, like ICAM-1 and the immu- 
noglobulins, assumes an extended conformation rather than 
a more compactly folded tertiary structure. 

VCAM-1 exists in two alternately spliced forms on en- 
dothelial cells, a major form comprised of seven Ig-like do- 
mains (VCAM-7D), and a minor form lacking domain 4 
(VCAM-6D) (Fig. 1) (Cybulsky et al., 1991; Hession et al., 
1991). Previously we showed that VCAM-7D has two homol- 
ogous binding sites for VLA-4, one requiring the first 
(NH2-terminal) Ig-like domain (D1) and the other requiring 
the fourth (I)4) (Vonderheide and Springer, 1992; Osborn et 
al., 1992). It is probable that the mechanism of binding to 
VLA-4 is the same for these two domains, as they are very 
similar in sequence, having only 11 nonconservative amino 
acid differences within the 90-amino acid domain, and can 
substitute for each other structurally and functionally in 
recombinant constructs. To map more finely areas of the pro- 
tein structure required for binding to VLA-4, we have syste- 
matically mutagenized domain 1 and analyzed the mutant 
constructs for maintenance of functional mAb epitopes and 
cell binding activity. 

Materials and Methods 

Rotary Shadowing and Electron Microscopy 
Purified rsVCAM-7D or equimolar mixtures of rs~V.AM and antibody were 
incubated at 4oC for I h at 0.5-1 mg/ml in PBS. 1-2-/d samples were rapidly 
mixed with ice-cold 40-45 % glycerol, sprayed onto mica and platinum- 
rotary shadowed at a glancing angle of 6-8 degrees. Micrographs were 
taken at a magnification of 48,000 and selected images from scanned prints 
were measured using the program Image 1.45 (NIH). A JEOL 100CXII 
operating at 80 KV was used. After each electron microscopy session, the 
microscope was calibrated with negatively stained images of T4 phage tails 
(4.1 nm repeat period). 

Antibodies and Cells 
Previously described monoclonal antibodies used were anti-o~4, HPI/2 (PU- 
lido et al., 1991); and anti-VCAM-1, 4139 (Carlos et al., 1990). EH8 is an 
IgGl mAb made from mice immunized with recombinant soluble VCAM- 
7D (Lobb et al., 1991), and will be described in detail elsewhere (Benjamin, 
C., and I. Dougas, unpublished data), mAb BBA-5 was purchased from 
R & D Systems, Inc. (Minneapolis, MN). mAb epitopes were mapped by 
FACS analysis of COS'/cells transfected with ~..AM/ICAM chimeric con- 
structs previously described (Osborn et al., 1992), and by analysis of hu- 
man/murine chimeric constructs (Hessiun, C., and D. Worley, Bingen, Inc., 
unpublished results). Polyclonal rabbit anti-VCAM-1 serum was made by in- 
ocolafing rabbits with recombinant soluble VCAM-7D. COS7 and Ramos 
cells were cultured as previously described (Osborn et al., 1989). 

Protein and Nucleic Acid Sequence Analysis 
Sequence analysis was carried out using the GCG Package (Genetic Com- 
puting Group, Madison, WI). 

Figure 1. Schematic diagram of two alternately spliced forms of hu- 
man VCAM-1, VCAM-7D, and VCAM-6D. Domains implicated in 
ligand binding are shaded. 

Mutant Constructions 
Mutants were constructed using a modification of the gapped-heteroduplex 
oligonucleotide-directed mutagenesis technique. Aliquots of the parent 
plasmid VCAM41/CDM8 (VCAM-6D) (Osborn et al., 1989) were digested 
by restriction endonuclease MluI to generate a full-length linear molecule, 
or by HindlII and BspHI to generate a gapped linear molecule, and the large 
fragments were agarose gel purified. Approximately four pmoles of phos- 
phorylated mutagenic oligonucleotide and 50 ng each of full-lengdi and 
gapped template fragment in 10 #1 of 0.1 M NaCI, 6.5 raM TrisCl pH 7.6, 
and 8 mM MgCI2 was placed in a beaker of boiling water, which was then 
allowed to cool to RT. All four deoxyribonucleotides to 0.5 mM each, ATP 
to 1 raM, 1 #1 of Klenow fragment and 0.5 ~d of T4 DNA ligase were added 
to a final volume of 20 #1, and incubated at 15°C overnight. DNA was etha- 
nol precipitated and electroporated into bacterial host strain MC1061/p3 
using a Bio Rad Gene Pulser (Bio Rad Laboratories, Richmond, CA) 
Clones were screened by colony lift followed by hybridization with the ra- 
diolabeled mutagenic oligonucleotide by standard methods. At least one 
isolate of each clone was sequenced across the original gap using a Se- 
quenase kit from United States Biochemical Corp. (Cleveland, OH). 

Ceil-Ceil Adhesion Assays and Flow Cytometry 
Mutant constructs were transfected into COS7 cells by electroporation and 
analyzed by FACS and plate binding assays after 48-72 h as previously de- 
scribed (Osborn et al., 1992). Binding of Ramos cells and mAbs to transfec- 
tants was normalized for relative expression as assessed by staining with 
mAb EH8, which recognizes an epitope insensitive to folding of domains 
I and 2, then calculated as a percentage of wild-type (VC.AM-6D) binding. 
Ramos cell binding to all mutants was confirmed to be VLA-4-mediated by 
blocking with anti-or4 mAb HP1/2. 

Results and Discussion 

Visualization of VCAM-1 by Electron Microscopy 
Because mAb 4B9, which binds to domain 1, is capable of 
blocking both domain 1 and domain 4-dependent binding to 
VLA-4 (Vonderheide and Springer, 1992; Osborn et al., 
1992), we had considered that the VCAM-TD molecule 
might be folded so that the domain 1 and domain 4-depen- 

The Journal of Cell Biology, Volume 124, 1994 602 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/124/4/601/1474933/601.pdf by guest on 25 April 2024



Figure 2. General view of VCAM-TD visualized after glycerol spray and rotary shadowing. The field shows isolated rod-like molecules. 
Some molecules are straight and others show one or two bends along the long axis of the molecule. Bar, 40 nm. 

dent binding sites are in close proximity. To determine the 
general shape of the VCAM-7D molecule, rotary shadowing 
electron microscopy was performed. Fig. 2 shows an exam- 
ple of a general field of recombinant soluble VCAM-7D. Two 
classes of images were observed, corresponding to straight 
and bent rods (see selected views in Fig. 3). The straight rod- 
shaped structures, representing ,o25 % of the molecules, are 
28.1 + 4.4 nm in length and 5.7 um in width (Fig. 3 k). 
Sometimes these images show an enlargement or small bend 
at one end of the molecule (Fig. 3 k and l, right molecule). 
The bent rods, the remainder of the population, display ei- 
ther one or two bends along the long axis of the molecule. 
In the images with one bend, the bend has an angle of 115 ° 
+ 32", and is located about two thirds down the length of 
VCAM-TD, dividing it into a long and a short arm (Fig. 3, 
1-o). The long arm is 18.0 + 2.6 um long, and the short arm 
is 12.4 + 2.5 um long. The total length of the one-bend mol- 
ecules is greater than that of the straight molecules, at 30.4 
+ 2.6 urn. In the molecules with two bends, the additional 
bend is located at variable positions in the short arm (Fig. 

3 l, left molecule and Fig. 3 m); the molecule is Z-shaped, 
and the overall length is 31.4 -t- 3.4 nm. It is probable that 
at least some of the molecules that appear straight in fact rep- 
resent foreshortened views of molecules with one or two 
bends. Therefore, we take the measurements of the bent mol- 
ecules to be a better reflection of the overall length of VCAM- 
7D. To obtain the actual length of the molecule, the measure- 
ments along the long axis were corrected by subtraction of 
2.5 nm at each end of the molecule to take into account the 
increase in size due to the platinum particles deposited dur- 
ing shadowing. The corrected length of the molecule is there- 
fore 25.9 urn. Since the width of VCAM-7D is comparable 
with the size of two Pt grains, making the same correction 
for this dimension would give a necessarily inaccurate num- 
ber. We therefore prefer not to give corrected figures for the 
width of VCAM-TD. Taking the extended length of the mole- 
cule to be 25.9 nm, each Ig domain contributes ,o3.7 nm 
to the overall length of the molecule. This is in good agree- 
ment with previous observations on the length of Ig domains 
(Staunton et al., 1990; Wtlliams and Barclay, 1988). 
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Figure 3. Selected images of 
immuno-compleges formed 
between VCAM-7D and the 
monoclonai antibodies 4B9 
(specific for an epitope in do- 
main 1) and EDI1, GE4, and 
GEl2 (specific for epitopes in 
domain 4). a-d show views 
and e shows a schematic 
representation with a single 
point of contact between 
VCAM-7D and 4B9. f-g, h, 
and i correspond to typical 
views of immuno-complexes 
formed between VCAM-7D 
and antibodies GEl2, EDll 
and GE4, respectively, j is a 
representation of the binding 
of any of these antibodies to a 
site on the convex side of the 
bend of VCAM-TD. (k-o) are 
images of straight and bent 
single VCAM-TD molecules. 
Bar, 40urn. 

To examine the arrangement of  the Ig domains in VCAM- 
7D, we visualized complexes of VCAM-TD with the mAbs 
4B9, which maps to domain 1, and EDll ,  GH12 and GE4, 
which map to domain 4. mAb 4B9 always binds to an end 
of  the molecule (Fig. 3, a-e),  often cross-linking two mole- 
cules (Fig. 3, a, b, and d). The angle of  the bend in these 

complexed molecules is not statistically different from the 
free molecules. In contrast, each of  the antibodies to domain 
4 bind on the convex face of  the bend (Fig. 3, f - j ) ,  again fre- 
quently cross-linking two VCAM-TD molecules (Fig. 3, 
f -h) .  The angle of  the bend is similar to the angle in the bend 
of  free VCAM-TD. Thus it is clear that the Ig domains of  

INTEGRIN 

LIOAND: 

1 hlCAMI d3 QLVSPRVLEVDTCGTVVCSLD-GLFPVSEAQVHL---ALGDORL-NPTVTYGNDSFSAKAS-VSVTAEDEGTQRL TCAVILGNQSQETLCTVTIYSF hMAC-I 

2 hICAM2 dl EVHVR•KKLAVE•KGSLEVNCSTT-CNQ•EV---GGLETSL-NKILLDEQAQWKHY•--VSNISHDTVLQCHFTCSGKQESMNSN-SVYQP-PRQ hLFA-I 

3 hICAM3 dl QEFLLRVEPQNPVLSAGGSLFVNCSTD-CPSSEK---IALETSL-SKELVASGMGWAAFN- LSNVTGNSRILCSVYCNGSQITGSSNITVYGL-PER hLFA-I 

4 ICAMI dl beta: aaaaaa bbbbbbbb-b cc cccc dddddd eeeee eeee ffffffff ggggggggg 

5 CON(VI&Ildl) p psxP b hh GsSf fTCST -CapP h laxPL K Gppp fp fS nEcSph CpspC appp Lph ox Pcc 

6 hICAMI dl QTSVSP-SKVILPRGGSVLVTCSTS-CDQPKL-- LGI~TPLPKKELLLPGNNRKVYE--LSNVQEDSQPMCYSNCPDG~STAKTFLTVYWT-PER hLFA-] 

7 hVCAM dl FKIETTPESRYLAQIGDSVS~TCSTTGC~SPFFSWRTQI~SPLNGKVTNE-GTTSTLTMN~VSFGN~HSYL-CTATC-ESRKLEKGIQVEIYSFPKD hVLA-4 

8 d4 FTvEIS~GPRIAAQIGDSVMLTCSVMGCES~SFSWRTQI~S~LSGKVRSE-GTNSTLTLSPVSFENEHSYL-CTVTC-GHKKLEKGIQVELYSF~RD hVLA-4 

9 mVCAM dl FKIEIS~EYKTIAQIGDSMALTCSTTGCES~LFSWRTQI~S~LNAKVRTE-GSKSVLTME~VSFENEHSYL-CTATC-GSGKLERSIHVDIYSFPKD hVLA-4 

I0 rVCAM dl FKIEIS~EYKTLAQIGDSMLLTCSTTGCESPSFSWRTQI~SPLNGKVKTE-~AKSVLTMD~VSFENEHSYL-CTATC-NSGKLERGIQVDIYSF~KD hVLA-4 

ii CON(V) F fE xPp c hAQIGDSf LTCSs OCESP FSWRTQIDSPLpsKVppE GspS LTfpPVSFpNEHSYL CTsTC sppKLEbpIpVafYSFPbD hVLA-4 

12 VCAM dl beta: aaaaa bbbbb cccccccc dddd eeeeeeee (f fffff f) gggggg 

13 CF 2deg HHHHHHTTttBBBBB...BBBBBttTT.tt.BBBBBBBB..tttt...tt tbbbbbbtttt.tt.tt..h hhhhh hhhhhhh. BBBBBB...hh 

14 OOR 2deg HH ..... TTTBBBBBTTT.TTTTTTTTTT.TTTTT.TTT ....... BBBB .... BBBBB .... TTTTTTT THHHH HHHHHhh. SBBSBB ..... 

a - acidic - D,E f - aliphatic - L,I,V z - aromatic - Y,F,W 

b - basic - H,K,R h - hydrophobic - L,I,V,M,Y,F p polar K,R,H,D,E,Q,N,T,$ 

c - charged - D,E,H,K,R n - amine - N,Q s small - A,G,S,T,V,N,D 

x - hydroxyl - S,T 

Figure 4. Comparison of Ig-like domains involved in integrin binding. From top to bottom: (/) human ICAM-1 domain 3 (Staunton et 
al., 1990; Diamond et al., 1991); (2) human ICAM-2 domain 1 (Staunton et al., 1989); (3) human ICAM-3 domain 1 (Vazeux et ai., 
1992; Fawcett et al., 1992); (4) ICAM-1 domain 1 fl strand predictions (Statmton et al., 1988); (5) conserved residues between human 
ICAM-1 domain 1 and all VCAM-1 domains below; (6) human ICAM-1 domain 1 (Staunton et al., 1988); (7) human VCAM-1 domain 
1 (Osbom et al., 1989); (8) human VCAM-1 domain 4 (Polte et al., 1990); (9) mouse VCAM-1 domain 1 (Hession et al., 1992); (10) 
rat VCAM-1 domain 1 (Hession et al., 1992); (11) conserved residues between VCAM-1 domains that bind human VLA-4; (12) predicted 
hVCAM-1 domain 1 secondary structure based on computer-generated predictions, below; (13) Chou-Fasman (CF) secondary structure 
prediction, H and h = helical, Tand t = beta turn, B and b =/3 strand (uppercase = strong, lowercase = weak); (14) Gamier-Osgnthorpe- 
Robson (GOR) secondary structure prediction, H = helical, T = turn, B = beta. The sequences were aligned by inspection (the ICAM-1 
domain 3 sequence is less homologous than the others, and was only aligned in regions important for binding). Residues underlined have 
been shown to be required for binding to integrin ligends. 
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Table L Binding of Monoclonal Antibodies and Ramos Cells to VCAM-6D Domain 1 Mutants 

EH8 1G 11 14C3 BBA6 4B9 61)9 1 E5 Ramos 

Parent VCAM-6D 100 100 100 100 100 100 100 100 
F 1KIETT/-QTSVS M 1 100 74 93 1 26 0 20 9 
R10YL/KVI M2 100 98 109 126 227 88 95 304 
A 13QI/LPR M3 100 86 82 15 2 0 0 6 
D17SVS/GSVL M4 0 
T26CK2E/S-CD M6 0 
S30PFF/QPKL M7 100 120 100 147 0 116 74 176 
S34WRT/---L M8 100 72 109 12 0 0 7 10 
Q38IDS/GIET M9 100 110 120 142 69 131 106 82 
Q38IDS/AAAA M23 100 93 97 133 66 125 79 0* 
Q38/A M24 100 97 96 124 114 121 81 110 
IM0/A M25 100 105 109 139 44 127 92 5* 
S41/A M26 100 103 91 136 114 131 89 155 
N44/S M27 100 115 96 133 75 113 83 143 
T48NE-/LLLP M 11 100 89 109 11 2 0 15 35 
T52TST/NNRK M 12 100 91 84 0 2 0 0 11 
L56TMN/VYE- M 13 100 91 84 12 0 3 3 0 
V61SF/LSN M 14 100 74 107 25 2 3 0 
G64NEH/VQED M 15 100 112 125 73 58 43 75 8 
G64/A M28 100 78 86 0 0 0 0 0 
N65/A M29 100 109 107 90 63 32 91 3211 
H67/A M30 100 100 105 117 128 69 101 154 
T72AT/YSN M17 100 70 66 0 0 0 0 0 
K79LE/STA M 19 100 60 67 33 43 26 38 58 
G83IQV/TFLT M20 100 74 88 20 12 0 20 0 
E87IYS/VYWT M21 0 

Percent wild-type binding aRer normalization for expression as determined by binding to mAb EH8 (to unaffected domain 5) was averaged for 2-7 experiments 
in each case. 
*n =2,  SD=O.  
*n  = 4, SD = 5.8. 
~n  = 7 ,  SD = 7 . 3 .  
IIn = 4 , 8 D  = 7.0. 

VCAM-7D are linearly arranged, like other molecules com- 
posed of Ig domains such as ICAM-1 (Kirchhausen et al., 
1993) and CD4 (Kirchhausen, T., and S. Harrison, unpub- 
lished data). Therefore the ability of  mAb 4B9 to block do- 
main 4-dependent binding of  VCAM-7D to VLA-4 must 
have an alternative explanation. 

Design of Mutant Constructs 

Previously we showed that there are two independent bind- 
ing sites for VLA-4 in VCAM-7D, one requiring domain 1 
and the other requiring domain 4. The alternately spliced 
VCAM-6D, which is missing domain 4, has only one func- 
tional VLA-4 binding site, requiring domain 1. To simplify 
analysis of mutants, VCAM-6D was used as the parent con- 
struct from which to derive a series of  mutants, each of 
which has one or more amino acid changes in domain 1. The 
VCAM-1 sequence was analyzed preliminarily using the pro- 
gram PeptideStructure, which predicts secondary structure 
according to the algorithms of  Chou-Fasman (CF) and 
Garnier-Osguthorpe-Robson (GOR). Prediction of  the posi- 
tion of fl strands and loops in VCAM-1 domain 1 was done 
by making modest use of  these predictions, and more exten- 
sive use of  homology with known Ig domain structures. We 
chose to mutagenize both predicted loops and strands, rather 
than attempt to target the loops, where contact residues are 
generally expected to be found. We and others find that 
predictions of  secondary structure, while useful in the ab- 
sence of  physical data, are often later shown to be somewhat 

inaccurate compared with physical data generated by NMR 
or x-ray crystallography (Barclay, 1992). Furthermore, evi- 
dence that binding sites are likely to be found in loops rather 
than strands is based largely on analogy with hypervariable 
antibody complementarity determining regions. It is possi- 
ble that more distantly related Ig superfamily members like 
VCAM-1 might show a different organization of  binding 
sites. 

Construction, Expression, and Assay of 
Mutant Constructs 

Amino acids to be mutated were exchanged for the analo- 
gous amino acids found in ICAM-1 domain 1 (Fig. 4). This 
was done with the expectation that analogous sequences 
from a related protein might stabilize the resulting mutant's 
structure; since we changed several contiguous amino acids 
in each mutant, the common approach of  substituting with 
alanine or serine residues would have resulted in extremely 
unnatural proteins. 

Mutant constructs were made using gapped-heteroduplex 
oligonucleotide-directed mutagenesis, as described in Mate- 
rials and Methods. After transfection into COS cells, expres- 
sion was assessed by FACS analysis using antibody EH8, 
which binds between the NH2-terminal portion of  domain 5 
and the COOH terminus of  the protein, in an area unaffected 
by the mutagenesis. Maintenance of proper folding of  each 
mutant was assessed by analysis of  binding to a panel of 
mAbs (see below). Ability of mutants to bind to VLA-4 was 
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Conserved: p psxP Sbhfh GpSV fTCSTx CapP h pIaxPL pK Gppppfp fS nEcSph CpspC aspp Ksh ox Pcc mAbs: 

ICAMI dl beta: aaaaaa bbbbbbbb-b cc---cccc dddddd eeeee--eeee ffffffff ggggggggg Ehlgl4Bb4b6dle 

ICAMI dl QTSVSP-SKVILPRGGSvLVTcSTS-CDQ~KL---LGIETpLpKKELLL~GNNRKVYE--LSNVQEDSQPMCYSNC~DGQSTAKTFLTVYWT-~ER - + - + + - + Block 

VCAMI dl FKIETT~ESRYLAQIGDS~LTCSTTGCESpFFSWRTQIDSpLNGKVTNE-GTTSTLTMN~V~FGNEHSYL-CTATC-ESRKLEKGIQVEIYSF~KD 5 2 2 2 i i 1 Domain 

VCAMI dl beta: aaaaa bbbbb cccccccc dddd eeeeeeee (f-fffff-f) gggggg Bind 

Mutant: Ramos: 

M I -~PE~RYLAQIGDSVSLTCSTT~CES~FFSWRTQIDSPLNGKVTNE-GTT~TLTMNPVSFGNEHSYL-CTATC-ESRKLEKGIQVEIYSFPKD + + + - ~ - 

M 2 FKIETTP-Sz~M~AQIGD~VSLTCSTTGCES~FFSWRTQIDS~LNGKVTNE-GTTSTLTMN~VSFGNEHSYL-CTATC-ESRKLEKGIQVEIYSF~KD + + ÷ + ÷ ÷ + + 

M 3 FKIETT~ESRYLLpRGDS~SLTCSTTGCESpFFSWRTQIDS~LNGKVTNE-GTTSTLTMNP~SFGNEHSYL-CTATC~ESRKLEKGIQVEIYSF~KD ÷ + + ~ . . . .  

M 4 FKIETT~ESRY~AQI~SV~LTCSTTGCES~FFSWRTQIDSPLNGKVTNE-GTTSTLTMNPVSFGNEHSYL-CTATC-ESRKLEKGIQVEIYSF~KD - 

M 6 FKIETTPESRYLAQIGD$VSLTCSTB-C~SpFFSwRTQID$pLNGKVTNE-GTTSTLTMNPVSFGNEHSYL-cTATC-ESRKLEKGIQVEIYSFPKD - 

M 7 FKIETT~ESRYLAQIGDSVSLTCSTTGCE~KLSWRTQIDS~LNGKVTNE-GTT~TLTMN~VSFGNEHSYL-CTATC-ESRKLEKGIQVE~YSF~KD + + + + - + + + 

M 8 FKIETTPESRYLAQIGDSVSLTCSTTGCESpFFr-z-%TQIDSPLNGKVTNE-GTTSTLTMN•VSFGNEHSYL-CTATC-E•RKLEKGIQVEIYSF•KD + + + ~ . . . .  

M 9 FKIETTPESRYLAQIGDSVSLTCSTTGCESPFF~WRT~K~LNGKVTNE-GTTSTLTMNpV~FGNEHSYL-CTATC-ESRKLEKGIQVEIYSF~KD + + + + + + + + 

M23 FKIETT•ESRYLAQIGDSVSLTCSTTGCESPFFSWRTAAAA•LNGKVTNE-GTTSTLTMNpV•FGNEHSYL-CTATC-ESRKLEKGIQVEIYSF•KD + + + - + + ÷ 

M24 FKIETTpESRYLAQIGDSVSLTCSTTGCES~FF~RT~IDSPLNGKVTNE-GTTSTLTMN~SFGNEHSYL-~TATC-ESRKLEKGIQVEIYSF~KD + + + ÷ + + + + 

M25 FKIETTPEsRYLAQIGDSVSLTCSTTGCES~FFSWRTQIASpLNGK~TNE-GTT$TLTMNPVSFGNEHSYL-CTAT~-ESRKLEKGIQVEIYSF~KD + + ÷ + ± + + 

M26 FKIETTpE~RYLAQIGDSVSLT~TTGCE~FFSWRTQIDAPLNGKVTNE-GTTSTLTMN~V~FGNEHSYL-CTATC-E~RKLEKGIQVEIYSFPKD + + + + + + ÷ ÷ 

M27 FKIETT~ESRYLAQIGDSVSLTCSTTGCES~FFSWRTQIDSpL~GKVTNE-GTTSTLTMN~VSFGNEHSYL-CTATC-ESRKLEKGIQVE~YSF~KD + + + + + + + + 

MII FKIETT•ESRYLAQIGDS•SLTC•TTGCES•FFSWRTQIDS•LNGKVLLL•GTTSTLTMN•VSFGNEHSYL-CTATC-ESRKLEKGIQVEIYSF•KD + + + ± - - + + 

MI2 FKIETT~ESRYLAQIGDSVSLTCSTTGCESPFFSWRTQIDS~LNGKVTNE-G~p-KLTMN~VSFGNEH~YL-CTATC-E~RKLEKGIQVEIYSF~KD + + + . . . .  

MI3 FKIETT~ESRYLAQIGDSVSLTCSTTGCES~FFSWRTQID~LNGKVTNE-GTTST~-~SFGNEHSYL-CTATC-ESRKLEK~IQVEIY~F~KD + + + ± . . . .  

MI4 FKIETT~ESRYLAQIGDSVSLTCSTTGCES~FF3WRTQID~LNGKVTNE-GTT~TLTMN-LS~GNEHSYL-CTATC-E$RKLEKGIQVEIYSFpKD + + + ± - - 

MI5 FKIETTPE~RYLAQIGDSV~LTCSTTGCE~FFSWRTQID~LNGKVTNE-GTTSTLTMNPVSF~F~SYL-CTATC-ESRKLEK~IQVEIYSF~KD + + + + + ~ ÷ 

M28 FKIETTPESRYLAQIGDSVSLTCSTTGCES~FFSWRTQIDSPLNGKVTNE-GTTSTLTMN~VSFl&NEHSYL-CTATC-ESRKLEKGIQVEIY~FpKD + + + . . . . .  

M29 FKIETT~ESRYLAQIGDS~SLTCSTTGCES~FF~WRTQIDS~LNGKVTNE-GTT~TLTMN~VSFG~EHSYL-CTATC-ESRKLEKGIQVEIYSF~KD ÷ + + + + & + 

M30 FKIETTPESRYLAQIGDSvSLTCSTTGCES~FFSWRTQIDSPLNGKVTNE-GTTSTLTMNpVSFGNF~$YL-CTATC-ESRKLEKGIQVEIYSFPKD + + + + + + + + 

MI7 FKIETTPESRYLAQIGDSVSLTC~TTGCE~FFSWRTQIDSPLNGKVTNE-GTTSTLTMN~SF~NEH~YL-~-ESRKLEKGIQVEIYSFPKD + + + . . . . .  

MI9 FKIETTPESRY~AQIGDSVSLTCSTTGCE~FFS~RTQIDsPLNGKVTNE-GTTSTLTMNPVSFGNEHSYL-CTATC-ESR~-TAKGIQVEIYSFPKD + ÷ + + + + ÷ + 

M20 FKIETTPESRYLAQIGDSV~LTCSTTGCESpFFSwRTQIDS~LNGKVTNE-GTTSTLTMNPVSFGNEHSYL-CTATC-ESRKLEK~FLYEIYSF~KD + + + ~ Z - 

M21 FKIETTpE~RYLAQIGDSVSLT~STTGCES~FF~WRTQID~PLNGKVTNE-GTT~TLTMN~V~FGNEH~YL-CTATC-E~RKLEKGIQV-~F~KD ± 

Figure 5. Binding of human VCAM-1 domain-1 mutant constructs expressed in cos cells to VLA-4 and mAbs. Alignment of VCAM-1 to 
ICAM-1 and prediction of ~ strands is described in Fig. 3 legend. Bolded, underlined letters represent ICAM-1 residues substituted for 
homologous VCAM-1 residues in each mutant, mAbs:/5% = EH8, lg = 1(311, 14 = 1.4C3, Bb = BBA-6, 4b = 4B9, 6d = 6D9, le = 
1ES. "Block" indicates whether each mAb is able (+) or unable ( - )  to block binding of VLA-4-bearing cells to VCAM-1 domain 1. "Domain" 
indicates to which domain each mAb maps (see text for further details). Expression of each construct was quantified by binding to raAb 
EHS, and binding to other mAbs and to Ramos ceils is expressed as a percentage of VCAM-6D wild-type binding, after correction for 
expression (see Materials and Methods). + = 50-300%, + = 10-50%, - = 0-10% wild-type binding. 

determined by assaying adhesion to the transformed B leuke- 
rnia line Ramos. Results are presented in Table I and Fig. 4. 
In Fig. 5, constructs displaying staining or binding at a level 
>50% of the wild-type level are indicated as +,  10-50% as 
+ / - ,  and 0-10% as - .  

Sensitive and Insensitive Epitopes of 
VCAM-1 Domains 1 and 2 

It is important to distinguish mutants that have lost VLA-4 
binding activity due to large scale perturbations in structure 
from those that show effects limited to contact residues. To 
identify mutants exhibiting improper folding of domains 
1 and 2, we stained with a panel of mAbs representative 
of every known epitope of VCAM-1 within these domains. 
mAbs that map to domain 1 include blocking (i.e., able to 
block binding of VCAM-1 to VLA-4) mAbs 4]39 (Carlos et 
al., 1990) and 1E5 and non-blocking mAb 6D9. Domain 2 
mAbs include blocking mAbs BBA-6 and 1Gll, and non- 
blocking mAb 1.4C3. All of these mAbs bind to different epi- 
topes, distinguished by cross-blocking in competitive bind- 
ing assays or by functional ability to block binding of 

VCAM-1 to VLA-4. Analysis of mutants allows us to divide 
these mAbs into two classes: those whose epitopes are per- 
turbed by several mutations, to linearly distant areas of do- 
main 1 (designated "sensitive" epitopes), and those that are 
usually or always unaffected by such mutations ("insensitive" 
epitopes). Most but not all mutants that have lost more than 
one sensitive epitope (those recognized by domain I mAbs 
4B9, 6D9, 1E5 and domain 2 mAb BBA-6) have also lost the 
ability to bind to Ramos cells, probably due to improper 
folding. The exceptions, Ml l  and 12, retain partial binding 
to cells. Of  mutants that retain sensitive epitopes, most bind 
well to VLA-4, indicating that the substituted ICAM-1 amino 
acid residues can support both proper folding and ligand 
binding. 

Mutations That Conserve Sensitive Epitopes but 
Diminish Binding to VLA-4 

The most informative mutants are those that retain sensitive 
epitopes, but show diminished binding to VLA-4: M23, 
M25, and M15. These constructs implicate two regions of 
domain 1 in binding VLA-4: aspartic acid 40 (D40), and 
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G64NEH. Residue D40 of VCAM-1 is analogous to E34 of 
ICAM-1, which was shown by Staunton and coworkers 
(Staunton et ell., 1990) to be required for binding of ICAM-1 
to its integrin counter-receptor LFA-1. Both E34 of ICAM-1 
and D40 of VCAM-1 are located in the predicted loop be- 
tween fl strands c and d ("c-d loop"). When VCAM-1 D40 
is replaced by alanine (M25), binding to VLA-4 is abolished. 
Interestingly, our original mutant in this area, which sub- 
stituted the ICAM-1 sequence G32IET for the analogous 
VCAM-1 Q38IDS (M9), resulted in complete retention of all 
epitopes, and of binding to VLA-4 that was specifically in- 
hibited by anti-o~4 mAb HP1/2. This ability of ICAM-1 se- 
quence to functionally substitute for VCAM-1 residues in 
binding to VLA-4 indicates that these residues do not deter- 
mine specificity for a particular integrin ligand, but are prob- 
ably part of a general integrin binding structure that may in- 
clude important contact residues, yet requires other contacts 
for its specificity. Comparison of the predicted c-d loop 
among other sequences known to bind human VLA-4, LFA-1, 
or Mac-1 (Fig. 2) reveal in each case a sequence with the 
common feature "ap-L," where a is an acidic residue (D or 
E), p is a polar residue (usually a hydroxyl derivative S or 
T, but an amino derivative Q in the Mac-1 binding site), and 
L is a leucyl residue. This small region has been shown ex- 
perimentally to be an important component of the integrin 
binding site in ICAM-1 domains 1 and 3, human VCAM-1 
domains 1 and 4, murine VCAM-1 domain 1 and rat VCAM-1 
domain 1 (Staunton et al., 1990; Diamond et al., 1991; Moy 
et al., 1993; this work; Osborn, L., and B. Browning, un- 
published data). 

The other VCAM domain 1 sequence implicated in bind- 
ing is located in the putative e- f  loop. When the sequence 
G64NEH is changed to VQED (M15), all epitopes are main- 
tained except for partial loss of mAb 6D9 binding, but bind- 
ing to Ramos cells is greatly reduced. Attempts to define a 
specific amino acid residue responsible for loss of binding 
have met with only partial success. The mutation N65 to A 
(M29) results in a profile of epitopes similar to M15, but loss 
of Ramos binding is less severe than that of M15. H67 to A 
(M30) results in fuU maintenance of epitopes and cell bind- 
ing, while G64 to A (M28) causes loss of sensitive epitopes 
and cell binding activity, indicating deleterious effects on pro- 
tein folding (mutants M28-30, Fig. 5). Studies currently in 
progress may resolve this issue. In ICAM-1, the analogous 
region of domain 1 (putative e- f  loop) was not found to be 
involved in binding to LFA-1. However, a mutation in this re- 
gion of ICAM-1 did affect binding to both human rhinovirus 
(HRV) and to anti-ICAM-1 mAb RR1/1, which blocks bind- 
ing to both LFA-1 and to HRV (Staunton et al., 1990). Bind- 
ing of Mac-1 to ICAM-1 via domain 3 was reduced 70% by 
mutagenesis of the predicted e-f loop (ICAM E254DE to 
KEK, where ICAM E254 corresponds to VCAM E66) (Dia- 
mond et al., 1991). Thus there is considerable functional as 
well as structural homolog among the various integrin- 
binding Ig-like domains. 

Several lines of evidence suggest that domain 2 is impor- 
tant both for maintaining proper folding of domain 1, and 
perhaps for providing contact residues that form part of the 
binding pocket for VLA-4. As shown in Fig. 6, the c-d and 
e - f  loops axe expected to be close to each other in the classi- 
cally folded Ig-like domain. Both predicted loops are at the 
surface of domain 1 that is expected to be closest to domain 

Figure 6. Hypothetical model of VCAM-1 D1 and D2 tertiary struc- 
ture. Predicted/3 strands and turns or loops are modeled on the ba- 
sic tertiary structure of an Ig domain (Barclay, 1992). Residues im- 
plicated in binding VLA-4 are indicated as white ovals with black 
letters. Disulfide bonds are indicated by bars. Note that the rela- 
tively long NH2-terminal sequence before predicted 13 strand "a" 
has effects on folding when mutated (Fig. 5, mutant M1), and might 
therefore form a more integral part of the structure than is indi- 
cated. Some residues conserved in domain 2 of murine, rat, and 
human VCAM-1 are indicated. 

2. It has been shown that a fragment consisting of VCAM-1 
domains 1 and 2 can support binding of VLA-4-bearing cells 
(Pepinsky et al., 1992), while generation of fragments 
representing either domain 1 or 2 alone has not been 
achieved, presumably because they are unstable. A construct 
in which domain 2 of VCAM-1 has been replaced by domain 
2 of ICAM-1 retains the sensitive epitopes in domain 1 rec- 
ognized by mAb 4B9 and 1ES, but shows greatly diminished 
binding to VLA-4, suggesting that mere stabilization of do- 
main 1 may be insufficient to allow full adhesion (Osborn et 
al., 1992). Both ICAM-1 and VCAM-1 give rise to blocking 
mAbs that map within domain 2, and several residues in 
ICAM-1 domain 2 were found to affect LFA-1 adhesion mod- 
estly, though none had as dramatic effect as those in do- 
main 1, described above (Staunton et al., 1990). The current 
evidence is fully consistent with a model in which domain 
2 of VCAM-1 provides necessary contact residues, which de- 
pend upon domain 1 for both completion of the VLA-4 bind- 
ing "pocket," and for conformational stabilization. 

The marked functional and structural similarity of VCAM-1 
domains 1 and 4 suggest that the mechanism of VLA-4 bind- 
ing to domains 1 + 2 unit will also account for binding to 
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the domain 4 + 5 unit. In recombinant constructs domain 
4 can fully substitute for domain 1 in cell binding activity, 
whether in conjunction with domain 2 or with its natural 
partner domain 5 (Osborn et al., 1992). Reciprocally, do- 
main 1 can substitute for domain 4 (Pepinsky et al., 1992). 
The high sequence similarity of domain 1 and 4, in human 
and in other species, has made it difficult to choose probable 
binding sites by distinguishing conserved from divergent resi- 
dues. Domains 2 and 5 are not as similar, evincing patches 
of homology which are good targets for mutagenesis (Fig. 
6, indicated residues in Domain 2). Intriguingly, there are 
conserved sequences in domains 2 and 5 that bear better ho- 
mology to the VLA-4 binding site in fibronectin (LDV) (Ko- 
moriya et al., 1991; Wayner and Kovach, 1992) than does 
any sequence in domain 1 and 4. Mutational analysis of do- 
main 2, currently underway, may provide answers to the 
questions we have raised here. 

In conclusion, we believe that by comparing members of 
the integrin-binding Ig sub-family composed thus far of 
ICAM-1, -2, -3, VCAM-1, and MAdCAM-1, we may derive 
generally applicable structure/function information leading 
to development of novel therapeutic molecules that affect 
these adhesion pathways. We have demonstrated that the 
bivalent, seven-domain form of VCAM-1 assumes an ex- 
tended conformation, usually with one or two slight bends. 
Mutational analysis of domain 1 identifies two regions in- 
volved in binding to VLA-4, both of which have structural 
and functional homologs in active domains of the related 
molecule ICAM-1. Sensitive, functional epitopes mapping to 
domains 1 and 2 are often lost concurrently, providing addi- 
tional evidence that in VCAM-1, domains 1 and 2 (or their 
homologues 4 and 5) are both required for full VLA-4 bind- 
ing activity. 

We thank Gary Jaworski for oligonucleotide synthesis, Lars Tragethon for 
DNA sequencing, and Jacqueline Ashook for FACS analysis. 
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