The endothelial cell (EC)–derived tissue inhibitor of metalloproteinase-2 (TIMP-2) and pericyte-derived TIMP-3 are shown to coregulate human capillary tube stabilization following EC–pericyte interactions through a combined ability to block EC tube morphogenesis and regression in three-dimensional collagen matrices. EC–pericyte interactions strongly induce TIMP-3 expression by pericytes, whereas ECs produce TIMP-2 in EC–pericyte cocultures. Using small interfering RNA technology, the suppression of EC TIMP-2 and pericyte TIMP-3 expression leads to capillary tube regression in these cocultures in a matrix metalloproteinase-1 (MMP-1)–, MMP-10–, and ADAM-15 (a disintegrin and metalloproteinase-15)–dependent manner. Furthermore, we show that EC tube morphogenesis (lumen formation and invasion) is primarily controlled by the TIMP-2 and -3 target membrane type (MT) 1 MMP. Additional targets of these inhibitors include MT2-MMP and ADAM-15, which also regulate EC invasion. Mutagenesis experiments reveal that TIMP-3 requires its proteinase inhibitory function to induce tube stabilization. Overall, these data reveal a novel role for both TIMP-2 and -3 in the pericyte-induced stabilization of newly formed vascular networks that are predisposed to undergo regression and reveal specific molecular targets of the inhibitors regulating these events.

You do not currently have access to this content.