Matrix stiffness is a central regulator of fibroblast function. However, the transcriptional mechanisms linking matrix stiffness to changes in fibroblast phenotype are incompletely understood. Here, we evaluated the effect of matrix stiffness on genome-wide chromatin accessibility in freshly isolated lung fibroblasts using ATAC-seq. We found higher matrix stiffness profoundly increased global chromatin accessibility relative to lower matrix stiffness, and these alterations were in close genomic proximity to known profibrotic gene programs. Motif analysis of these regulated genomic loci identified ZNF416 as a putative mediator of fibroblast stiffness responses. Genome occupancy analysis using ChIP-seq confirmed that ZNF416 occupies a broad range of genes implicated in fibroblast activation and tissue fibrosis, with relatively little overlap in genomic occupancy with other mechanoresponsive and profibrotic transcriptional regulators. Using loss- and gain-of-function studies, we demonstrated that ZNF416 plays a critical role in fibroblast proliferation, extracellular matrix synthesis, and contractile function. Together, these observations identify ZNF416 as novel mechano-activated transcriptional regulator of fibroblast biology.

This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
You do not currently have access to this content.