Cerebral cavernous malformation (CCM), a disease associated with defective endothelial junctions, result from autosomal dominant CCM1 mutations that cause loss of KRIT-1 protein function, though how the loss of KRIT-1 leads to CCM is obscure. KRIT-1 binds to Rap1, a guanosine triphosphatase that maintains the integrity of endothelial junctions. Here, we report that KRIT-1 protein is expressed in cultured arterial and venous endothelial cells and is present in cell–cell junctions. KRIT-1 colocalized and was physically associated with junctional proteins via its band 4.1/ezrin/radixin/moesin (FERM) domain. Rap1 activity regulated the junctional localization of KRIT-1 and its physical association with junction proteins. However, the association of the isolated KRIT-1 FERM domain was independent of Rap1. Small interfering RNA–mediated depletion of KRIT-1 blocked the ability of Rap1 to stabilize endothelial junctions associated with increased actin stress fibers. Thus, Rap1 increases KRIT-1 targeting to endothelial cell–cell junctions where it suppresses stress fibers and stabilizes junctional integrity.
KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell–cell junctions
A. Glading, J. Han, and R.A. Stockton contributed equally to this paper.
Dr. Han died on 4 July 2006.
Abbreviations used in this paper: 8-pCPT-2′-O-Me-cAMP, 8-pCPT-2′-O-methyladenosine-3′,5′-cAMP; BAEC, bovine aortic endothelial cell; CCM, cerebral cavernous malformation; CS, calf serum; FERM, band 4.1/ezrin/radixin/moesin; FN, fibronectin; GAP, GTPase activating protein; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HUVEC, human umbilical vein endothelial cell; ICAP1α, integrin cytoplasmic domain-associated protein-1α; NGS, normal goat serum.
Angela Glading, Jaewon Han, Rebecca A. Stockton, Mark H. Ginsberg; KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell–cell junctions . J Cell Biol 22 October 2007; 179 (2): 247–254. doi: https://doi.org/10.1083/jcb.200705175
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement