Mitochondrial dysfunction and dysregulation of apoptosis are implicated in many diseases such as cancer and neurodegeneration. We investigate here the role of respiratory chain (RC) dysfunction in apoptosis, using mitochondrial DNA mutations as genetic models. Although some mutations eliminate the entire RC, others target specific complexes, resulting in either decreased or complete loss of electron flux, which leads to impaired respiration and adenosine triphosphate (ATP) synthesis. Despite these similarities, significant differences in responses to apoptotic stimuli emerge. Cells lacking RC are protected against both mitochondrial- and endoplasmic reticulum (ER) stress–induced apoptosis. Cells with RC, but unable to generate electron flux, are protected against mitochondrial apoptosis, although they have increased sensitivity to ER stress. Finally, cells with a partial reduction in electron flux have increased apoptosis under both conditions. Our results show that the RC modulates apoptosis in a context-dependent manner independent of ATP production and that apoptotic responses are the result of the interplay between mitochondrial functional state and environmental cues.
The mitochondrial respiratory chain is a modulator of apoptosis
Abbreviations used in this paper: AFC, 7-amino-4-trifluormethyl coumarin; BN, blue native; COX, cytochrome c oxidase; CYTB, cytochrome b subunit of complex III; ET, etoposide; H2DCFDA, 2′,7′-dichlorofluorescin diacetate; FCCP, carbonylcyanide-p-trifluoromethoxyphenylhydrazone; MERRF, myoclonic epilepsy with ragged red fibers; mtDNA, mitochondrial DNA; NARP, neuropathy, ataxia, and retinitis pigmentosa; PVDF, polyvinylidine fluoride; RC, respiratory chain; ROS, reactive oxygen species; STS, staurosporine; TG, thapsigargin; TMPD, N,N,N′,N′-tetramethyl-P-phenylenediamine; TN, tunicamycin; WT, wild type.
Jennifer Q. Kwong, Matthew S. Henning, Anatoly A. Starkov, Giovanni Manfredi; The mitochondrial respiratory chain is a modulator of apoptosis . J Cell Biol 17 December 2007; 179 (6): 1163–1177. doi: https://doi.org/10.1083/jcb.200704059
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement