As an experimental model for the different forms of muscle degeneration, injury caused by 2 hours' ischemia has been studied from 20 minutes to 16 hours after release of the tourniquet.

Discoid degeneration developed in stretched fibers by dissolution of the I bands (Z substances and actin). The discs represented the Q bands (A-H-A). In fibers which passively maintained contraction lengths during degeneration, the Z substances were dissolved, but the continuity of the fibrils was preserved, since the filaments are continuous over all sarcomeres under these conditions. Mitochondria and the tubules of the endoplasmic reticulum swelled, ruptured, and disintegrated. Granular degeneration developed in fibers where mitochondria were abundant. Unstretched degenerating fibers with few mitochondria gave a homogeneous or hyaline appearance. The different forms of degeneration therefore were dependent on the status of stretch and the fiber type. The extent of degeneration was not a function of time after ischemia, there being both nearly normal and severely damaged fibers at 20 minutes and 16 hours after the release of tourniquets. When degeneration occurred, however, the basic alterations were the same in all fibers; there was mitochondrial and reticular swelling, dissolution of the Z substances, and finally disintegration of the contractile material. Some damage developed in the sarcolemmas and capillaries.

The mitochondrial disintegration was not linked with inactivation of the succinic dehydrogenase system.

This content is only available as a PDF.
You do not currently have access to this content.