β-Catenin is the nuclear effector of the Wnt signaling cascade. The mechanism by which nuclear activity of β-catenin is regulated is not well defined. Therefore, we used the nuclear marker RanGTP to screen for novel nuclear β-catenin binding proteins. We identified a cofactor of chromosome region maintenance 1 (CRM1)–mediated nuclear export, Ran binding protein 3 (RanBP3), as a novel β-catenin–interacting protein that binds directly to β-catenin in a RanGTP-stimulated manner. RanBP3 inhibits β-catenin–mediated transcriptional activation in both Wnt1- and β-catenin–stimulated human cells. In Xenopus laevis embryos, RanBP3 interferes with β-catenin–induced dorsoventral axis formation. Furthermore, RanBP3 depletion stimulates the Wnt pathway in both human cells and Drosophila melanogaster embryos. In human cells, this is accompanied by an increase of dephosphorylated β-catenin in the nucleus. Conversely, overexpression of RanBP3 leads to a shift of active β-catenin toward the cytoplasm. Modulation of β-catenin activity and localization by RanBP3 is independent of adenomatous polyposis coli protein and CRM1. We conclude that RanBP3 is a direct export enhancer for β-catenin, independent of its role as a CRM1-associated nuclear export cofactor.

You do not currently have access to this content.