Laser diffraction techniques coupled with simultaneous tension measurements were used to determine the length-tension relation in intact, small (0.5-mm thick, 10-mm wide, 20-25-mm long) bundles of a Limulus (horseshoe crab) striated muscle, the telson levator muscle. This muscle differs from the model vertebrate systems in that the thick filaments are not of a constant length, but shorten from 4.9 to approximately 2.0 micrometers as the sarcomeres shorten from 7 to 3 micrometers. In the Limulus muscle, the length-tension relation plateaued to an average maximum tension of 0.34 N/mm2 at a sarcomere length of 6.5 micrometers (Lo) to 8.0 micrometers. In the sarcomere length range from 3.8 to 12.5 micrometers, the muscle developed 50% or more of the maximum tension. When the sarcomere lengths are normalized (expressed as L/Lo) and the Limulus data are compared to those from frog muscle, it is apparent that Limulus muscle develops tension over a relatively greater range of sarcomere lengths.

This content is only available as a PDF.
You do not currently have access to this content.