Replication fork reversal is an important mechanism to protect the stability of stalled forks and thereby preserve genomic integrity. While multiple enzymes have been identified that can remodel forks, their regulation remains poorly understood. Here, we demonstrate that the ubiquitin ligase RFWD3, whose mutation causes Fanconi Anemia, promotes recruitment of the DNA translocase ZRANB3 to stalled replication forks and ubiquitinated sites of DNA damage. Using electron microscopy, we show that RFWD3 stimulates fork remodeling in a ZRANB3-epistatic manner. Fork reversal is known to promote nascent DNA degradation in BRCA2-deficient cells. Consistent with a role for RFWD3 in fork reversal, inactivation of RFWD3 in these cells rescues fork degradation and collapse, analogous to ZRANB3 inactivation. RFWD3 loss impairs ZRANB3 localization to spontaneous nuclear foci induced by inhibition of the PCNA deubiquitinase USP1. We demonstrate that RFWD3 promotes PCNA ubiquitination and interaction with ZRANB3, providing a mechanism for RFWD3-dependent recruitment of ZRANB3. Together, these results uncover a new role for RFWD3 in regulating ZRANB3-dependent fork remodeling.
RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication forks
C.E. Moore and S.E. Yalcindag contributed equally to this paper.
H. Czeladko and R. Ravindranathan contributed equally to this paper.
Disclosures: The authors declare no competing interests exist.
V. Sannino's current affiliation is the Institute of Genetic and Biomedical Research (IRGB) - UoS Milan, National Research Council (CNR), Milan, Italy.
- Award Id(s): AIRC-IG Ref 21824,Ref 26596
- Award Id(s): R01CA197774
Chandler E. Moore, Selin E. Yalcindag, Hanna Czeladko, Ramya Ravindranathan, Yodhara Wijesekara Hanthi, Juliana C. Levy, Vincenzo Sannino, Detlev Schindler, Alberto Ciccia, Vincenzo Costanzo, Andrew E.H. Elia; RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication forks. J Cell Biol 1 May 2023; 222 (5): e202106022. doi: https://doi.org/10.1083/jcb.202106022
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement