We have used radioautographic methods to examine the topography of addition and removal of acetylcholine receptors (AChRs) within receptor clusters at developing ectopic synapses in adult rat soleus muscle. After AChRs within a cluster had been pulse-labeled with 125I-alpha-bungarotoxin (125I-alpha-BuTx), the area that they occupied within the cluster shrank with time. Thus the old receptors at new endplates occupy a continually decreasing area of the growing receptor cluster. To localize newly added AChRs, we pretreated the muscles with unlabeled alpha-BuTx, thus blocking the old receptors, and then labeled newly added receptors with 125I-alpha-BuTx 1 or 2 d later. In radioautographs, AChR clusters from these muscles appeared as annuli or "doughnuts," unlike control (unpretreated) clusters, which were more nearly uniformly labeled. This visual impression was confirmed by analyzing the radial grain density distribution. Thus growth and turnover of AChR clusters at ectopic endplates takes place by the addition of receptors at the periphery of the clusters. Our data are most consistent with a model in which receptor removal occurs by endocytosis randomly throughout the cluster.

This content is only available as a PDF.
You do not currently have access to this content.