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Abstract. The nuclear envelope consists of three dis- 
tinct membrane domains: the outer membrane with 
the bound ribosomes, the inner membrane with the 
bound lamina, and the pore membrane with the bound 
pore complexes. Using biochemical and morphological 
methods, we observed that the nuclear membranes of 
HeLa cells undergoing mitosis are disassembled in a 
domain-specific manner, i.e., integral membrane pro- 
teins representing the inner nuclear membrane (the 
lamin B receptor) and the nuclear pore membrane 

(gp210) are segregated into different populations of 
mitotic vesicles. At the completion of mitosis, the in- 
ner nuclear membrane-derived vesicles associate with 
chromatin first, beginning in anaphase, whereas the 
pore membranes and the lamina assemble later, during 
telophase and cytokinesis. Our data suggest that the 
ordered reassembly of the nuclear envelope is trig- 
gered by the early attachment of inner nuclear 
membrane-derived vesicles to the chromatin. 

B 
AS~.O on ultrastructural and biochemical evidence, at 

least three domains are distinguishable within the 
eukaryotic interphase nuclear envelope, and specific 

proteins have been found to be associated with each of these 
domains. The outer nuclear membrane domain is continuous 
with the RER and contains resident proteins characteristic 
of the RER, such as cytochrome p450 (Matsuura et al., 
1981). The inner nuclear membrane domain is tightly as- 
sociated with the nuclear lamina, a fibrous proteinaceous 
meshwork located between the membrane and chromatin 
(Aaronson and Blobel, 1974; Dwyer and Blobel, 1976). The 
major proteins of the nuclear lamina of mammalian cells are 
lamins A (Mr 70 kD), B (Mr 67 kD), and C (M, 60 kD) 
(Gerace et al., 1978), all of which share structural homology 
with intermediate filament proteins (Fisher et al., 1986; 
McKeon et al., 1986; H6ger et al., 1988; Pollard et al., 
1990). Other variants of lamins have also been described 
(Nigg, 1989; H6ger et al., 1991b). A specific integral mem- 
brane protein of the inner nuclear membrane, called the 
lamin B receptor, has been proposed to serve in anchoring 
the nuclear lamina to the membrane bilayer (Gerace and 
Blobel, 1982; Worman et al., 1988). Based on a chicken 
cDNA derived sequence, the lamin B receptor is a 73-kD 
protein with eight potential transmembrane domains, but the 
avian protein and its mammalian homolog migrate as ~60- 
kD proteins on SDS-gels (Worman et al., 1990; Courvalin 
et al., 1990c). The pore membrane forms at the junction be- 
tween the inner and the outer nuclear membranes and is as- 
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sociated with the pore complex. The nuclear pore complex 
is a large supramolecular assembly of •120 x 106 D 
(Reichelt et al., 1990) through which the regulated nucleo- 
cytoplasmic exchange of macromolecules takes place (re° 
viewed in Miller et al., 1991). A 210-kD integral membrane 
glycoprotein (gp210) has been shown to be a resident protein 
of the nuclear pore complex (Gerace et al., 1982; Wozniak 
et al., 1989; Courvalin et al., 1990b). The COOH-terminal 
tail of gp210 faces the pore complex and is postulated to an- 
chor the pore complex to the membrane. 

The nuclear envelope of mammalian cells undergoes dra- 
matic structural changes during cell division. During pro- 
phase and metaphase of mitosis, the nuclear membranes 
vesiculate and many peripheral proteins associated with the 
nuclear membranes become dissociated and disperse in the 
cytoplasm (Robbins and Gonatas, 1964; Zatsepina et al., 
1977; Zeligs and Wollman, 1979: Gerace et al., 1978, 1982; 
Gerace and Blobel, 1980; Davis and Blobel, 1986). Disas- 
sembled components of the nuclear membranes are morpho- 
logically indistinguishable from most other membranes in 
the mitotic cell. The lamins become phosphorylated and the 
lamina depolymerizes into soluble (lamins A/C) and 
membrane-associated (lamin B) forms (Gerace and Blobel, 
1980). Components of the nuclear pore complex also disas- 
semble and are dispersed throughout the cytoplasm (Gerace 
et al., 1982; Davis and Blobel, 1986; Snow et al., 1987). As 
mitosis nears completion, the preexisting pools of nuclear 
envelope precursors are used in the process of nuclear enve- 
lope reassembly (Conner et al., 1980). Membrane vesicles 
bind to the surface of daughter chromosomes and fuse into 
flat cisternae (Zeligs and WoUman, 1979), the pore com- 
plexes reassemble (Maul, 1977) and the lamina repolymer- 
izes (Gerace et al., 1978). 
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Nuclear envelope reformation has been studied in cell-free 
systems derived from either mammalian somatic cells or am- 
phibian eggs. From these studies, two models of nuclear 
envelope reassembly have been proposed (reviewed in 
Lohka, 1988). In the first model, the early binding to chro- 
mosomes of peripheral proteins of the nuclear envelope, 
such as lamins (Burke and Gerace, 1986; Glass and Gerace, 
1990; Burke, 1990; H6ger et al., 1991a; Ulitzur et al., 1992) 
or pore components (Sheehan et al., 1988), is a prerequisite 
for the subsequent binding of membrane vesicles to chroma- 
tin. In the second model, a lamin-independent targeting of 
membrane vesicles to chromosomes has been proposed as 
the initial event of nuclear envelope reconstruction (Wilson 
and Newport, 1988; Newport et al., 1990; Benavente et al., 
1989), after which the pore complexes and the lamina reas- 
semble. A major difficulty in reconciling the data of cell-free 
experiments originates in the fact that a detailed chronology 
of the in vivo nuclear envelope assembly which accounts for 
the lamina, the pore complex and the membrane vesicles has 
not been described. 

In this study, we have used specific antibody probes against 
marker proteins of the different nuclear membrane domains 
to investigate, by biochemical and morphological methods, 
the fate of the nuclear envelope in dividing HeLa cells. We 
have observed that, in vivo, the reconstruction of the nuclear 
envelope at the completion of mitosis appears to occur by the 
sequential targeting of envelope components to the chroma- 
tin surface, beginning with the attachment of vesicles that 
contain the lamin B receptor, an inner membrane protein. 

Materials and Methods 

Cells and Cell Cycle Analysis 
HeLa cells were grown in spinner culture or in monolayers as described 
(Dignam et al., 1983). Cells grown in spinner culture at 37°C were fraction- 
ated into populations enriched in different phases of the cell cycle (G1, S, 
and G2/M) by centrifugal elutriation (Roberts et al., 1991). To obtain a syn- 
chronized population of ceils arrested in the mitotic phase, the cells at S 
phase were incubated with 60 ng/ml nocodazole (Aldrich Chemical Co., 
St. Louis, MO) (Zieve et al., 1980). After a 12-h incubation, at least 90% 
of the cells were arrested at the metaphase stage of mitosis, as determined 
by staining of cells with the DNA-binding dye Hoechst-33258 (Molecular 
Probes, Inc., Eugene, OR) and examining the samples with a Zeiss Ax- 
iophot microscope equipped for fluorescence microscopy (Carl Zeiss Inc., 
Thornwood, NY). 

Subcellular Fractionation 
The mitotic cells were collected by centrifugation at 1,500 g,v for 10 rain, 
at room temperature and then resuspended in ice-cold PBS containing 20 
#M cytochalasin B (Sigma Chemical Co., St. Louis, MO) for 20 min on 
ice (Burke and Gerace, 1986). All subsequent fractionation and centrifuga- 
tion steps were carried out at 0-4"C unless otherwise specified. Cells were 
centrifuged again at 1,500 g~v and then resuspended (5 mill& cells) in 
hypotonic buffer (buffer A) composed of 10 mM Tris-HCl, pH 7.5, 10 mM 
NaC1, 1.5 m_M MgCI2, 1 mM DTT, 20/~M cytoehalasin B, protease inhibi- 
tor mixture (Aris and Blobel, 1989), 2.5 mM sodium pyrophosphate, 0.1 
mM orthovanadate, 2 mM sodium fluoride and 5 tLM aluminum ammonium 
sulfate. The cells were allowed to swell for 15 rain and then homogenized 
10-15 times with a Dounce "B" homogenizer (Wheaton, Millville, NJ). The 
homogenate was layered above a 3 ml cushion of 30% sucrose (wt/vol) in 
buffer A and spun at 2,000 gay for 10 rain. The supernatant containing the 
membranes and soluble components of cells was removed, leaving the pellet 
containing the chromosomes of mitotic cells, the nuclei of nonmitotic cells, 
and remnants of partially homogenized cells. Centrifugation of the superna- 
tant at 140,000 gay for 30 rain in a fixed angle roto yielded a pellet contain- 
ing mitotic membranes and supernatant containing the soluble components 
of mitotic cells. Subceilular extracts were either used immediately, or frozen 
in liquid nitrogen and stored at -80°C. 

Sucrose Gradient Centrifugation 
The soluble components of mitotic ceils were separated on a sucrose veloc- 
ity gradient. A 0.4-ml aliquot of 140,000 g,v supernatant (derived from •8 
x 107 cells) was layered above a 5-20% (wt/vol) sucrose gradient (12 ml) 
made in 15 mM Tris-HC1, pH 7.5, 150 mM NaC1, 2 mM EDTA, 1 mM 
DTT, and 0.5 mM PMSE The tube was centrifuged at 180,000 gay for 16 h 
in a swinging-bucket rotor and then 12 fractions were collected from the 
top using a Buchler fraction collector (Labeonco, Lenexa, KS). Proteins 
in each fraction were precipitated by the addition of TCA (to 15 % ) and incu- 
bation on ice for 10 min. The precipitate was collected by centrifugation 
at 15,000 gav for 10 rain, resuspeaded in SDS-sample buffer and analyzed 
by SDS-PAGE and immunoblotting as previously described (Courvalin et 
al., 1990a). Density markers for sedimentation gradients (bovine erythro- 
cyte carbonic anhydrase, 3.2S; BSA, 4.2 S; sweet potato beta amylase, K9 S) 
were centrifuged on separate but identical gradients, and their contents were 
fractionated and processed as described above. 

The membrane-bound components of the mitotic cells were separated by 
a sucrose step-gradient. The 2,000 gay supernatant from mitotic cells (see 
above) was adjusted to 50% sucrose, 10 mM Tris-HCl, pH 7.5, 10 mM 
NaC1, plus the same protease and phosphatase inhibitors as in buffer A, the 
sample was transferred to a swinging bucket ultracentrifuge tube (Beckman 
SW40), overlaid successively with 3 mi of 35 % sucrose in buffer B (10 mM 
Tris-HCl, pH 7.5, 10 mM NaCl), 3 m120% sucrose in buffer B, and filled 
to the top with 10% sucrose in buffer B. The tube was centrifuged for 16 h 
at 140,000 gay, after which bands of membranes could be seen at the 
35-50% interface (heavy membranes) and 20-35% interface (light mem- 
branes), with a negligible amount at the 10-20% interface. The gradient 
contents were fractionated using a syringe with 18 gauge needle so that the 
material at each interface could be collected in a single tube. The sucrose 
concentration was adjusted to ,,o15 % with buffer B and the membranes were 
collected by centrifugation at 200,000 gay for 30 rain. The membrane 
pellets were resuspended in SDS-sample buffer, and proteins resolved on 
SDS-polyacrylamide gels followed by immunoblotting with antibodies 
against the various nuclear envelope proteins (see figure legend). 

Antibodies 

Human autoimmune antibodies against lanfin B, the lamin B receptor, and 
the nuclear pore protein gp210 have been previously described (Gmily et 
al., 1987; Courvalin et al., 1990b,c). These antibodies were affinity purified 

Figure 1. The distribution of nuclear envelope proteins in extracts 
of mitotic HeLa cells. Postchromosomal supernatant from cells ar- 
rested in metaphase was centrifuged at 140,000 g~, and proteins 
in the resulting supernatant (S) and pellet (P) fractions were analyzed 
by SDS-PAGE and immunoblotting. Coomassie blue stained gel of 
proteins in the S and P fractions (derived from ~105 mitotic 
cells). The size of molecular mass markers ( x  10 -3) are indicated 
at left. Separate blots of S and P fractions were probed with anti- 
bodies against lamins A/C, lamin B, lamin B receptor, gp210, and 
the t~ subunit of the signal sequence receptor (SSRu), followed by 
incubation with 125I-protein A and autoradiography. 
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Figure 2. Sucrose gradient analysis of nuclear envelope proteins in 
mitotic HeLa ceils. (A) Sedimentation analysis of nuclear lamins 
in soluble mitotic extracts. The 140,000 g,~ supematant of mitotic 
cells was layered on a 5-20% sucrose gradient and centrifuged for 
16 h at 180000 g~,. Twelve fractions were collected (fractions 
1-12 from top to bottom) and the proteins in each fraction were ana- 
lyzed by immunoblotting with anti-lamin antibodies, followed by 
autoradiography (see Materials and Methods). Density marker 
proteins were centrifuged on parallel gradients, fractionated simi- 
larly, and the proteins in each fraction were analyzed by SDS- 
PAGE, followed by staining with Coomassie blue (gel not shown). 
(B) Sucrose gradient analysis of nuclear envelope proteins that are 
membrane associated during mitosis. Mitotic membranes were 
separated into 'heavy' (H; membranes at the 35-50 % interface) and 
'light' (L; membranes at the 20-35% interface) fractions by flota- 
tion on sucrose step-gradient (see Materials and Methods), and the 
proteins in the two membrane fractions were analyzed by immuno- 
blotting. The blot was probed, sequentially, with antibodies against 
the lamin B receptor (LBR), gp210, lamin B, and SSRct, and finally 
with ~25I-protein A. The bound radioactivity was quantified and 
used to determine the percentage of each protein in 'H' or 'U mem- 
branes (shown as histograms). The data are the average of three 
measurements, with the SEM being <10 % of the indicated amount. 

by the method of Smith and Fisher (1984). Antibodies against synthetic pep- 
tides derived from the deduced amino acid sequence of human lamins A 
and C (GSVTKKRKLESTESC; Fisher et al., 1986; McKeon et al., 1986) 
or lamin B (TTRGKRKRVDVEESC; H6ger et al., 1988; Pollard et al., 
1990) were generated in rabbits and then affinity purified, essentially as de- 
scribed (Chaudhary et al., 1991). The cysteine at the carboxyi terminus was 
added to the above peptides for purposes not discussed here. An affinity 
purified antipeptide antibody against the o~ subunit of the signal sequence 
receptor, a 35-kD integral membrane protein of the ER (Wiedmann et al., 
1987; Migliaccio et al., 1992), was a gift of Drs. Giovanni Migliaccio and 
Christopher Nicchitta ~ k e f e l l e r  University, New York). mAb against 
B-mbulin (clone TUB 2.1) was obtained from Sigma Chemical Co. Fluoro- 
chrome-conjugated antibodies were used for indirect immunofiuorescence 
studies. FITC-conjugated goat anti-human antibody and Texas red-conju- 
gated goat anti-rabbit were from Vector Laboratories Inc. (Burlingame, 
CA), Texas red-conjugated goat anti-mouse was from Molecular Probes, 
Inc., and FITC-conjugated goat anti-rabbit antibodies were from Cappel 
Laboratories (Organon Teknika Corp., West Chester, PAL). 

Immunoblo t s  

Proteins were separated by SDS-PAGE on 10% polyacrylamide gels and 
then electrophoretically transferred from gels to nitrocellulose (Schleicher 

and Schuell, Keene, NH) as previously described (Courvalin et al., 1990a). 
Nitrocellulose blots were probed with the various antibodies followed by 
125I-protein A (New England Nuclear, W'flmington, DE), essentially as 
described (Courvalin et al., 1990a). The amount of radioactivity bound 
to nitrocellulose was quantified using the Molecular Dynamics Phos- 
phorlmager (Sunnyvale, CA). 

[mmunofluorescence 

Monolayer cultures of HeLa cells were grown on coverslips and then 
processed for indirect immunofluorescence studies as described (Chaud- 
hary et al., 1991). Identical results were obtained with paraformaldehyde 
fixation (Davis and Blobel, 1986) or methanol fixation at -20°C (Courvalin 
et al., 1990a) and only the observations made on methanol-fixed cells are 
reported. Briefly, the fixed cells were probed either with antibodies against 
a single protein, or with a mixture of antibodies directed against two differ- 
ent proteins (see appropriate figure legends). For indirect immunofluores- 
cence imaging, an appropriate mix of fluorescein isothiocyanate-conjugated 
or Texas red-conjugated second antibodies were used to visualize the pri- 
mary antibodies. The dye Hoechst-33258 (Molecular Probes, Inc.) was 
added at a concentration of 0.5/~g/rnl to the second antibody solution to 
visualize the DNA. Control experiments showed that in double im- 
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munofluorescence experiments there was no discernible cross-reactivity of 
antibodies or mixing of signals (data not shown). Images were recorded on 
T-Max film (Eastman Kodak Co., Rochester, NY) using a Zeiss Axiophot 
microscope equipped for immunottuorescence microscopy. 

Results 

Biochemical Analysis of Nuclear 
Envelope Components in Mitotic HeLa 
Cell Extracts 

Mitotic HeLa cells arrested in metaphase were obtained by 
nocodazole treatment of cells in spinner culture. Gentle 
homogenization of mitotic cells followed by low speed cen- 
trifugation (to remove chromosomes) yielded a cell extract 
containing both the membrane-bound and soluble nuclear 
envelope components. The post-chromosomal supematant 
was recentrifuged to separate membranes from cytosol. Pro- 
teins in the two fractions were separated by SDS-PAGE and 
either stained with Coomassie blue or transferred to 
nitrocellulose sheets for immunodetection of the components 
of the nuclear envelope (Fig. 1). Replicate blots of soluble 
versus insoluble proteins were then incubated separately 
with each antibody probe. Lamins A and C, which are pe- 
ripheral proteins, were found almost entirely in the mitotic 
cytosol fraction, whereas lamin B, also a peripheral protein, 
was detected in both the membrane and soluble fractions 
(Fig. 1). When the mitotic cytosol (140000 g supernatant) 
was further fractionated on a velocity sucrose gradient, the 
three lamins were detected in the ,~,4S fraction (Fig. 2 A). 

The integral membrane proteins gp210, lamin B receptor, 
and signal sequence receptor, representing the three domains 
of the nuclear envelope, were all found in the membrane 
fraction of mitotic cell extracts (Fig. 1). The mitotic mem- 
branes were further fractionated by a sucrose density step- 
gradient into 'light' and 'heavy' membranes (see 'Methods'). 
Immunoblot analysis followed by quantitation of the bound 
radioactivity (from Iz~I-protein A bound to the primary an- 
tibody) showed that the marker for the inner nuclear mem- 
brane (lamin B receptor) was almost evenly distributed be- 
tween the two membrane fractions, whereas the marker for 
the nuclear pore membrane (gp210) and the marker for the 
ER (SSRot) were enriched in high density membranes (Fig. 
2 B). These fractionation data suggested that the integral 
membrane proteins lamin B receptor and gp210 might segre- 
gate into different sets of mitotic vesicles. In addition, the 
results indicated that the membrane-bound mitotic lamin B 
was enriched in the heavy membrane fraction, i.e., in associ- 
ation with a different set of membranes than its putative 
receptor. 

Figure 3. Indirect immunofluorescence analysis of HeLa cells 
probed with antibodies against different nuclear envelope proteins. 
HeLa cells were probed with antibodies against the nuclear enve- 
lope proteins gp210, lamin B receptor, lamin 13, lamins A/C, and 
the signal sequence receptor (SSRa). All antibodies reacted with 
proteins located at the nuclear periphery. Note that the pore compo- 
nent gp210 had a distinctly punctate localization. SSR, is found 
in the nuclear envelope as well as the ER. Arrowhead points to a 
mitotic cell. Bar, 10 ~tm. 

Nuclear Membrane Reassembly at the End of Mitosis 

Immunofluorescence experiments were carried out in HeLa 
cells in order to document, in vivo, the localization of the 
nuclear envelope-associated marker proteins during mitosis. 
Monolayer cultures of unsynchronized cells were labeled 
with affinity purified antibodies against the lamins A/C and 
B, the lamin B receptor, gp210, and SSRc~, and then scanned 
for cells fixed at the various stages of the cell cycle. The stage 
of mitosis was deduced by monitoring (a) the shape of the 
cell by phase contrast microscopy (Mazia, 1961), (b) the de- 
gree of separation of the two sets of daughter chromosome 
visualized by counterstaining with Hoechst dye, and (c) the 
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Figure 4. Mitotic distribution of the lamin B receptor. Immunofluorescence of HeLa cells labeled with anti-lamin B receptor antibodies, 
a mouse anti-tubulin mAb, and the DNA-hinding dye Hoechst-33258. The pictures are arranged to show the progression of mitosis from 
metaphase to cytokinesis (from top to bottom). (a-d) metaphase; (e-h) anaphase-A; arrowheads in h point to the regions where the lamin 
B receptor-containing membranes reassemble. Arrowheads in f point to the corresponding chromatin areas. (i-/) Late anaphase-early 
telophase; arrowheads in j point to the chromatin surfaces where the binding of lamin B receptor-containing membranes observed in 1 
takes place. Arrowheads in k point to the corresponding areas of the mitotic apparatus. (m-o) Late telophase; arrows in n and o point 
to the areas of chromatin adjacent to densely packed microtubules that are devoid of lamin B receptor-containing membranes. (p-r) Early 
cytoldnesis; ~ in q and r indicate the same phenomenon as observed in m-o. (s-u) late cytoldnesis. Bar, 10 #m. 

shape of the mitotic apparatus by double-labeling with an- 
titubulin antibodies. 

The immunofluorescence staining patterns of interphase 
cells labeled with antibodies against nuclear envelope pro- 
teins are shown in Fig. 3. The anti-gp210 antibodies 
specifically reacted with the nuclear pore and gave the punc- 
tate staining of the nuclear surface characteristic of nuclear 

pore components (Fig. 3, top; Davis and Blobel, 1986; Cour- 
valin et al., 1990b). In addition, each of the antibodies 
stained the nuclear rim exclusively (Fig. 3, top four panels), 
with the anticipated exception of antisignal sequence recep- 
tor, which bound to the cytoplasmic network of the ER along 
with the outer nuclear membrane (Fig. 3, bottom). The 
strong cytoplasmic staining observed with anti-SSRo~ made 
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Figure 5. The discontinuous attachment of lamin B receptor- 
containing membranes to chromosomes. The pictures show views 
of three different focal planes of a HeLa cell in early telophase, 
stained with anti-lamin B receptor antibodies. (a) Phase contrast. 
(b) DNA staining with Hoechst 33258 dye. (c-e) Immunofluores- 
cence localization of lamin B receptor in a dividing cell, as ob- 
served in the upper, middle, and lower focal planes, respectively. 
Arrowheads in d point to areas where the contour of individual 
chromosomes is still visible. Arrows in d point to the postulated 
location of kinetochores. Bar, 10 ~,m. 

it difficult to visualize the reformation of the nuclear enve- 
lope at the end of mitosis, thus this antibody was not used 
in the immunofluorescence studies of mitotic cells. 

In Fig. 4, the sequence of events associated with postmi- 
totic reassembly of the lamin B receptor around chromo- 
somes is shown. The pictures are arranged to show the 
progression of mitosis from metaphase (upper) to late 
cytokinesis (bottom). At metaphase (Fig. 4, a-d) antibodies 
to the lamin B receptor only reacted with structures in the 
cytoplasm, outside the spindle region (Fig. 4 d). 

The first association of the lamin B receptor-containing 
membranes with chromatin was detected during anaphase-A 
(Fig. 4, e-h, arrowheads in h), although most of the lamin 
B receptor-containing membranes still remained in the 
cytoplasm. In late anaphase and early telophase (Fig. 4, i-l), 
the binding of lamin B receptor-containing membranes to 
chromatin continued to extend from the lateral surfaces and 
covered progressively greater areas of the chromosome mass 
(Fig. 4, l). Initially, these membranes covered only a small 
region of the lateral chromatin surface (the regions radially 
furthest from the pole-to-pole axis; Fig. 4, arrowheads i n f  
and j ) .  The labeling was absent from central chromatin sur- 
faces (i.e., outer regions of daughter chromosomes nearest 
to the poles). Labeling was also absent from the chromatin 
surfaces that face each other (i.e., regions near the center of 
the mitotic apparatus). In late telophase (Fig. 4, n-o), and 
early cytokinesis (Fig. 4, p-r), those same chromatin sur- 
faces were the only ones not yet coated by lamin B receptor- 
containing membranes. These regions were finally covered 
by the lamin B receptor-containing membranes during 
cytokinesis (Fig. 4, s-u), when the daughter ceils had sepa- 
rated and formed a decondensed nucleus. No discernible 
pool of the lamin B receptor-containing membranes re- 
mained in the cytoplasm at the end of cytokinesis. By jux- 
taposing the tubulin labeling with the anti-lamin B receptor 
labeling, it was evident that the chromosomal surfaces cov- 
ered by lamin B receptor-containing membranes coincided 
with regions containing a low density of microtubules. This 
was most noticeable during telophase and cytokinesis but 
also observable at earlier stages of mitosis (Fig. 4, compare 
the labeling in I with corresponding regions of the mitotic 
apparatus indicated by arrowhead in k). In contrast, the chro- 
matin surfaces devoid of membranes were adjacent to the 
densely packed microtubules (Fig. 4, compare tubulin distri- 
bution in n and q with chromatin-bound lamin B receptor in 
o and r, arrows). 

The images shown in Fig. 5 provide more detail about the 
three-dimensional location of the chromosomal sites that 
bind to lamin B receptor-containing membranes. A cell in 
early telophase (Fig. 5, a and b) was stained with lamin B 
receptor antibodies and pictures were taken in three different 
focal planes (Fig. 5, c-e). First, the figure shows that the as- 
sociation of lamin B receptor vesicles with chromatin sur- 
faces begins whereas the chromosomes are still distinct and 
not fused into a chromatin mass (Fig. 5 d, arrowheads, the 
contours of some chromosomes are still visible). Second, 
there was a total absence of lamin B receptor-membranes 
from the inner chromosomal surfaces (regions facing the 
center of the dividing cell, and facing each other; Fig. 5, 
c-e). Finally, the outer chromosomal surfaces were intensely 
stained in all sections, with the marked exception of a central 
area likely to correspond to the sites of insertion of microtu- 
bnles onto kinetochores (Fig. 5 d, arrows). 
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Figure 6. Mitotic distribution of the nuclear pore membrane glycoprotein gp210 in HeLa cells. The experiment is similar to that in Fig. 
4 except that anti-gp210 antibodies were used instead of anti-lamin B receptor antibodies. Cells are shown in metaphase (a-c), anaphase 
(d-f), telophase (g-0, late telophase (j-l), early cytokinesis (m-o), and late cytokinesis (p-r), respectively. The earliest association of 
gp210 with the outer chromatin surface is discernible during late telophase (arrow in/), and much of the remaining cytoplasmic gp210 
is targeted to the nuclear envelope during cytokinesis. Bar, 10 #m. 

The localization of gp210-containing membranes, ob- 
served by indirect immunofluorescence staining of mitotic 
cells, is shown in Fig. 6. The labeling of metaphase cells 
(Fig. 6, a-c) with the gp210 antibodies was entirely cytoplas- 
mic, and in contrast to the labeling with anti-lamin B recep- 
tor (Fig. 4 d), was not excluded from the spindle (Fig. 6 c). 
As mitosis progressed into anaphase (Fig. 6, d-f) and 

telophase (Fig. 6, g-i), the antibody labeling remained cyto- 
plasmic. The earliest labeling of the chromatin surface was 
observed during late telophase (Fig. 6, j-l, arrow). An 
abrupt increase in membrane binding took place during 
cytokinesis, as the nuclei began to decondense and nucleoli 
reappeared (Fig. 6, m-o). However, a significant amount of 
cytoplasmic staining was present even at this late stage ofdi- 
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Figure 7. Mitotic distribution of lamin B in HeLa cells. The experiment is similar to that in Fig. 4, except that human anti-lamin B antibodies 
were used as probes. Cells are shown in metaphase (a-c), anaphase (d-f), early telophase (g-0, late telophase (j-/), cytokinesis (m-o), 
and early G1 (p-r), respectively. Note that the bulk of the mitotic lamins remains cytoplasmic until telophase, when the protein begins 
to associate with the chromosomal surface. Arrowheads in o point to some of the numerous lamin-containing deposits that are present 
during cytokinesis and early G1. Bar, 10/~m. 

vision. The remaining gp210-containing membranes were 
reattached to the nascent nucleus as it acquired the inter- 
phase structure (Fig. 6, p-r). 

Reassembly of the Nuclear Lamina 
To compare the time course of lamin reassembly to that of 
the nuclear membrane, an immunofluorescence study of nu- 
clear lamina reformation was also carried out. The time 

course of reassembly of lamin B (Fig. 7) and lamins A/C 
(data not shown) was identical. In metaphase, lamin B anti- 
body staining was cytoplasmic, but enriched outside the 
spindle (Fig. 7, compare b with c). In anaphase and early 
telophase, the labeling remained cytoplasmic (Fig. 7, f and 
i). During later stages of tclophase and the beginning of 
cytokinesis, the cytoplasmic labeling was stiU strong, but at 
that time a trace amount of lamins could be detected in as- 
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Figure 8. Lamin B distribution in the nontransformed chick embryo 
fibroblast cells, during telophase. The cell was fixed and stained for 
immunofluorescence with anti-lamin B antibody (as in Fig. 7). A 
portion of the lamins are associated with the nuclear periphery 
while the remaining mitotic lamins are distributed diffusely 
throughout the cytoplasm. Note the absence of cytoplasmic lamin 
aggregates. Bar, 10 ttm. 

sociation with the nuclear envelope (Fig. 7 l), The bulk of 
the lamins repolymerized into the lamina when the daughter 
chromosomes decondensed and the nucleoli reappear.ed 
(Fig. 7, o and r). Also at this stage, a variable number of dis- 
crete cytoplasmic compartments, of heterogeneous size and 
shape that stained very brightly with lamin antibodies could 
be discerned (Fig. 7 o, arrowheads). Double immuno- 
fluorescence experiments indicated that these cytoplasmic 
deposits contained lamins A, B, and C, but did not contain 
lamin B receptor, gp210, or nucleoporins (double immu- 
nofluorescence data not shown). The cytoplasmic deposits of 
lamins completely disappeared as the daughter cells matured 
(see Fig. 3, panels stained with anti-lamin antibodies). In 
contrast, when a nontransformed cell line (chick embryo 
fibroblast ceils) was probed with the larnin antibodies, a ho- 
mogeneous labeling of the cytoplasm was observed in late 
telophase and cytokinesis, in the absence of any significant 
cytoplasmic aggregation of larnins (Fig. 8). The presence of 
the lamin aggregates in HeLa cells was not a function of the 
source of the antibodies because rabbit antibodies and hu- 
man autoantibodies both reacted with identical structures 
(data not shown). 

Discussion 

Two Distinct Sets of  Vesicles That Originate from 
Nuclear Membrane Domains during Cell Division are 
Sequentially Targeted to Chromatin 
at the End of  Mitosis 

Morphological and biochemical evidence indicates that the 
nuclear envelope is organized into three distinct membrane 
domains consisting of the outer membrane, the inner mem- 
brane and the pore membranes. Specific resident proteins 

are associated with each type of membrane. The evidence 
obtained in this study suggests that the distinctness of the in- 
ner and pore membranes is retained during cell division, 
when the nuclear membranes separate from the chromo- 
somes and disassemble into vesicles. 

By density equilibrium sedimentation analysis on sucrose 
gradients of membranes from cells in metaphase, we found 
that the sedimentation pattern of the marker of the inner nu- 
clear membrane (lamin B receptor) and of the marker for the 
pore membrane (gp210) were different. This result suggested 
that the proteins may partition into separate sets of mem- 
brane vesicles. The existence of two distinct sets of mitotic 
membranes originating from the nuclear envelope was fur- 
ther supported by immunolocalization experiments which 
showed that the lamin B receptor and gp210 were segregated 
in different compartments of the mitotic cell and were tar- 
geted sequentially to the chromosomal surface during the 
reformation of the nuclear envelope. The binding to chromo- 
somes of the inner nuclear membrane-derived vesicles be- 
gins as early as anaphase A. The gp210-containing mem- 
branes bind to chromosomes mostly during telophase and 
cytokinesis. 

Double labeling experiments with antibodies to tubulin 
and the lamin B receptor revealed that the lamin B receptor- 
containing membranes are largely excluded from the mitotic 
apparatus at all stages of mitosis. It is possible that the mi- 
totic fragments of the inner nuclear membrane are too large 
to penetrate the dense microtubule network. Consequently, 
the reassociation of the lamin B receptor-containing mem- 
branes with chromatin begins only when the chromosomal 
surfaces emerge free of the microtubule network. This 
results in a complex, discontinuous pattern of nuclear enve- 
lope formation at the end of mitosis. In contrast, the gp210- 
containing vesicles seem to be able to penetrate the mitotic 
apparatus, suggesting that these vesicles have a smaller 
dimension or different properties compared to the lamin B 
receptor-containing membranes. The time course and topol- 
ogy of nuclear envelope reassembly reported here closely 
corresponds to the ultrastructural observations made by sev- 
eral groups on nuclear envelope reformation in mitotic cells 
(Robbins and Gonatas, 1964; Zatsepina et al., 1977; Zeligs 
and Wollman, 1979). In these studies, the earliest attach- 
ment of membranes to chrornatin was observed to occur in 
a discontinuous manner along the outer surface of daughter 
chromosomes, during the middle of anaphase. Furthermore, 
the membrane-chromatin associations were restricted to 
regions of low microtubule density. 

The possibility that different populations of nuclear enve- 
lope precursor vesicles may be required for the proper as- 
sembly of the nuclear envelope was recently examined in the 
Xenopus egg (Vigers and Lohka, 1991). In an in vitro nuclear 
envelope reassembly assay consisting of detergent-treated 
Xenopus sperm, Xenopus egg cytosol, and egg membranes, 
it was shown that the proper re, constitution of the nuclear 
envelope requires the sequential addition of two types of 
precursor vesicles. Thus, from these in vitro studies and our 
own observations on intact mitotic cells, a similar picture of 
nuclear envelope assembly emerges. 

What is the mechanism of reassembly of the inner and 
pore membranes onto chromatin? Because the first detect- 
able event of the nuclear envelope reconstruction is the bind- 
ing of lamin B receptor-containing membranes to chroma- 
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tin, we suggest that these vesicles play a pivotal role in the 
subsequent assembly of other envelope components. Only a 
few resident proteins of the inner membrane have been 
identified to date, and the structure and function for most 
have not yet been elucidated (Richardson and Maddy, 1982; 
Worrnan et al., 1988; Senior and Gerace, 1988; Harel et al., 
1989; Padan et al., 1990; Bailer et al., 1991). The best 
characterized inner nuclear membrane protein is the lamin 
B receptor, which was identified by its ability to bind to 
lamin B in vitro (Worman et al., 1988). Our data suggest that 
the lamin B receptor might also be a receptor for a chromatin 
component other than lamin B. This is consistent with a re- 
cent report showing that the lamin B receptor may have a role 
in the targeting of nuclear membrane vesicles to chromatin 
(Soullam and Worman, 1993). The lamin B receptor has re- 
cently been shown to be specifically phosphorylated during 
mitosis by a p34"*2-type protein kinase (Courvalin et al., 
1992), suggesting that a function(s) of this protein may be 
regulated during mitosis. Along these lines, integral mem- 
brane proteins regulated by a phosphatase/kinase system 
have been postulated to assist in the in vitro reconstitution 
of membranes around chromosomes in Xenopus (Wilson and 
Newport, 1988; Pfaller et al., 1991; Vigers and Lohka, 
1992). 

The receptor for the inner membrane on the chromatin 
surface has not been identified, though certain histone vari- 
ants and nuclear 'scaffold' proteins have been proposed to 
carry out this function (Newport, 1987). Another possibility 
is that a nonchromosomal protein is necessary for linking the 
inner membrane vesicles to chromatin. On the basis of cell- 
free reconstitution experiments, lamins, and in particular the 
A-type lamins, have been proposed to mediate the attach- 
ment of chromatin with nuclear envelope precursor vesicles 
(Burke and Gerace, 1986; Glass and Gerace, 1990; Burke, 
1990; H6ger et ai., 1991a; Ulitzur et al., 1992). Our im- 
munolocalization data do not show the early binding of lam- 
ins to chromatin. However, it is possible that the high back- 
ground of lamin B staining makes it difficult to see the 
earliest time that lamin B associates with the chromosome 
surface. Thus, the possibility remains that a portion of the 
mitotic lamins (or a lamin variant) binds to chromosomes 
very early, but in quantities not detectable by our experimen- 
tai procedures (Dabauvalle and Scheer, 1991). 

Regarding the targeting of the pore membrane vesicles, it 
remains to be shown whether these membranes have the in- 
trinsic capacity to bind to chromatin or whether they recog- 
nize and fuse with the inner membrane vesicles. The glyco- 
protein gp210 is the only integral membrane protein of the 
pore domain to be characterized (Gerace et al., 1982; Woz- 
niak et al., 1989; Courvalin et al., 1990b; Greber et al., 
1990). Although gp210 is believed to have a role in anchor- 
ing the pore complex to the membrane, it may also function 
in membrane fusion during pore assembly (Wozniak et al., 
1989; Greber et al., 1990), which is a topologically distinct 
process from the fusion of membranes exposed to the 
cytoplasm (White, 1992). Other, as yet uncharacterized 
components of gp210-containing vesicles are likely to medi- 
ate vesicle recognition and fusion events. 

Disassembly and Reassembly of the Nuclear Lamina 
The nuclear lamina has been previously shown to disassem- 
ble during prophase (Gerace and Blobel, 1980). In cell-free 

extracts, lamins A and C were found to be soluble whereas 
lamin B was associated with mitotic membranes (Gerace and 
Blobel, 1980; Stick et al., 1988; Kitten and Nigg, 1991). 
Here we report similar data, except that a significant amount 
of lamin B is also present in soluble extracts of mitotic cells. 
In addition, 'bur membrane flotation experiments showed 
that the membrane-bound form of mitotic lamin B is not en- 
riched in the same membrane fractions as the lamin B recep- 
tor. This suggests that during metaphase, the membrane- 
bound lamin B is not associated with its receptor but rather 
with membranes that do not derive from the inner nuclear 
membrane. This attachment may be mediated through the 
isoprenyl moiety that is covalently attached to the carboxyl 
terminus of lamin B (Beck et al., 1988; Wolda and Glomset, 
1988). The fact that a mutation that prevents the famesyla- 
tion of avian lamin B completely abolishes the association 
of the protein with membranes during mitosis supports this 
hypothesis (Kitten and Nigg, 1991). The separation of lamin 
B from its receptor may be promoted by mitosis-specific 
modifications of these two proteins, such as phosphorylation 
(Gerace and Blobel, 1980; Heald and McKeon, 1990; Peter 
et al., 1990; Ward and Kirschner, 1990; Courvalin et al., 
1992). 

We observed that lamins A, B, and C reassemble into the 
nuclear lamina during late telophase and cytokinesis. The 
late mitotic reassembly of the nuclear lamina is now well 
documented (Gerace et al., 1978; Bailer et al., 1991; Yang 
et al., 1992). Because the lamin B receptor is targeted to 
chromatin in anaphase and lamin B during telophase and 
cytokinesis, it is apparent that lamin B has not reassociated 
with its receptor during the immediate postmetaphase stages 
of mitosis. This time course of lamina reassembly is compat- 
ible with the hypothesis that the lamina may reform in late 
telophase by import of the lamins into the nucleus through 
the nuclear pore, and subsequent polymerization in contact 
with the inner membrane (Wilson and Newport, 1988; 
Benavente et al., 1989; Newport et al., 1990; Goldman et 
al., 1992). 

An unexpected observation in the present study is the 
finding of transient lamin deposits (or 'compartments') in the 
cytoplasm of HeLa cells during cytoldnesis and early G1 
phase of the cell cycle. This phenomenon was not observed 
in the cytoplasm of untransformed cells. The time course of 
appearance of these lamin compartments in the cytoplasm is 
simultaneous with the repolymerization of lamina that oc- 
curs around the daughter chromatin. In contrast, the annu- 
late lamellae (cytoplasmic deposits of pore-complex con- 
taining membranes) are present throughout interphase in 
oocytes, many transformed cells, and several normal cell 
lines (Kessel, 1989). Annulate lamellae do not contain lain- 
ins (Chen and Merisko, 1988; Dabauvalle et al., 1991), 
therefore, the lamin deposits in the cytoplasm of fast growing 
cells represent a potentially interesting new type of structure 
or compartment. 

In conclusion, our observations in intact mammalian cells 
indicate that biochemically distinct sets of vesicles/mem- 
branes fuse to form the nuclear envelope. The integral mem- 
brane protein components of the nuclear envelope are not 
randomly distributed at any time in the cell cycle. The mech- 
anism of biogenesis of these different membrane systems, 
and the signals that are necessary for their proper assembly 
into the nuclear envelope, remain to be investigated. 
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