Much like other microorganisms, wild yeasts preferentially form surface-associated communities, such as biofilms and colonies, that are well protected against hostile environments and, when growing as pathogens, against the host immune system. However, the molecular mechanisms underlying the spatiotemporal development and environmental resistance of biofilms and colonies remain largely unknown. In this paper, we show that a biofilm yeast colony is a finely tuned, complex multicellular organism in which specialized cells jointly execute multiple protection strategies. These include a Pdr1p-regulated mechanism whereby multidrug resistance transporters Pdr5p and Snq2p expel external compounds solely within the surface cell layers as well as developmentally regulated production by internal cells of a selectively permeable extracellular matrix. The two mechanisms act in concert during colony development, allowing growth of new cell generations in a well-protected internal cavity of the colony. Colony architecture is strengthened by intercellular fiber connections.

This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at
You do not currently have access to this content.