Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.

This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
You do not currently have access to this content.