Stable platelet aggregation, adhesion, and spreading during hemostasis are promoted by outside-in αIIbβ3 signals that feature rapid activation of c-Src and Syk, delayed activation of FAK, and cytoskeletal reorganization. To evaluate these αIIbβ3–tyrosine kinase interactions at nanometer proximity in living cells, we monitored bioluminescence resonance energy transfer between GFP and Renilla luciferase chimeras and bimolecular fluorescence complementation between YFP half-molecule chimeras. These techniques revealed that αIIbβ3 interacts with c-Src at the periphery of nonadherent CHO cells. After plating cells on fibrinogen, complexes of αIIbβ3–c-Src, αIIbβ3–Syk, and c-Src–Syk are observed in membrane ruffles and focal complexes, and the interactions involving Syk require Src activity. In contrast, FAK interacts with αIIbβ3 and c-Src, but not with Syk, in focal complexes and adhesions. All of these interactions require the integrin β3 cytoplasmic tail. Thus, αIIbβ3 interacts proximally, if not directly, with tyrosine kinases in a coordinated, selective, and dynamic manner during sequential phases of αIIbβ3 signaling to the actin cytoskeleton.

You do not currently have access to this content.