To characterize the control mechanisms for mitosis, we studied the relationship between the spatial organization of microtubules in the mitotic spindle and the timing of mitotic events. Spindles of altered geometry were produced in sea urchin eggs by two methods: (a) early prometaphase spindles were cut into half spindles by micromanipulation or (b) mercaptoethanol was used to indirectly induce the formation of spindles with only one pole. Cells with monopolar spindles produced by either method required an average of 3 X longer than control cells to traverse mitosis. By the time the control cells started their next mitosis, the experimental cells were usually just finishing the original mitosis. In all cases, only the time from nuclear envelope breakdown to the start of telophase was prolonged. Once the cells entered telophase, events leading to the next mitosis proceeded with normal timing. Once prolonged, the cell cycle never resynchronized with the controls. Several types of control experiments showed that were not an artifact of the experimental techniques. These results show that the spatial arrangement of spindle components plays an important role in the mechanisms that control the timing of mitotic events and the timing of the cell cycle as a whole.
Skip Nav Destination
Article navigation
1 September 1983
Article|
September 01 1983
Control mechanisms of the cell cycle: role of the spatial arrangement of spindle components in the timing of mitotic events.
G Sluder
D A Begg
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1983) 97 (3): 877–886.
Connected Content
Corrected article
Correction
Citation
G Sluder, D A Begg; Control mechanisms of the cell cycle: role of the spatial arrangement of spindle components in the timing of mitotic events.. J Cell Biol 1 September 1983; 97 (3): 877–886. doi: https://doi.org/10.1083/jcb.97.3.877
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Connected Content
Advertisement
Advertisement