Previous studies (Holmes, K.V., and P.W. Choppin. J. Exp. Med. 124:501-520; J. Cell Biol. 39:526-543) showed that infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes extensive cell fusion, that nuclei migrate in the syncytial cytoplasm and align in tightly-packed rows, and that microtubules are involved in nuclear movement and alignment. The role of microtubules, 10-nm filaments, and actin-containing microfilaments in this process has been investigated by immunofluorescence microscopy using specific antisera, time-lapse cinematography, and electron microscopy. During cell fusion, micro tubules and 10-nm filaments from many cells form large bundles which are localized between rows of nuclei. No organized bundles of actin fibers were detected in these areas, although actin fibers were observed in regions away from the aligned nuclei. Although colchicine disrupts microtubules and inhibits nuclear movement, cytochalasin B (CB; 20-50 microgram/ml) does not inhibit cell fusion or nuclear movement. However, CB alters the shape of the syncytium, resulting in long filamentous processes extending from a central region. When these processes from neighboring cells make contact, fusion occurs, and nuclei migrate through the channels which are formed. Electron and immunofluorescence microscopy reveal bundles of microtubules and 10-nm filaments in parallel arrays within these processes, but no bundles of microfilaments were detected. The effect of CB on the structural integrity of microfilaments at this high concentration (20 microgram/ml) was demonstrated by the disappearance of filaments interacting with heavy meromyosin. Cycloheximide (20 microgram/ml) inhibits protein synthesis but does not affect cell fusion, the formation of microtubules and 10-nm filament bundles, or nuclear migration and alignment; thus, continued protein synthesis is not required. The association of microtubules and 10-nm filaments with nuclear migration and alignment suggests that microtubules and 10-nm filaments are two components in a system which serves both cytoskeletal and force-generating functions in intracellular movement and position of nuclei.
Skip Nav Destination
Article navigation
1 November 1979
Article|
November 01 1979
Involvement of microtubules and 10-nm filaments in the movement and positioning of nuclei in syncytia.
E Wang
R K Cross
P W Choppin
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1979) 83 (2): 320–337.
Citation
E Wang, R K Cross, P W Choppin; Involvement of microtubules and 10-nm filaments in the movement and positioning of nuclei in syncytia.. J Cell Biol 1 November 1979; 83 (2): 320–337. doi: https://doi.org/10.1083/jcb.83.2.320
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement