The number, distribution, and nucleating capacity of microtubule-organizing centers (MTOCs) has been investigated in a variety of cultured mammalian cells. Most interphase cells contain a single MTOC that is localized at the centrosome region and corresponds to the centriole and pericentriolar material. MTOCs, like centrioles, become duplicated during the S phase of the cell cycle and are equationally distributed to daughter cells in mitosis. Multiple MTOCs were rarely observed in cultured cells except in one cell line (neuroblastoma), which also displayed an equally large number of centrioles in the cytoplasm. The kinetics of microtubule assembly and the tubulin nucleating capacity of MTOCs was assayed by incubating tubulin-depleted, permeabilized 3T3 and simian virus 40-transformed 3T3 cells with phosphocellulose-purified 65 brain tubulin and microtubule assembly buffer. Initiation and assembly of 65 tubulin occurred in association with the cells' endogenous MTOCs, and the length, number, and distribution of microtubules generated about the organizing centers were regulated and cell specific. Our results are consistent with the notion that the specification of microtubule length, number, and spatial arrangement resides largely in the MTOCs and surrounding cytoplasm and not in the tubulin subunits.

This content is only available as a PDF.
You do not currently have access to this content.