A membrane fraction denoted N2 upper was isolated from homogenates of rat liver by sucrose gradient centrifugation. This fraction, which was enriched 65-fold over the homogenate in 5'-nucleotidase activity, was used as an immunogen in goats. The antisera obtained contained antibodies to three predominant polypeptides in the N2 upper membrane fraction, as shown by crossed immunoelectrophoresis. These polypeptides had molecular weights of 105,000, 110,000, and 160,000 after recovery from the crossed immunoelectrophoretic gels and are denoted PM105, PM110, and PM160. Each was a distinct polypeptide, as shown by the distinct peptide patterns resulting from limited proteolysis in the presence of detergents. The three polypeptides were synthesized by primary cultures of hepatocytes and were externally oriented at the surface of these cells, as shown by their accessibility in situ to iodination catalyzed by lactoperoxidase. They were not detectable in the serum by crossed immunoelectrophoresis. The three antigens were present at very low (PM110) or nondetectable (PM105, PM160) concentrations in intracellular membrane fractions derived from the Golgi and smooth and rough endoplasmic reticulum of liver. The antigens also were reduced in concentration in a plasma membrane fraction most likely derived from the sinusoidal surface of the hepatocyte. The three membrane antigens bind to concanavalin A; hence, they are probably glycoprotein constituents of a discrete domain of the hepatocyte plasma membrane. Immune complexes were isolated after crossed immunoelectrophoresis and injected into rabbits. Each of the antisera obtained was reactive to one of the membrane polypeptides. Sections of fixed rat livers were reacted with each of the antibodies and then the primary antibody was localized by indirect immunocytochemical methods using horseradish peroxidase or colloidal gold as labels. Each of the three antigens was localized by this method to the bile canalicular domain of the hepatocyte plasma membrane.

This content is only available as a PDF.
You do not currently have access to this content.