The kinetics and distribution of ouabain binding in retinas of Rana pipiens were examined quantitatively by scintillation counting and freeze-dry autoradiography. The time-course of binding at several concentrations was consistent with a bimolecular reaction. Estimated equilibrium binding levels gave a Michaelis-Menton relationship with a Km = 8.3 x 10(-8) M and a maximum binding level (Bmax) = 4.4 x 10(-8) mol/g protein. The distribution of binding sites measured autoradiographically varied considerably between layers. The photoreceptor, inner plexiform, and optic nerve fiber layers exhibited the heaviest binding. Within the photoreceptor layer, binding was nonuniform. Binding in the outer segment decreased distally, averaging approximately 4% of that in the proximal receptor layers (Bmax = 4.6 x 10(-6) M). The origin of the outer segment activity is uncertain at light microscope resolution, as it may be a result of inner segment calyceal processes. Binding within the proximal receptor layers was also nonuniform. Several peaks were observed, with those at the inner segment and synaptic layers being especially noticeable. Assuming an absence of glial cell binding in the proximal receptor layers, we calculated there to be 13 x 10(6) ouabain or Na+,K+ pump sites per rod receptor. Limited measurements suggest a Bmax of approximately 8 x 10(-6) M for the inner plexiform layer.
Skip Nav Destination
Article navigation
1 May 1980
Article|
May 01 1980
[3H]ouabain autoradiography of frog retina.
C E Stirling
A Lee
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1980) 85 (2): 313–324.
Citation
C E Stirling, A Lee; [3H]ouabain autoradiography of frog retina.. J Cell Biol 1 May 1980; 85 (2): 313–324. doi: https://doi.org/10.1083/jcb.85.2.313
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement