The endoplasmic reticulum (ER) is a key regulator of cellular proteostasis because it controls folding, sorting, and degradation of secretory proteins. Much has been learned about how environmentally triggered signaling pathways regulate ER function, but only little is known about local signaling at the ER. The identification of ER-resident signaling molecules will help gain a deeper understanding of the regulation of ER function and thus of proteostasis. Here, we show that leukocyte tyrosine kinase (LTK) is an ER-resident receptor tyrosine kinase. Depletion of LTK as well as its pharmacologic inhibition reduces the number of ER exit sites and slows ER-to-Golgi transport. Furthermore, we show that LTK interacts with and phosphorylates Sec12. Expression of a phosphoablating mutant of Sec12 reduces the efficiency of ER export. Thus, LTK-to-Sec12 signaling represents the first example of an ER-resident signaling module with the potential to regulate proteostasis.

This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at
You do not currently have access to this content.