Freeze-cleaving can be used as a direct probe to examine the ultrastructural alterations of biological material due to freezing. We examined the thesis that at least two factors, which are oppositely dependent upon cooling velocity, determine the survival of cells subjected to freezing. According to this thesis, when cells are cooled at rates exceeding a critical velocity, a decrease in viability is caused by the presence of intracellular ice; but cells cooled at rates less than this critical velocity do not contain appreciable amounts of intracellular ice and are killed by prolonged exposure to a solution that is altered by the presence of ice. As a test of this hypothesis, we examined freeze-fractured replicas of the yeast Saccharomyces cerevisiae after suspensions had been cooled at rates ranging from 1.8 to 75,000°C/min. Some of the frozen samples were cleaved and replicated immediately in order to minimize artifacts due to sample handling. Other samples were deeply etched or were rewarmed to -20°C and recooled before replication. Yeast cells cooled at or above the rate necessary to preserve maximal viability (∼7°C/min) contained intracellular ice, whereas cells cooled below this rate showed no evidence of intracellular ice.

This content is only available as a PDF.
You do not currently have access to this content.