To study the site of incorporation of sialic acid residues into glycoproteins in hepatocytes, we gave 40-g rats and 15-g Swiss albino mice a single intravenous injection of [3H]N-acetylmannosamine (8 mCi) and then sacrificed them after 2 and 10 min. To trace the subsequent migration of the labeled glycoproteins, we injected 40-g rats with 4 mCi of [3H]N-acetylmannosamine and sacrificed them after 20 and 30 min, 1, 4, and 24 h, and 3 and 9 d. Concurrent biochemical experiments were carried out to test the specificity of injected [3H]N-acetylmannosamine as a precursor for sialic acid residues of glycoproteins. In radioautographs from rats and mice sacrificed 10 min after injection, grain counts showed that over 69% of the silver grains occurred over the Golgi region. The majority of these grains were localized over the trans face of the Golgi stack, as well as over associated secretory vesicles and possibly GERL. In rats, the proportion of grains over the Golgi region decreased with time to 37% at 1 h, 11% at 4 h, and 6% at 24 h. Meanwhile, the proportion of grains over the plasma membrane increased from 4% at 10 min to 29% at 1 h and over 55% at 4 and 24 h; two-thirds of these grains lay over the sinusoidal membrane, and the remainder were equally divided over the lateral and bile canalicular membranes. Many silver grains also appeared over lysosomes at the 4- and 24-h time intervals, accounting for 15-17% of the total. At 3 and 9 d after injection, light microscope radioautographs revealed a grain distribution similar to that seen at 24 h, with a progressive decrease in the intensity of labeling such that by 9 d only a very light reaction remained. Because our biochemical findings indicated that [3H]N-acetylmannosamine is a fairly specific precursor for the sialic acid residues of glycoproteins (and perhaps glycolipids), the interpretation of these results is that sialic acid is incorporated into these molecules in the Golgi apparatus and that the latter then migrate to secretion products, to the plasma membrane, and to lysosomes in a process of continuous renewal. It is possible that some of the label seen in lysosomes at later time intervals may have been derived from the plasma membrane or from material arising outside the cells.

This content is only available as a PDF.
You do not currently have access to this content.